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Abstract— The next generation of aircraft will have dynamics 

that vary considerably over the operating regime. A single 
controller will have difficulty to meet the design specifications. In 
this paper, a SOM-based local linear modeling scheme of an 
unmanned aerial vehicle (UAV) is developed to design a set of 
inverse controllers. The SOM selects the operating regime 
depending only on the embedded output space information and 
avoids normalization of the input data. Each local linear model is 
associated with a linear controller, which is easy to design. 
Switching of the controllers is done synchronously with the active 
local linear model that tracks the different operating conditions. 
The proposed multiple modeling and control strategy has been 
successfully tested in a simulator that models the LoFLYTE® 
UAV. 

Index Terms—Multiple model, Inverse Controller, Self-
Organizing Map. 
 

I. INTRODUCTION 
he identification of unknown nonlinear dynamical systems 
has received considerable attention in recent years since it 

is an indispensable step towards controller design of nonlinear 
systems. Many systems, especially aircraft, have dynamics 
that vary considerably over the operating regime, effectively 
bringing the issue of time varying parameters (or nonlinearity) 
into the design [22]. Controllers for aircraft have been 
designed predominantly by classical control techniques [39]. 
While this tradition has produced many highly reliable and 
effective control systems, recent years have seen a growing 
interest in the use of robust, nonlinear adaptive control theory 
for flight control [3],[22],[36]. For instance, the concept of 
multiple models with switching, according to a change in 
dynamics, has been an area of interest in control theory in 
order to simplify both the modeling and the controller design 
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[13,17,21,33]. 
System identification methods fall into two broad 

categories: global and local. Global approximations can be 
made with various function representations, e.g., polynomials, 
rational approximation, and multi-layer perceptrons (MLPs) 
[9]. To approximate a function f, a model should be capable of 
representing its many possible variations. If f is complicated, 
there is no guarantee that any given representation will 
approximate f equally well across all space. The dependence 
on representation can be reduced using local approximation 
where the domain of f is divided into local regions and a 
separate model is used for each region [32].  

Local modeling is based on nearest-neighbors in the 
operating space where a simple model is constructed using 
only the neighboring samples. The rationale behind this 
approach is basically that it is easier to develop local models 
(or controllers) because the dynamics are simpler locally than 
globally [33]. For instance, if the system phenomena or 
behavior changes smoothly with the operating point, then a 
linear model (or controller) will always be sufficiently 
accurate locally provided that the operating regime is 
sufficiently small, even though the system may contain 
complex nonlinearities when viewed globally. In these 
methods, the global dynamics is approximated by a preset 
number of local linear models that need to be specified by the 
user. The added difficulty in local modeling is the switching 
among models, but recently the approximation properties of 
multiple models have been examined in detail [13]. Under 
mild conditions, it has been shown that multiple models can 
uniformly approximate any system on a compact subset 
provided a sufficient number of local models are given [7]. 
Finally, with this approach, the model/controller structure is 
easy to understand and interpret [33]. 

There are many examples in the literature where the local 
modeling paradigm has been successfully applied for the 
modeling of nonlinear autonomous and nonautonomous 
systems. Jacobs et al. [28] have proposed the mixtures of 
expert model that is composed of several different expert 
networks and a gating network that localizes the experts. They 
showed that a simple model can be built by dividing a vowel 
discrimination task into appropriate subtasks. Bottou and 
Vapnik [29] have proposed to use local learning algorithms 
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instead of training a complex system by all data samples and 
demonstrated that a set of subsystems trained with a subset of 
data can improve the performance for an optical character 
recognition problem. Murray-Smith [31] similarly has 
extended RBF networks where each local model is a linear 
function of the input and exhibited a great success in control 
problems. In a similar context of mixture of local experts, 
Tipping and Bishop [ref] have utilized a combination of local 
linear PCA projections for clustering and density modeling for 
the application of handwritten digit recognition. On the 
contrary, Farmer and Sidorowich [32] have shown that local 
linear models provide an effective and accurate approximation 
of chaotic dynamical systems activating only one model at any 
given time as opposed to the mixture of models. The neural-
gas architecture proposed by Martinetz et al. [10] is similar to 
the SOM in that the competitive network divides the input 
space in a set of smaller regions and then local linear models 
are created by a LMS like rule. They showed that the neural-
gas network outperforms MLPs and RBF networks for time 
series prediction. The same group [30] used a Self-Organizing 
Map (SOM) for the control of a robotic arm. Principe and 
Wang [16] have successfully modeled a chaotic system with a 
SOM-based local linear modeling method. Vesanto et al. [34] 
and Moshou [35] proposed a scheme that essentially followed 
local linear modeling based on SOM topology for 
nonautonomous system.  

In a number of applications of modeling with switching, a 
SOM has been utilized to divide the operating region into 
local regions. The SOM is particularly appropriate for 
multiple switching because it converts complex, nonlinear 
statistical relationships of high-dimensional data into simple 
geometric relationships that preserve the topology in the 
feature space [8]. Thus the role of the SOM is to discover 
patterns in high dimensional input space and divide the input 
space into a set of regions represented by the weights of each 
processing element (PE). However, most of the work on local 
linear approaches only addresses the recursive state-dependent 
prediction. The approximation of nonautonomous systems 
using a finite set of local models, which involves an explicit 
dependence on external driving inputs, has not been fully 
studied. 

Global controller design with the aid of multiple models has 
been extensively reported in the literature. Murray-Smith and 
Johansen [33] utilized an extended RBF network where each 
local model is a linear function of the input and they reported 
great success for control problems. Palizban et al. [40] 
attempted to control nonlinear systems with the linear 
quadratic optimal control technique using multiple linear 
models. As another blending approach, the multiple paired 
forward and inverse models was proposed by Wolpert and 
Kawato [42] to show that the approach produces effective 
motor control tackling the problems of biological motor 
learning and control. In contrast, Narendra and Balakrishnan 
[13] proposed the multiple model approach in the context of 
adaptive control with switching where local model 
performance indices have been used to select the local 

controller. Motter and Principe [11], and Principe et al. [17] 
have successfully modeled the set point regulation of the 
NASA Langley 16 Foot Transonic wind tunnel during the 
aerodynamic testing of a model aircraft. But the control of the 
wind tunnel is bang-zero-bang (on-off), therefore it is still 
rather easy to cluster the control input time series into a finite 
(relatively small) number of clusters. In this case, the next 
value of the state was completely specified by one of three 
values of control input based on the current state, which does 
not happen in general. Consequently, a more general 
representation of the underlying nonautonomous dynamical 
system is highly desirable.  

Inspired by this approach, a local control strategy with 
switching by extending the SOM-based local modeling 
scheme for nonautonomous and nonlinear systems is proposed 
in this paper. Local linear models are derived through 
competition using the SOM and they are derived from the data 
samples corresponding to each of the SOM’s PEs. At any time 
instant, the model representing the plant dynamics is chosen 
by the SOM depending on the history of the plant output. In 
addition, a set of an inverse controllers corresponding to each 
linear model is also derived to show the effectiveness of the 
proposed scheme. Simulation results using the proposed 
strategy for identification and control of a missile are 
presented to demonstrate the versatility of the algorithm. Also, 
the proposed scheme is tested to identify the highly nonlinear 
aircraft dynamics of the experimental LoFLYTE® UAV and to 
design the corresponding inverse controller. Results show that 
the switching linear models are a promising alternative for 
system identification when compared with a single global 
model. 

II. NONLINEAR SYSTEM REPRESENTATION BY MULTIPLE 
MODELS 

The idea of multiple modeling is to approximate a nonlinear 
system with a set of relatively simple local models valid in 
certain operating regimes. Because of the complexity, 
uncertainty and nonlinearity of a large class of systems, we 
often cannot derive appropriate models from first principles, 
and are not capable of deriving accurate and complete 
equations for input-state-output representations of the 
systems. Hence we need to resort to input-output data in order 
to derive the unknown nonlinear system model [6]. The 
technique of multiple model networks is appealing for 
modeling complex nonlinear systems due to its intrinsic 
simplicity [33].  

We begin with a brief overview of a dynamical systems 
approach to input-output modeling. When no physical 
knowledge of the system is available, we have to determine a 
model from a finite number of measurements of the system’s 
inputs and outputs. An autonomous dynamical system’s 
approach to “black-box” modeling based on Takens 
Embedding theorem was first suggested by Casdagli [26]. The 
delay embedding offers the possibility of accessing linear or 
nonlinear coupling between variables and is a fundamental 
tool in nonlinear system identification. The use of delay 
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variables in the structure of these dynamical models is similar 
to that originally studied by Leontaritis and Billings [27], and 
is common in linear time-series analysis and system 
identification [23]. 

A. Autonomous System 
When we are trying to understand an irregular sequence of 

measurements, an immediate question is what kind of process 
generates such a series. Under the deterministic assumption, 
irregularity can be autonomously generated by the 
nonlinearity of the intrinsic dynamics. Let the possible states 
of a system be represented by points in a finite dimensional 
phase space, Pℜ . This can be realized by a map of Pℜ  onto 
itself: 
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where )(kx  is the system state and f  is typically referred as 
the vector field. The predictive mapping is the centerpiece of 
modeling since once determined, f can be obtained from the 
predictive mapping ℜ→ℜP

if :  as  
))(()( kxf1kx i

r
=+  (2) 

where T1Pkx1kxkxkx ])()()([)( +−−= L
r

. In addition, 
Singer et al. [19] derived the locally linear prediction based on 
this relationship as  

i
T
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rrr

)(  (3) 
The vector and scalar quantities of a

r  and b  are estimated 
from the selected pairs ( )(),1( jxjx

r
+ ) in the least square 

sense, where j is the index of the data samples in the operating 
regime, i.e. one model. To obtain a stable solution, more than 
P pairs must be selected. In general, the above local model 
fitting is composed of two steps: a set of nearby state searches 
over the signal history and model parameters which, when 
pieced together, provide a global modeling of the dynamics in 
state space. The underlying dynamics f is then approximated 
as 

i
Ni

ff U
L,,1=

≈  (4) 

where N is the number of operating regimes. Based on this 
approximation of an autonomous system, local linear models 
have performed very well in comparative studies on time 
series prediction problems and in most cases have generated 
more accurate predictions than global methods [18,20,24]. 
Moreover, the nonlinear dynamical system can be identified 
by local framework even in the presence of noise if enough 
data are available to cover all of the state space since local 
regions are local averages of the data. To make the local 
network less sensitive to noise and outliers, more than one 
neighbor can be utilized in local modeling. 

B. Nonautonomous System 
The temporal state evolution of an autonomous system is 

functionally dependent only on the system state, but a 
nonautonomous system, such as considered in this work, 
allows for an explicit dependence on an independent variable, 
the control input, in addition to the system state. For an 
autonomous system, it is reasonable to assume that the future 
behavior of the system can be predicted over some finite 
interval from a finite number of observations of past outputs. 
In contrast, predictions of the behavior of a nonautonomous 
system require consideration of not only the “internal” 
deterministic dynamics (past outputs), but also of the 
“external” driving term (future input) [23,11,5].  

Some common classical approaches for nonlinear 
nonautonomous system modeling are based on polynomials 
for the realization of the nonlinear mapping. Other methods 
that have been developed for nonlinear system identification 
include Volterra Series, neural networks, etc. [33,14]. 
Normally, a discrete-time nonlinear dynamic system can be 
described by a NARX (Nonlinear Auto-Regressive with 
eXogenous input) model that is an extension of the linear 
ARX model, and represents the system by a nonlinear 
mapping of past inputs and output terms to future outputs, that 
is, 

))(,),(),(,),(()1( uy dkukudkykyfky −−=+ LL  (5) 

Here pYky ℜ⊂∈)(  is the output vector and qUku ℜ⊂∈)(  
is the input vector. For simplicity, we will set 1== qp . Let 
the )2( ++ uy dd - dimensional basis vector be 

)](,),(),(,),([)](),([)( uyuy dkukudkykykkk −−== LLψψψ
 (6) 

where )(kψ  is in the set 11 ++ ×=Ψ uy dd UY . If the nonlinear 
function )(⋅f  is invertible w.r.t. the input )(ku , then a 
controller may be constructed by training an inverse neural 
network. Unfortunately, most of these nonlinear functions are 
not invertible, so the application of this approach is limited. 
Also, when the environment of a system changes abruptly, the 
original model (and hence the controller) is no longer valid 
[5]. In order to solve these difficulties, it is appealing to use a 
methodology that decomposes the overall modeling problem 
into a set of simpler local modeling problems, each for a 
different operating regime. In so doing controllers can be 
designed a priori for each of the local models, and can be 
easily inverted.  

In the interest of modeling the local dynamics of a 
nonautonomous system in each region, the local 
approximation method presented for autonomous systems can 
be extended by letting )()( kkx ψ=

r
 in (2), so that 

))(()1( kfky i ψ=+ . Provided that necessary smoothness 
conditions on Yfi →Ψ:  are satisfied, a Taylor series 
expansion can be used around the operating point. The first-
order approximation about the system’s equilibrium point 
produces N local predictive ARX models Nff ,,1 L  of the 
plant described by 
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where i
ja  and i

jb  are the parameters of the ith model. 

Although higher order Taylor approximations would improve 
accuracy, they are not very useful in practice because the 
number of parameters in the model increases drastically with 
the expansion order. 

Our proposed methodology is summarized in (7): first, the 
delayed version of input-output joint space is decomposed into 
a set of operating regions that are assumed to cover the full 
operating space1. Next, for each operating regime we choose a 
simple linear ARX model to capture the dynamics of the 
region. Consequently, a nonlinear nonautonomous system is 
approximated by a concatenation of local linear models 
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Once we identify the plant using multiple models, it is 
necessary to associate these models with a corresponding 
controller. 

C. Structure of Controllers 
Now we discuss the control problem for the local linear 

model using an inverse control framework [13,21]. The 
central advantage of such a framework is that an inverse 
model can be used directly to build a feed-forward controller. 
Thus, for the desired behavior, the controller just asks the 
model to predict the action needed. 

As stated before, our principal objective is to determine a 
control input, )(ku , which will result in the output, )1( +ky , 
of the plant tracking with sufficient accuracy a specified 
sequence, )1( +kyd . The system identification block has N 

predictive models denoted by { }N
iif 1= , in parallel. 

Corresponding to each model if , a controller iC  is designed 
such that iC  achieves the control objective for if . Therefore, 
at every instant one of the models is selected and the 
corresponding controller is used to control the actual plant. In 
order to control a plant, consider the control problem where 
the dimension of the input is equal to that of the output, that 
is, qp = . From equation (7), because qp = , and under the 
assumption that ob  is invertible, the control law of an inverse 
controller for the model, oif , can be directly calculated as 
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Therefore, at time instance k, the control )(ku oi  can be 

obtained, if the future target of )(ky , )1( +kyd , is known. 
Therefore, the set of local linear models simplifies the control 
design for a nonlinear plant. So instead of a global neuro-
controller as in other adaptive control schemes [12], here we 
 
1 This requires a rich training set with a variety of maneuvers. 

can  get by with a group of linear controllers associated with 
each identified model, thus taking care of the system over the 
whole operating regime. One advantage of this scheme is its 
simplicity and fast convergence to get the desired response. 
Another advantage is that the dynamic space is decomposed in 
the appropriate switching among very simple linear models, 
which leads to accurate modeling and controls.  

On the other hand, a possible disadvantage of the proposed 
approach is that the overall stability may not be guaranteed 
due to the switching among models if the models are quite 
different each other. The models in the neighborhood, 
however, are alike using a SOM and the unwanted effect of 
discontinuities between the models may not be occurred. 
Moreover, as Narendra and Balakrishnan have shown in [13], 
the overall system will be globally stable for any arbitrary 
switching sequence, provided that a sufficient number of local 
models are given. As another disadvantage of the proposed 
method, creating a set of models by embedded input and 
output may possibly cause serious problem in the presence of 
large noise or outliers since the wrong predictive model due to 
noise is very likely to cause poor control. Hence, the selection 
of the right model is as important as creating models and 
designing controllers. 

III. SELECTION OF OPERATING REGIMES WITH A SOM 
Building local mappings in the full operating space is a time 

and memory consuming process, which led to the natural idea 
of quantizing the operating regimes and building local 
mappings in positions given by prototype vectors obtained 
from running the plant. For quantization of the operating 
regimes, the k-nearest-neighbor method is effective but it 
disregards neighborhood relations, which may affect 
performance [10]. In contrast, the SOM has the characteristic 
of being a local framework liable to limit the interference 
phenomenon and to preserve the topology of the data using 
neighborhood links between PEs. Neighboring PEs in the 
network compete with each other by means of mutual lateral 
interactions, and develop adaptively into specific detectors of 
different signal patterns [8]. The training algorithm is simple, 
robust to missing values, and it is easy to visualize the map. 
These properties make SOM a prominent tool in data mining 
[34].  

In most of the papers discussing local linear models for 
system identification, the SOM has been used with a first 
order expansion around each PE in the output space. The 
SOM transforms an incoming signal pattern of arbitrary 
dimension into a one or two-dimensional discrete map, and 
performs this transformation adaptively in a topologically 
ordered fashion [8]. The results obtained so far with this 
methodology have been quite promising, however, problems 
that need to be solved remain: first, efficiently partitioning the 
operating regimes in high dimensional spaces is still a 
problem due to the curse of dimensionality [5]; second, it may 
be hard to find a small number of variables to characterize the 
operating regimes due to the possibly large number of local 
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models; third, all the methods have to be extended for 
nonautonomous regimes. 

The previous work by Principe et al. [17] provided the 
starting point for the proposed modeling architecture. Their 
objective was to construct a neural architecture, capable of 
capturing locally the underlying dynamics of a chaotic time 
series (based on a SOM). For an autonomous system, it is 
reasonable to assume that the future behavior of the system 
can be predicted over some finite interval from a finite 
number of observations of past outputs. In contrast, for 
predictions of the behavior of a nonautonomous system, we 
have to consider two different dynamics; one for the state 
space and the other for the control input space. Consequently, 
the most important difference is how to capture the dynamics 
in the input-output joint space, which is fundamental for 
identifying the unknown nonautonomous system. Several 
options are possible, and we have been investigating them: 

Firstly, we tried to find the local models by quantizing the 
input-output joint space by embedding not only the outputs 
but also the control inputs using one SOM. This modification 
is essential because the purpose is to characterize the system 
dynamics that exist in the input-output joint space. However, 
we encountered some difficulties such as normalization of the 
joint space and large dimensionality of the space involved 
(many degrees of freedom and large dynamic range of 
parameters) [2]. 

Secondly, in order to reduce the approximation error with 
local models based on a SOM, we utilized a counter-
propagation network, which are hybrid networks that combine 
supervised and unsupervised learning to create a self-
organizing look-up table that can be used for function 
approximation. The advantage of this network over 
conventional look-up tables is that the Kohonen map provides 
for a statistically optimal coverage of the input space even if 
the mathematical form of the underlying function is 
completely unknown. As input feature vectors from a training 
set are presented to the network, unsupervised learning is used 
to create a topology-preserving (Kohonen) map of the input 
data while, at the same time, supervised learning is used to 
associate an appropriate output feature vector with each PE on 
the map. Since the output at each PE is just the average output 
for all of the feature vectors that map to that point local 
models might be created for better approximation using the 
quantization error in the input space and the average output. 
This is achieved by coupling each PE with a linear mapping in 
such a way that a functional relationship can be established 
between each Voronoi region in the input space (of the SOM) 
and the desired signal [37]. However, this method required a 
much larger map to make the estimation error in the desired 
output space smaller. Additionally, when noise is added in the 
input of the SOM, the quantization error in the input Voronoi 
region may be magnified by the local models.  
As the number of dependent variables is increased, the process 
becomes increasingly difficult to model accurately. This led us 
to think that a model that uses only a few of the observed 
variables will be more accurate than a model that uses all the  

 
Fig. 1. Block diagram of SOM-based modeling for nonautonomous system. 
 
observed variables. In this scheme, therefore, we let the SOM 
look at only the current output and its past values to decide the 
winner, and create the models with the control inputs. 

Here we will pursue the last option for the following 
reasons. The competitive learning rule works best for 
normalized inputs. The SOM algorithm uses the Euclidean 
metric to measure distances between vectors. For example, if 
one variable has values in the range of [-100,…,100] and 
another in the range of [-1,…,1] the former almost completely 
dominates the map organization because of its greater impact 
on the measured distances. Either, the measure of distance is 
weighted by the inverse of the scales or the data must be 
normalized such that each component of the input vectors 
have unit variance and zero means [1]. However, 
normalization looses information (the mean or the scale can be 
important) and it can become meaningless if the data dynamic 
range (or mean) changes over time. Therefore we cannot 
normalize the data (nor create the weighted Euclidean metric) 
in this way since it is not always guaranteed that the mean and 
the dynamics range of the data are available. In addition, SOM 
modeling becomes increasingly difficult with increasing 
number of dependent variables because it is basically a 
memory based approach that does not scale up well with the 
input dimension. Accordingly a model that uses only a few of 
the observed variables will be more accurate than a model that 
uses all of the observed variables. When the SOM modeling is 
done in the output space, we let the SOM look at only the 
current output and its past values to decide the winner which 
represent the operating regime, and create the models with the 
control inputs as shown in Fig. 1. By doing this, normalization 
of the input space is not necessary since the clustering is 
performed solely by the history of the output.  

IV. MODEL DEVELOPMENT PROCEDURE 
The SOM is employed as a modeling infrastructure to 

construct the local models. It provides a codebook 
representation of the plant dynamics and organizes the 
different dynamic regimes in topological neighborhoods. Thus 
we can create a set of models that are local to the data in the 
Voronoi tessellation created by the SOM. In this architecture 
of local linear modeling, the SOM is trained to position the 
local models in the embedded output space and the 
development of local models is done by directly fitting the 
quantized embedded output samples obtained from the SOM 
and corresponding embedded control input samples. 
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A. Training the SOM  
The first learning phase (self-organizing phase) decides the 

proper partition of the local models and reduces the high 
dimensional embedded output space. This step is 
accomplished via the Kohonen learning process. Let 

)](,),([)( yy dkykyk −= Lψ  denote the input vector for the 

SOM and iw  denote the weight vector of PE i. With each 
vector, )(kyψ , presented as the input to the network, the 

Kohonen learning algorithm [8] adaptively discretizes the 
continuous input space into a set of N disjoint Voronoi cells. 
The response of a SOM to input )(kyψ  is determined by the 

reference vector oiw  of the PE that produces the best match to 

the input. 
}|)()(|{ kwkminargi iy

i

o −= ψ  (10)  

Then the kth adaptation of the weights is done in the following 
manner. 

o
iyiii ii,kwkkΛkηkw1kw =−+=+ ))()()(()()()( ψ  (11) 

where )(kη  and )(kΛ  designate respectively a learning rate 
and a neighborhood function, and both of them gradually 
shrinks with time k . Each new feature vector presented to the 
network will trigger a response that is the average for those 
feature vectors closest to it in the input data space. 

B. Estimation of the Local Models 
The SOM preserves topological relationships in the input 

space in such a way that neighboring inputs are mapped to 
neighboring PEs in the map space. Then, when each PE is 
extended with a local model it can actually learn the mapping 

))(),(()(~ kkf1ky uy ψψ=+  in a supervised way. In this step, 

the embedded control input space, )(kuψ , corresponding to 
each local embedded output space, )(kyψ , is utilized to find 
the models that cover the full range of operation we want our 
models to cover. Each PE has an associated local model 
{ ii ba

rr
, } in equation (7) that represents the approximation of 

the local dynamics.  
The local model weights { ii ba

rr
, } are computed directly 

from the desired signal samples j
iy  and the input-output 

samples by a least square fit within a Voronoi region centered 
at the current winning PE chosen from )(kyψ . The size of the 
data samples in the region must be at least equal to the 
( 2++ uy dd )-dimensional basis vector. The design procedure 

for this local model is as follows: 
1. Apply training data to the SOM and find the winning PE 
corresponding to the input )(kyψ  such that we have winner-
input pairs.  
2. Use the least square fit to find the local linear model 
coefficients for the winning PE, oi , where desired output 
vector Mj

iy ℜ∈  as 

 
Fig. 2. Proposed SOM-based inverse control scheme. 
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where ][ T
i

T
i oo ba
rrr

=θ  is the sought linear model coefficients, M 

is the size of inputs involved in the winning PE oi . 
Specifically, the least-squares problem 

XY θ
r

=  (13)    

is solved for θ
r

, where Mdd uyX ×++ℜ∈ )2(  is defined as a 
matrix that contains each input vector associated with the 
winning PE, and MY ℜ∈  is defined as a vector that contains 
the target outputs. It is well-known that although the least-
squares solution obtained from (13) is reasonably good when 
the noise level is low, the estimates tend to be biased for 
higher levels of noise [17]. Addition of a single sample to a 
cluster can radically change the distances. Besides, the models 
will perform very well for that particular training set with very 
low error because it has memorized the training examples but 
they may not perform well with new data sets. Thus we make 
use of data samples from the winner as well as the neighbors 
to create the local models in order to make them more robust 
as well as to improve the generalization for the network. Also 
we take the data samples from the neighbors in case less data 
than the dimension of the input are assigned in some Voronoi 
region. The performance difference between these two 
approaches is demonstrated with simulations. 
3. In testing, once the winning PE is determined we select the 
appropriate local model from the list of associated models. 
Apply the local model to obtain the estimated output   

)(1~ kb(k)a)(ky uiy
T
i oψψ

rr
o +=+  (14) 

C. Design of the Controllers 
We developed in advance a set of local linear models for 

the plant and switch them according to the measured output 
history. Thus, once the right local linear model is determined, 
the corresponding controller is designed using (9). A 
schematic diagram of the proposed SOM based inverse 
control system is shown in Fig. 2 where the inverse control 
seeks to model the inverse of the plant. A set of controllers 
appears in series with the plant. The command input, 

)1( +kyd , is fed to the controller and provides also the 
desired response. Hence, when the error is small the controller 
transfer function is the inverse of the plant. 
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TABLE I  
LIPSCHITZ INDEX FOR ESTIMATING THE EMBEDDING DIMENSION FOR THE 

MISSILE SYSTEM. 

 
 

Generally, an adaptive controller that meets the 
specifications is slow to adapt. However, our approach models 
all the operating regimes and automatically divides the 
operating regimes by the number of PEs. So once the current 
operating region is determined by the SOM the corresponding 
controller is triggered so that the plant tracks the desired 
signal. Moreover, even if wrong PE is assigned in the winning 
PE due to noise a similar dynamic model can be activated 
since neighboring SOM PEs represent neighboring regions in 
the dynamic space. Thus, the proposed control system can 
reach the set point fast, and even if the dynamic model is not 
the most appropriate, there is an extra flexibility to match the 
set point with small error. 

V. SIMULATION RESULTS 
In this section, the proposed SOM-based local modeling 

algorithm is applied to two examples. The first example is a 
realistic nonlinear missile system. The second example 
describes the application of the proposed method to the 
LoFLYTE® UAV  model. 

A. Example1: Missile Dynamics 
We consider a simplified nonlinear missile dynamic 

equation [15]. This model is obtained using the following 
assumptions; constant velocity, stabilized roll angle, no 
change of mass. 

1
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uxxxxx
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 (15) 

where 1x  is sideslip angle, 2x  is yaw-rate, and u  is rudder 
deflection. In (15), we consider a SISO model, assuming that 
only the state 1x  is available for measurement. The signal is 
obtained by integrating the equation (15) with the forth-order 
Runge-Kutta method with a sampling time of s05.0 . In order 
to cover the whole control envelope, the input signal is 
uniformly distributed between –0.5 to 0.5. We choose the 
model as  

( ))1(),(),1(),()1(~ −−=+ kukukykyfky  (16) 
by Lipschitz index (see [6]) shown in Table I. The theory 
states that the best embedding dimension is obtained when the 
index stops decreasing.  A SOM is trained with 
( ))1(),( −kyky  over 6000 samples. After training, local linear 
models are constructed from the embedded output (used for  

 
Fig. 3. One-step prediction performance v.s. network dimension on 
independently generated test data. 
 

TABLE II  
COMPARISON OF THE PREDICTION RESULTS OBTAINED BY TDNN AND 

LMSOM ON TEST SET. 

 
 

training) and the embedded control input corresponding each 
PEs. The created models are tested by a new sequence of 2000 
samples. The network dimension was chosen as 10×10 based 
on prediction performance shown in Fig. 3. 

Table II shows the comparison of the one-step prediction 
performance for different models evaluated through Signal-to-
Error Ratio (SER) defined in 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−++= ∑∑
kk

kykykydBSER 22
10 ))1(~)1(()1(log10][ . 

The best result with LMSOM (Local Modeling based on a 
SOM) was a SER of around 45.21 dB while with the Time 
Delay Neural Network (TDNN) one obtained a SER of about 
36.97 dB. The number of PEs in the hidden layer of the 
TDNN is chosen as 8 by 20 Monte-Carlo simulations varying 
the size of the hidden layer. This result shows that the SOM 
local modeling scheme is better than the global modeling.  

 After creating a set of local models the design of the 
controllers is carried out for each of the local models. The 
multiple controller-plant pair is tested for tracking a desired 
trajectory )100/3sin(5.0)250/3sin(8.0)1( kkkyd ππ +=+ . 
Fig. 4(a) shows the desired trajectory and the system output. 
Fig. 4(b) is the output from the designed Multiple Inverse 
Controller (MIC) and Fig. 4(c) is the history of winner of the 
SOM. Note that the system output perfectly tracks the 
trajectory except in a transient time of a few seconds. The 
switching is done automatically by the SOM. The winner 
trajectory clearly indicates that the controllers are switching 
accurately so that the overall system with the controller tracks 
the desired signal very well.  

Alternatively, a TDNN inverse controller may be utilized to 
control a complex plant in the presence of uncertainty. Thus 
we compared the performance of the proposed system with 
that of a TDNN inverse controller trained through the TDNN 
model. The controller parameters in the fixed control structure  
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(a) 

 
(b) 

 
(c) 

Fig. 4. Tracking performance result by SOM-based inverse controller. (a) 
Side-slip angle: desired and actual output (b) Control input (c) Winner index. 

 
are adapted by an algorithm that ensures that the desired 
performance level is maintained and the parameters are 
updated by back propagating the error through the model as 
shown in Fig. 5. The results using a TDNN inverse controller 
and using the MIC for trajectory tracking are compared in 
Table III where the experiment performed with multiple 
controllers demonstrated superiority to one global inverse 
controller. In addition, we performed experiments for set point 
tracking by a TDNN controller and MIC. Fig. 6 compares the 
result of controlling the side-slip of the missile to several 
different set points. As can be seen in the figure, SOM-based 
multiple inverse controllers are doing a good job in tracking 
the desired signal, since they know the precise dynamics at 
each point. On the other hand, a global nonlinear controller 
does not follow the desired signal as accurately, though it is 
able to track the changes. Additionally, the proposed multiple- 

 
Fig. 5. TDNN inverse controller via Backpropagation through (Plant) Model. 
 

 
Fig. 6. Comparison of the performance for set point tracking by the SOM-
based inverse controller and a TDNN inverse controller. 
 

TABLE III 
COMPARISON OF THE OVERALL RESULTS ON ARBITRARY TRAJECTORY 

TRACKING OBTAINED BY A TDNN INVERSE CONTROLLER AND SOM-BASED 
INVERSE CONTROLLER FOR THE MISSILE SYSTEM. 

 
 
controller scheme exhibits both reduced overshoot and settling 
time compared with the global inverse controller. 

B. Example2: LoFLYTE® UAV 
The second example of the nonlinear dynamical system 

considered for this study is the LoFLYTE® UAV designed by 
Accurate Automation Corporation (AAC), shown in Fig. 7. 
The LoFLYTE® program is an active flight test program at the 
Air Force Flight Test Center at Edwards Air Force Base, with 
the objective of developing the technologies necessary to 
design, fabricate, and flight test a Mach 5 waverider aircraft 
[3,38]. In addition, the LoFLYTE® UAV has been used to 
understand the low speed characteristics of a hypersonic shape 
and to demonstrate several innovative flight control 
technologies. Our task is to develop an algorithm for modeling 
and controlling the LoFLYTE® system solely based on input- 
output data. In classical notation, longitudinal motion consists 
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Fig. 7. General description of aircraft (top) and LoFLYTE® testbed aircraft 
(bottom). 
 
of pitching ( q,θ ) motion, while the lateral motion consists of 
rolling ( p,φ ) and yawing ( r,ψ ) movement. The elevator 
( eδ ) and the throttle ( thδ ) control the longitudinal motion, 
while the aileron ( aδ ) and rudder ( rδ ) primarily affect lateral 
motion. The general dynamics of the system are described by  
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where aM  is the aircraft mass and NMLFFF zyx ,,,,,  are 

actuator-induced forces and moments. The forces and 
moments are nonlinear functions of aircraft’s states and 
control inputs [25]. This model was programmed in a software 
simulator by AAC and was used here as the source of the data. 
In this study, we wish to estimate the aircraft’s outputs under 
the assumption that we can only access part of the states 
which  

 
Fig. 8. Training set: 3 control inputs ( rea δδδ ,, ). 
 

 
(a)            (b) 

Fig. 9. Performance of estimation of p v.s. (a) network dimension (b) radius of 
neighborhood function. 
 
are wvurqp ,,,,,  while the goal is to track the desired 
trajectory considering the case of an aircraft moving with a 
constant throttle. 

To model the aircraft dynamics (p, q, r, u, v, w), a total of 6 
SOMs are used for quantization of each embedded output 
space as predictors, for instance, one SOM is trained with 

T
yp dkpkpk )](,),([)( −= Lψ  for modeling roll-rate 

dynamic, p . Thus the linear coupling between wvurqp ,,,,,  
is only implicitly modeled2. In this way, each output of the 
aircraft can be described by a dynamic model that takes into 
account the control input variables such as rea δδδ ,, : 

Nikkfky yui ,,1)),(),(()1(~ L==+ ψψ  (18)    

where 
{

}T
ur

rueeuaau

dk

kdkkdkkk

)(

,),(),(,),(),(,),()(

−

−−=

δ

δδδδδψ LLL
. 

By doing this, the complexity can be reduced and it helps to 
understand the raw data. 

Again, we selected an embedding dimension based on the 
Lipschitz index. The results are shown in Table IV. Since the 

 
 
2 As we mentioned in the introduction, due to difficulties related with dynamic 
range normalization, local linear models that take state coupling into account 
are not as accurate as this approach. Instead, we utilize the delayed outputs in 
order to compensate for the disregarded information due to the coupling. 
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TABLE IV.  
LIPSCHITZ INDEX FOR ESTIMATING THE EMBEDDING DIMENSION FOR 

LOFLYTE®
 UAV. 

 
 

TABLE V.  
COMPARISON OF THE IDENTIFICATION PERFORMANCE ON 10 SETS OF TEST 

DATA. 

 
 
optimal values of embedding dimension for each output 
dynamic model are different, we chose the largest number 
among the embedding dimensions selected for each output 
estimation as 3=yd  for each output and 3=ud  for 3-D 

control inputs (aileron, elevator and rudder). The linearized 
input/output relationship then is 
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The training samples are obtained by exciting the aircraft 
dynamics (LoFLYTE® Simulator) using the control inputs 
shown in Fig. 8. Each SOM is trained with the embedded 
output, yψ  whose dimension is 4, over 5000 samples and the 

best result was obtained with a 10×10 grid map ( 100=N ) as 
shown in Fig. 9(a). It is noted that with an increasing size of 
the map less data are assigned to each PE, and so proper 
training requires larger data sets.  

After training the SOMs, 100 local linear models are 
constructed from yψ  (used for training) as well as the 

embedded control inputs uψ  corresponding to each PEs in the 
least square sense. In this phase, we utilized the winner and 
the neighbor PE’s to create the local models in order to 
improve the generalization for the network. 

 
(a)             (b) 

 
(c)             (d) 

 
(e)             (f) 

Fig. 10. Identification of 6 outputs and corresponding error: (a) p (b) q (c) r 
(d) u (e) v (f) w 
 
As shown in Fig. 9(b), better performance in the testing set 
was obtained when we take the data samples from the winning 
PE as well as neighbor PEs in local modeling phase rather 
than from the winning PE alone3. The created models were 
tested by new sequences of 10 sets with 1,000 samples. Table 
V shows the identification performance of different outputs of 
the system using LMSOM by the approximation accuracy, 
which is evaluated through Signal-to-Error Ratio (SER) and 
Normalized Root Mean Square Error (NRMSE) 

∑ +−+=
k

kykyLy 2))1(~)1((/1)max(/1 .  

The same data set was used in training a TDNN to compare 
with the performance of the proposed method for system 
identification. Training conditions, such as the embedding 
dimension and the number of network were kept the same in 
this comparison between the local modeling and the global 
modeling. Table V shows the best identification performance 
with TDNN which was trained using the Conjugate-Gradient 
algorithm. The best result with TDNN was obtained from 20 
Monte-Carlo simulations with 12 PEs in the hidden layer4. 
From Table V, we can conclude that the constructed SOM-
based network is a good model of the underlying dynamics 
because it provides larger SER and smaller NRMSE for all  

 
3 Taking neighbor PEs means that the radius of neighborhood function is 
greater than 1. 
4  We tried various sizes of TDNN’s and found that the one with 12 PE’s in 
the hidden layer performs best in system identification. 
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(a)             (b) 

Fig. 11. Comparison for controlling roll-rate and yaw-rate to track the set 
point (a) by the proposed inverse controller and (b) by a global inverse 
controller. 
 
outputs than the TDNN. Fig. 10 shows the superposition of 
the desired signal and the model output and corresponding 
errors by the SOM-based local models, and it can be seen that 
the estimated output closely follows the original signal. 
Consequently, it turned out that the proposed strategy of 
finding proper location of fixed models depending on the prior 
information available to the designer for finding aircraft 
dynamics is superior to those using a single global nonlinear 
model. In addition, it should be noted that the proposed 
modeling scheme makes identification of the plant very 
compact and computationally efficient since the aircraft 
dynamics are captured in a compact lookup table of linear 
models. 

We now consider the control problem with the SOM-based 
local models created. When we design controllers we usually 
assume that the coupling between lateral and longitudinal 
motion is minimal. Here, we performed a simulation to control 
the roll-rate ( p ) and yaw-rate ( r ) of the aircraft by aileron 
( aδ ) and rudder ( rδ ), setting elevator to zero and throttle to 
constant. Thus, once we have the linear models for the roll-
rate and yaw-rate, and the desired values, )1( +kpd  and 

)1( +krd , the inverse controller (inversion-based predictive 
model), )(kaδ  and )(krδ , for the aircraft’s roll-rate and yaw-
rate tracking is obtained by  
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For performance comparisons, we applied a global inverse 
controller for the same control problems. A TDNN as a global 
inverse controller is trained by back-propagating error through 
the model.  

Fig. 11 compares the set point tracking performance of a 

 
(a)             (b) 

Fig. 12. Performance of controlling roll-rate and yaw-rate to track an arbitrary 
trajectory with measurement noise (SNR = 20) (a) by the proposed inverse 
controller and (b) by a global inverse controller. 
 
TDNN controller and the multiple inverse controller in the 
absence of sensor noise. From the responses it can be seen that 
the multiple controller approach is obviously very good except 
the first few seconds. However, it shows poor transient 
response when the TDNN controller is utilized. Another 
performance test is to enforce the tracking of the roll-rate and 
yaw-rate to signals )1( +kpd  and )1( +krd  which are given 
in real time during the course of the flight, while being 
subjected to unmeasured sensor disturbances. All 6 output 
measurements are corrupted by zero-mean random sequences 
with 20dB of signal-to-noise ratio (SNR). The results of a 
flight test with the proposed method are shown in Fig. 12(a) 
and in Fig. 12(b) we show the same with the TDNN 
controller. It can be seen that the roll-rate and the yaw-rate 
track their command signals quite well even under the 
existence of measurement noise by the multiple controllers. 
The simulated flight test demonstrates that the proposed 
controller is capable of closely approximating perfect 
inversion by only looking at the past information. Also, it 
proves that the multiple controller framework indeed provides 
exceptional tracking. 

VI. CONCLUDING REMARKS 
Local models have been a source of much interest because 

they have the ability to adhere to the local shape of an 
arbitrary surface, which is difficult especially in cases when 
the dynamical system characteristics vary considerably 
throughout the state space. Therefore, in a number of cases, 
the local modeling approach, despite its simplicity, has 
provided more effective and accurate approximation than 
global modeling. Local linear modeling is the simplest 
implementation of the local modeling method. However, most 
of the work on local linear approaches only addresses the 
recursive state-dependent prediction. Approximation of 
higher-order nonautonomous systems using a finite set of 
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local linear models has not been fully studied. 
In this paper, we have attempted to solve the problem of 

nonlinear system identification and control using the local 
linear modeling methodology. Classical control approaches 
involving linearization and gain scheduling are seldom 
applicable to complex nonlinear systems. However, an 
obvious way to analyze complex systems is to adopt the 
divide and conquer strategy. We have taken the concept of 
self-organization in embedded output space extended with 
multiple models by the SOM. The significance of the 
proposed scheme is that the operating regime is selected by 
the embedded output and that local models are built by the 
embedded output as well as the embedded control input data 
samples which are spaced in the local regime, which marks 
the fundamental difference between the work of this paper and 
others. We have shown the effectiveness of the proposed 
approach to identify complex aircraft dynamics. Its 
comparison with other neural network-based alternatives 
showed clear advantages of local modeling in terms of 
performance. In addition, we have designed an inverse 
controller for every linear model and the switching is astutely 
handled by the SOM depending on the delayed version of 
output of the nonlinear system. The proposed multiple 
modeling and control strategy has been successfully tested in 
modeling and control of the LoFLYTE® UAV. 
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