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Abstract 
 

An extensive analysis of a non-parametric, information-theoretic method for instantaneous blind source 
separation (BSS) is presented. As a result a modified stochastic information gradient estimator is proposed to reduce 
the computational complexity and to allow the separation of sub-Gaussian sources. Interestingly, the modification 
enables the method to simultaneously exploit spatial and spectral diversity of the sources. Consequently, the new 
algorithm is able to separate i.i.d. sources, which requires higher-order spatial statistics, and it is also able to separate 
temporally correlated Gaussian sources, which requires temporal statistics. Three reasons are given why Renyi’s 
entropy estimators for Information-Theoretic Learning (ITL), on which the proposed method is based, is to be 
preferred over Shannon’s entropy estimators for ITL. Also contained herein is an extensive comparison of the 
proposed method with JADE, Infomax, Comon’s MI, FastICA, and a non-parametric, information-theoretic method 
that is based on Shannon’s entropy. Performance comparisons are shown as a function of the data length, source 
kurtosis, number of sources, and stationarity/correlation of the sources. 
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1. Introduction 
 

Blind source separation (BSS) is a method of extracting one or more desired signals from an observed 
mixture of signals. Strictly speaking the term ‘blind’ denotes that nothing is known about either the 
sources, including the source statistics, or the mixing process. Suppose that N samples of a set of M zero-
mean desired signals, sm(n), for m = {1, 2, ..., M} and n = {1, 2, ..., N}, are available and are combined 
into an (M x N) matrix, S. Suppose further that the linear, instantaneous mixing matrix is denoted as A 
and that M observations, xm(n), are available and are combined into an (M x N) matrix X. The 
observations can then be represented mathematically as, X = AS. Demixing is attempted by linearly 
combining the observations. This produces M outputs at each time instant, ym(n), which together form an 
(M x N) matrix Y that can be expressed as, Y = WX = WAS. For A full rank the most obvious solution is 
W = A-1, in which case Y = S as desired. The BSS problem can therefore be stated as follows: given a set 
of observations X, find the W such that Y is the best approximation of S. For additional details on BSS, 
see papers by Cardoso [1] and Hyvarinen [2]. 

The canonical contrast for BSS is to minimize the mutual information (MI) between the outputs [1]. If 
the observations are sphered prior to demixing and the demixing matrix is constrained to be a pure 
rotation, then minimizing MI is equivalent to minimizing the sum of marginal entropies [3]. Hence, this 
class of criteria for BSS entails the selection of a definition of entropy and a method to estimate the 
entropy from samples. Herein, the definition of entropy is restricted to the family of entropies formulated 
by Alfred Renyi [4] and the three methods used to estimate entropy from data are all based on Parzen 
window probability density function (pdf) estimation using Gaussian kernels [3], [5]. Renyi’s definition 
of entropy allows for a fairly comprehensive examination of this class of criteria since it represents, as a 
function of a single user-defined parameter α, a family of entropies that encompasses Shannon’s 
definition [6], [7] in the limit as α approaches 1. The entropy estimator is also a function of a single user-
defined parameter, σ, which represents the width of the Gaussian kernel. Consequently, the class of BSS 
algorithms that consist of minimizing a sum of marginal entropies can be studied by observing the effect 
of jointly selecting α and σ for each of the three entropy estimators. 

This particular approach to BSS falls under the general framework of Information Theoretic Learning 
(ITL), a term coined in a paper by Principe et al. [8] to denote a class of optimization algorithms that 
replace the conventional mean square error (MSE) criterion in the adaptation of linear and nonlinear 
systems. More specifically, ITL methods are concerned with the extremization of criteria based on a 
formulation of either (Renyi’s) entropy or a quadratic measure of divergence that may be computed 
directly from samples. This paradigm represents a general optimization procedure that unifies supervised 
and unsupervised learning and has been used for function approximation, feature extraction, clustering, 
and for BSS. With respect to BSS, α = 2 is used in the original paper by Hild et al. [3], while the 
extension to any value of α (except α = 1) is covered in a paper by Erdogmus et al. [9]. The present paper 
provides a systematic study of the joint effect of Renyi’s entropy order, α, and the kernel size used in the 
entropy estimation, σ, for three entropy estimators with special emphasis placed on the separation of sub-
Gaussian sources. The results of this discussion suggest slight modifications to the originally proposed 
criterion and provides new insight as to why Renyi’s quadratic entropy (α = 2) is preferred over both 
Shannon’s entropy (α = 1) and kurtosis-based methods. 
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2. Renyi’s Entropy for BSS 
 

The criterion under consideration is the sum of Renyi’s marginal entropies, which is expressed as, 
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where Hα(Ym) is Renyi’s marginal entropy of order α for the mth output. The discussion is initially limited 
to theoretical entropies and is then followed by a discussion of three sample-based entropy estimators. 
 
2.1 Renyi’s Theoretical Entropy 
 

The Central Limit Theorem states that the pdf of a summation of independent random variables tends 
toward the Gaussian distribution. Therefore, the goal of BSS is to force the pdf of each output, )( mY yf

m
, 

to be as far from Gaussian as possible. The nice feature of Shannon’s entropy is that, for a fixed variance, 
it is maximized for Gaussian distributions. This is ideal for BSS when a sphering/rotation architecture is 
used because separation can be achieved simply by minimizing the sum of (Shannon’s) entropies. This is 
true independent of whether the source distributions are sub-Gaussian or super-Gaussian as demonstrated 
in Figure 1. This figure shows a plot of both Renyi’s quadratic and Shannon’s (theoretical) entropies as a 
function of β, where β is the parameter of a generalized Gaussian pdf, 
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and where β < 2 refers to the super-Gaussian region, β > 2 refers to the sub-Gaussian region, and Bm and 
Cm are functions of β that ensure the pdf integrates to 1 and that yield a pdf corresponding to a unit-
variance random variable. The values in Figure 1 are numerical estimates of the theoretical entropies. The 
asterisks indicate analytically computed values of Renyi’s entropies for β = 1, 2, and infinity, which 
correspond to a Laplacian, Gaussian, and uniform pdf, respectively. The values of Renyi’s quadratic 
entropy and Shannon’s entropy for a uniform random variable are identical (this is true for all α > 0). This 
figure shows that, for the generalized Gaussian family where 1 < β < 10, Shannon’s entropy is maximized 
for β = 2, as expected, and Renyi’s quadratic entropy is maximized for β approximately equal to 4. 

In Figure 2 the entropy of a mixture of 2 Laplacian sources is plotted as a function of rotation angle, 
θ, for values of β = 1, 2.7, 5, and 10, where kπ/2 radians corresponds to separation for k any integer and 
the (2 x 2) matrix representing the product of the mixing and demixing matrices is given by, 
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The results for both Renyi’s quadratic and Shannon’s entropies in Figure 2 were scaled for visualization 
purposes so that the minimum value is 0 and the maximum value is 1. For Laplacian sources, shown in 
the upper left subplot, the two results are virtually identical. In fact, although it is not shown, there is very 
little difference in the space of the demixing coefficients between Renyi’s quadratic and Shannon’s 
entropies for all super-Gaussian pdf’s of the generalized Gaussian family. The remaining subplots show 
that the behavior of Renyi’s quadratic entropy for sub-Gaussian data is much more complex than 
Shannon’s entropy. Notice that a local minimum always occurs at the solution (there is a minimum at the 
solution in the upper right subplot of Figure 2 although it is difficult to see). However, it is neither the 
only minimum nor the global minimum for 2 < β < 8. The fact that Renyi’s quadratic entropy has an 
acceptable performance surface for super-Gaussian but not sub-Gaussian signals is related to the 
monotonicity of Renyi’s quadratic entropy as a function of β. In order for Equation (1) to be a suitable 
criterion for BSS, it is necessary that the entropy used in the definition is monotonically increasing for 1 < 
β < 2 and monotonically decreasing for 2 < β < infinity. If, on the other hand, the entropy is only 
guaranteed to be monotonic (increasing or decreasing) for both of these regions then it is a simple matter 
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to include the appropriate change of sign in Equation (1) so that its minimization leads to separation. This 
relaxation of the constraints for separation requires extra information, which can and must be estimated 
from the data. In particular, the modified criterion must determine whether each output is sub-Gaussian or 
super-Gaussian. The result is that Equation (1), which consists of theoretical entropies, is an ideal 
demixing criterion for BSS without regard for the Gaussianity of the sources only when α = 1 (Shannon’s 
entropy). Likewise, α < 0.6, α = 1, α > 4 are the only values of α that are appropriate for Equation (1) if 
the appropriate sign change (based on the Gaussianity) is included as shown in the first author’s 
dissertation [10]. 
 
2.2 Renyi’s Empirical Entropy 
 

The preceding discussion is limited to theoretical quantities as opposed to using an entropy estimator, 
which produces values based on a finite number of samples. For the case that the pdf’s are estimated 
using Parzen windows [5] with Gaussian kernels, the entropy estimator is [9], 
 

∑ ∑
=

−

=

≠>⎟
⎠

⎞
⎜
⎝

⎛
−

−
=

N

n

N

k
mmm forkynyG

NN
YH

1

1

1

2 ),1,0()2),()((11log
1

1),(ˆ αασ
α

σ
α

α
             (2) 

 
where G(ym(n),σ2) is the value of a Gaussian kernel evaluated at ym(n) and σ is a user-defined parameter 
referred to as the kernel size. Details of the derivations of this equation and Equation (4) below are not 
provided here as they may be found in papers by Erdogmus et al. [11], [9]. Equation (2) is not valid for 
α = 1 since it results in the indeterminant value 0/0. There are two ways in which an analogous expression 
can be found for an estimator for α = 1. In the first method the gradient of Equation (2), which is needed 
for gradient-based adaptation anyway, is found and then α is set to 1 in the gradient expression. The 
second method is derived by noticing that Shannon’s (theoretical) entropy can be written in terms of an 
expectation as follows, H1(Ym) = -E[log(fYm(Ym))]. Approximating the expectation with the sample mean 
and using Parzen window estimation for the pdf produces the following estimator for Shannon’s entropy, 
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which is similar to that used previously by Viola et al. [12] for processing magnetic resonance images. It 
is simple to show that the gradient of Equation (3) is identically the gradient of Equation (2) with α = 1. 

Both Equation (2) and Equation (3) have O(N2) computational complexity. An O(N) estimator may be 
obtained with the help of the Stochastic Information Gradient (SIG) [11]. This involves the removal of 
one of the summations in the entropy estimator of Equation (2), producing a third entropy estimator, 
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where the difference in time between the outputs, p, is user-defined. The recommended value is p = 1, 
which is particularly suitable for applications requiring online entropy manipulation [13]. Notice that 
dropping either summation of Equation (2) results in essentially the same entropy estimator as Equation 
(4). That is, the distribution that maximizes/minimizes one entropy estimator will maximize/minimize the 
other [10]. Equation (4) can also be derived from Equation (3) by removing the outer summation. 

The O(N) entropy estimator of Equation (4) is not a function of α and it can be derived from Equation 
(2) for any α > 0. However, it is of practical importance to know that the only O(N2) entropy estimator 
that Equation (4) approximates well is Equation (2) with α = 2, otherwise known as Renyi’s quadratic 
entropy. The reason Equation (4) approximates Equation (2) only for α = 2 is that the inner summation 
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term of Equation (2) is raised to the power of 1 only for this value of α. Good approximation can be 
guaranteed if either one of the following two conditions is met, 
 

• Multiple entropy estimates are averaged, where the (time) indices of the data are uniformly 
randomized for each estimate [11] 

• The data is i.i.d. and N is sufficiently large, e.g., N > 1000 requires only a single estimate [10] 
 

Unlike theoretical entropy, entropy estimators require the selection of the kernel size, σ, in addition to 
selecting the entropy order, α. For minimizing/maximizing an entropic cost function experience shows 
that σ should be restricted to be between 0.1 and 2 for unit-variance signals. Figure 3 shows Renyi’s O(N) 
entropy estimator, given by Equation (4), for four values of kernel size as a function of the generalized 
Gaussian parameter, β. The measurements were made using N = 1000 i.i.d. data samples and they 
demonstrate that the O(N) entropy estimator produces a good approximation of the theoretical value of 
Renyi’s quadratic entropy when N is sufficiently large and σ is small (relative to the standard deviation of 
the data). Notice that, up to σ = 0.5, a bias is introduced that is largely independent of β. The fact that it is 
independent of β implies that it has no effect on minimization or maximization of the entropy estimator. 
As the kernel size increases further to σ = 1 the bias is no longer independent of β and the shape no longer 
resembles the theoretical entropy curve for α = 2. Interestingly, this is beneficial in the context of BSS 
since it makes the plot of entropy versus β monotonic in the sub-Gaussian region. 

Figure 4 shows the plot of entropy versus β when the entropy estimators of Equations (2) and (3) are 
used. Upon close observation of Figure 4 it can be seen that increasing σ has a tendency to upward bias 
the estimates for large β. Several important conclusions can be drawn from this. For α = 1 and σ > 0.75, 
the plot no longer peaks at β = 2. This implies that ITL algorithms based on Shannon’s entropy estimator 
need to incorporate appropriate sign change(s) for σ > 0.75. For α = 2 the entropy plot is monotonic in the 
super-Gaussian region for all four values of σ, while the sub-Gaussian region becomes monotonic only 
for σ > 1. Therefore, with the appropriate value of σ and as long as the criterion uses the appropriate sign 
for each marginal entropy, Renyi’s quadratic sample-based entropy is suitable as a criterion for BSS. This 
was not the case for the theoretical entropy with α = 2. It is also inferred from Figure 4 that α < 0.3 and 
α > 4 is appropriate for BSS for all interesting values of σ. 

 
3. Selection of Renyi’s Entropy Order, α, for BSS 
 

To assist with the selection of α the statistical properties of the entropy estimation are quantified. It 
should be noted that the entropy estimation used in ITL has different objectives than the entropy 
estimation normally considered in coding or channel capacity. The main difference is that ITL involves 
the extremization of, e.g., an entropy-based criterion. Consequently, the performance does not necessarily 
depend on how well the entropy is estimated, but on how accurately the coefficients can be found that 
minimize or maximize entropy. The desire is to select α such that the resulting criterion produces, e.g., an 
estimate of the rotation angle(s) that is both unbiased and has small variance. Since asymptotic analyses 
of the bias and variance do not favor one value of α over another and since a closed-form expression for 
the case of finite N and non-zero σ is not known to exist, the following evaluation is necessarily heuristic. 

 
3.1 Statistical Analysis 
 

In an ITL context one necessary requirement for the choice of α (and σ) is that the curves of Figure 4, 
which represent mean values, are monotonic for 1 < β < 2 and 2 < β < infinity. The requirements for 
monotonicity are given in Figure 5 as a function of α for three of the more interesting values of σ. Aside 
from monotonicity it is tempting to select α based on Figure 4 by choosing the value whose curves have 
the largest slope in both the super-Gaussian and sub-Gaussian regions since this implies the maximum 
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discriminability, hence robustness, with respect to estimation. This would be a valid approach except that 
the variance of the entropy estimator also varies with β. Therefore, evaluation of different values of α is 
performed using the following metric, which takes into account both types of information. 
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In this equation Xβ  represents a random variable having a generalized Gaussian distribution with 
parameter β. The numerator is the standard deviation of the entropy estimate and the denominator, which 
accounts for the slope of the curve, is the absolute difference in the mean values for β = 1 and β = 2. With 
this definition inferences for β < 2 are more accurate than for those made for β > 2. This compromise was 
made since experience indicates that the largest differences in the performance of the different BSS 
algorithms occur for super-Gaussian sources. A small value of ρ(α,σ,β) is indicative of a good estimator. 

Figure 6 shows the normalized standard deviation of the entropy estimate versus β for α = 1 and α = 
2, where 100 Monte Carlo trials were used, N = 1000 samples, and σ = 0.25. Also shown, for sake of 
perspective, is the standard deviation of several moment estimators (defined in the same manner as ρ), 
which are constructed using the sample mean of the data raised to the appropriate power [14]. Several 
interesting conclusions may be drawn from this figure. Shannon’s entropy estimator is the least desirable 
of those shown for sub-Gaussian distributions. Renyi’s quadratic entropy estimator for super-Gaussian 
data outperforms the estimator for fourth-order moments, which is commonly used as a criterion for BSS. 
Also, some methods are not robust in that they have a low ρ for some values of β and a large ρ for other 
values of β. For example, the 8th-order moment estimator has the lowest ρ (of the methods considered) 
for uniformly-distributed data, but it also has the highest ρ for Laplacian-distributed data. 

A more complete picture of the effect of α on ρ may be found in Figure 7, which shows results for 
σ = 0.25, 0.5 and 1. When the data is super-Gaussian the tendency is for the results to improve as 
α increases (the peak is due to the mean entropies of Laplacian and Gaussian distributions being similar 
for α = 0.73). This is easily understood since (1) Laplacian data is heavy-tailed and (2) decreasing values 
of α emphasize the tails of the distribution [15]. This is also the reason that kurtosis-based methods do not 
perform well for super-Gaussian data [2]. When the data is sub-Gaussian the value of α that produces the 
smallest ρ decreases from 4 to 1.2 as σ increases from 0.25 to 1. Interestingly, when the data is Gaussian-
distributed there is a minimum in ρ at or near α = 1, which corresponds to Shannon’s entropy. Notice that 
small values of α perform poorly for super-Gaussian data, but they perform well for sub-Gaussian data 
(for σ = 1). The right column of Figure 7 shows the mean results averaged over the three different source 
distributions (the conclusions are unchanged if Gaussian-distributed sources are left out of the average). 
The combination of the mean results from Figure 7 and the monotonicity requirements shown in Figure 5 
does not yield a single value of α that is noticeably superior to all other values. However, it is clear that 
one should select α > 1. Additionally, one may expect more robust adaptation by choosing α > 2, which 
excludes the obvious choice of α corresponding to Shannon’s entropy. 
 
3.2 Arguments for Selecting α = 2 
 

Since the statistical properties of the estimator for the densities in the exponential family are 
insufficient to select a single preferred value of α, other characteristics are considered. An obvious choice 
is to use α = 1 since it does not require explicit determination of sub/super-Gaussianity (for small σ) 
when Parzen estimation is used.  However, there are three good arguments for selecting α = 2, 

 
• The normalized standard deviation is at or near the minimum value for α = 2 
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• Unlike any other value of α, there exists an entropy estimator for α = 2 that reduces the 
complexity of the entropy estimation from O(N2) to O(N) 

• Unlike any other value of α, the O(N) entropy estimator for α = 2 allows the criterion to exploit 
spectral diversity in addition to spatial diversity 

 
The last two items are a direct consequence of using the SIG approximation to estimate entropy. The 
second item was discussed in Section 2.2 and the third property stems from the nonlinear transformation 
of (ym(k) - ym(k-p))2, which includes information contained in the autocorrelation at lag p. The proof that a 
criterion based on Equation (4) can make use of spectral diversity, as well as the conditions required for 
the proof, is given in the first author’s dissertation [10]. The essential conditions are that the correlations 
at lag p must be positive, as commonly occurs for natural signals when p is small, and the auto-
correlations of the sources at lag p must be distinct, as expected. The ability to make use of spectral 
diversity is especially useful if the sources are Gaussian-distributed. Spectral information has been used in 
numerous BSS methods that are based on second-order statistics and has only rarely been discussed for 
use in information-theoretic methods [16],[17]. To exploit spectral diversity it is important that Equation 
(4) is used without randomizing the time indices since randomization destroys the temporal structure of 
the data. This gives an important advantage of the SIG estimator over Equations (2) and (3), for any value 
of α, since their computation involves an average over all possible pair-wise permutations of the time 
indices and cannot, therefore, make use of spectral diversity. 
 
4. General Purpose MRMI and MRMI-SIG Algorithms 
 

Presented below are three practical algorithms for BSS. These algorithms are computed directly from 
samples and are appropriate irrespective of the Gaussianity of the sources. They are found by replacing 
the theoretical entropies in Equation (1) with the entropy estimators of Equations (2), (3), and (4) and 
including a change of sign as needed. The determination of sub/super-Gaussianity is estimated using the 
sign of the kurtosis, for which super-Gaussian sources (generally) have a positive value and sub-Gaussian 
sources (generally) have a negative value. While this approximation works well in practice, there are 
known counterexamples, e.g., super-Gaussian sources having zero kurtosis [18]. The first criterion uses 
the entropy estimator of Equation (2), 
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the second uses Equation (3), 
 

∑∑ ∑
= = =

=−=
M

m

N

n

N

k
mm forkynyG

NN
YJ

1 1 1

2
1 ),1()),()((1log1)(ˆ ασ   (6) 

 
and the third employs the SIG approximation of Equation (4), 
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where σ should be chosen in accordance with Figure 5. These three criteria will be referred to as the 
(modified) Minimum Renyi’s Mutual Information (MRMI), Minimum Shannon Mutual Information 
(MSMI), and (modified) MRMI-SIG criteria, respectively. Notice that the kurtosis estimation is 
performed on each output. As a result no a priori information concerning each source kurtosis is required. 
Also, Equation (6) does not include a sign-change term as it assumes a small kernel size. If it is desired to 
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use Shannon’s entropy with a large kernel size one can always use the criterion of Equation (5) with 
α very near to 1, e.g., α = 0.95 or 1.05. 

Whenever σ is small and N is large, the entropy estimators on which these three criteria are built 
provide a good approximation of their respective theoretical entropy. Hence, these sample-based criteria 
are appropriate for BSS, with small σ, whenever the respective theoretical entropy is appropriate for BSS. 
A list of the range of α appropriate for BSS when the criterion is based on a summation of Renyi’s 
theoretical entropies is given in Section 2.1. The preferred criterion, MRMI-SIG, estimates Renyi’s 
(theoretical) quadratic entropy when σ is small and approximates kurtosis when σ is large, as can easily 
be shown with a Taylor series approximation [10] (for i.i.d. data or if the time indices are randomized). 
This is ideal since MRMI is able to take advantage of the improved statistical properties of Renyi’s 
quadratic entropy for super-Gaussian sources as previously shown in Figure 6 and to benefit from the 
monotonicity of the kurtosis for sub-Gaussian sources, simply by changing σ. The recommendation is to 
use a single small value of σ for all outputs that are positively kurtotic and a single large value for outputs 
that are negatively kurtotic. In addition, if the sources have spectral diversity then MRMI-SIG is able to 
use this information simply by not randomizing the time indices. 

 
5. Comparisons 
 

This section consists of a detailed comparison of the suggested criterion, MRMI-SIG, with MSMI 
from Equation (6), JADE [19], FastICA [20], Comon’s MI [21], and Infomax [22]. Two additional 
methods were also tried, which included an MI method by Pham [23] and one by Yang and Amari [24]. 
The method by Pham appears to be inappropriate for sub-Gaussian sources and preliminary results from 
the Yang and Amari method were disappointing, so results from these two methods are not reported here. 
All the methods under consideration use higher-order statistics. Methods that use only second-order 
statistics were not included since most of the separation tasks in the comparison are for i.i.d. sources, for 
which second-order statistics is insufficient. The comparisons assume an off-line implementation, which 
implies that the data may be re-used for any number of epochs. The performance is measured using the 
signal-to-interference ratio (SIR), which is given by, 
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where ki , for i = 1, 2, …, M, is an element of {1, 2, …, M}, ki not equal to kj for i not equal to j,

ikP is the 
power of source ki in output i, and Pi is the total power of output i. The set of ki terms, k, are determined 
by assuming a particular permutation of the output signals. Due to the permutation indeterminacy inherent 
in BSS, the permutation that maximizes the summation above is the one of interest. The SIR is a measure 
of mean separation performance across channels where larger values represent better performance and 
values above 20 dB correspond to inaudible interference when audio sources are used. A total of ten 
Monte Carlo runs are performed for each separation task. Each of the Monte Carlo runs uses a different 
mixing matrix, whose entries are chosen uniformly in [-1, +1]. 

In order to take advantage of any spectral diversity, randomization is not used for MRMI-SIG 
whenever the outputs are such that the mean (across channels) of the normalized correlation coefficient at 
lag p exceeds 0.4, a value which was experimentally determined. The kernel sizes for MRMI-SIG are 
chosen to be 0.25 and 1 for positively and negatively kurtotic outputs, respectively. While it is possible to 
fine tune the kernel sizes in order to avoid local minima [15], this was not done. The kernel size for 
MSMI is chosen to be 0.5 in order that the maximum entropy pdf remains the Gaussian and, due to the 
O(N2) complexity, MSMI uses a maximum of 500 randomly selected data points. For all synthetically 
created i.i.d. data the nonlinearities of the Infomax algorithm were selected to be the cumulative 
distribution functions (cdf’s) of the sources, in which case the Infomax algorithm becomes a maximum-
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likelihood method [25]. This prevents the need to adapt the nonlinearities and represents a best-case 
scenario for the Infomax algorithm since knowledge of the source distributions is not normally available 
in the context of BSS. Some results are also included for speech data, for which a sigmoid nonlinearity is 
a decent approximation of the cdf. In this latter case the sigmoid nonlinearity is used. In all cases the tap 
weight update for Infomax uses the natural gradient [26], which is also known as the relative gradient 
[27]. 

The first separation task is to separate M = 5 sources for different combinations of β and N. Six 
different exponentially increasing values of β are used. These values are 1, 1.2, 1.7, 2.7, 5, and 10 (for 
each test, all five sources have the same β). An exponential increase was used since β = 2 is the logical 
choice for the midpoint. In addition, seven different values were used for the data length. These values are 
100, 200, 500, 1000, 2000, 5000, and 10,000. This made a total of 42 different combinations for each 
method. The samples for this task are drawn in an i.i.d. fashion so that the data is stationary and 
temporally independent. 

Figure 8 shows the results for each method averaged over ten Monte Carlo trials. In this figure each 
subplot represents a different value of β. Aside from some initial differences in data efficiency (i.e., for 
small values of N) notice that the different methods perform almost identically as the distribution of the 
sources become increasingly uniform. 

Figure 9 shows the results averaged over β. This figure indicates that MRMI-SIG is the most data-
efficient method. Despite the exponentially greater computational complexity and implicit determination 
of sub/super-Gaussianity, MSMI performs worse than both MRMI-SIG and JADE at all values of N. The 
performance for this method is flat above N = 500 due to the imposed data-length restriction. 
Interestingly, Infomax performs worse than both MRMI-SIG and JADE at all values of N even though 
knowledge of the true source cdf’s was used to construct the nonlinearities. FastICA performs the worst 
when there is little data and Comon’s MI method performs the worst for N > 1000 (neglecting MSMI). 

The next two separation tasks use artificially mixed audio sources. There are a total of 50 sources, of 
which 24 were speech (approximately Laplacian-distributed) and 26 were music (most of which were 
slightly super-Gaussian). Each Monte Carlo trial uses M randomly selected sources. One task is to 
separate M = 5 sources as a function of N, while the second task varied M and used a constant data length 
of N = 10000. These results are shown in Figures 10 and 11, respectively. Notice that the performance of 
all the methods are reduced from that of the i.i.d. sources due to the reduction of available statistical 
information caused by the time-correlation of the audio sources. However, MRMI-SIG is reduced much 
less than the others. Unlike before, MSMI is able to improve as N increases above 500, as shown in 
Figure 10, since the 500 randomly selected points become less likely to be temporally correlated as N 
increases. Infomax performs quite well in this case even though a sigmoid nonlinearity is used, which is 
not perfectly tuned to the cdf of the sources. In fact, it surpasses the performance of JADE which had 
outperformed it for i.i.d. data. Figure 10 shows that MSMI is better than all methods except MRMI-SIG 
for N < 500. Notice that the rank of performance is consistent with the findings of the statistical properties 
of the entropy and moment estimators for super-Gaussian distributions, as shown previously in Figure 6. 
The performance advantage of MSMI is not seen in Figure 11 because of the restriction on the amount of 
data used. Recall that MSMI is limited to 500 data points while all other methods use more than a 
magnitude of order more data. Also, it appears that the performance for all the methods, except MRMI-
SIG, is flat up to and including N = 2000, with the slope across all methods basically identical for N > 
2000. The better performance of MRMI-SIG for N < 2000 is attributed to the extraction of temporal 
dependencies. In Figure 11 the data point corresponding to M = 20 for Comon’s MI method is unavailable 
because the time of adaptation for large M, an order of magnitude longer than the other gradient-based 
methods, became unbearably long. 

This comparison was for an off-line BSS implementation, therefore the time of adaptation is 
considered unimportant (except in extreme cases). However, the amount of time required for each is listed 
in Table 1. Keep in mind that, had the comparison fixed the adaptation time, the gradient-based 
algorithms would have traded performance for time. Nevertheless, it is quite impressive that JADE and 
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FastICA perform as well as they do, and yet require very little training time as compared to the other 
algorithms. 

 
8. Conclusions 
 

This paper presents a detailed study on the use of Renyi’s entropy for blind source separation. In this 
context Renyi’s entropy has very different properties than Shannon’s entropy. The fundamental difficulty 
of Renyi’s (theoretical) entropy is that it peaks for the Gaussian distribution only when 
α = 1. Consequently, this is the only value of α appropriate for Equation (1) (which ignores the sub/super-
Gaussianity of the sources). This paper presents a method to counteract this limitation for sample-based 
entropy estimators by taking advantage of the combined effect of Renyi’s entropy parameter, α, and the 
kernel size of the Parzen window estimator, σ. It should be mentioned that the arguments in this paper are 
only made for exponential distributions and cannot be guaranteed to generalize to other source 
distributions. However, extensive experience with these methods, as well as the results of the audio 
mixtures, indicates the validity of this approach. 

The findings suggest that the previously published MRMI-SIG criterion [11] should be modified to 
(1) use a large kernel size for sub-Gaussian sources, (2) select the sign of each marginal entropy in the 
sum based on the kurtosis of the associated source estimate, and (3) refrain from randomizing the time 
indices when the sources are highly temporally correlated. Likewise, the MRMI criterion [9] should 
implement the first two of the three changes above (the third is not applicable). The need for these 
changes passed unnoticed in the paper by Erdogmus et al. [15] when optimizing α because the changes 
are not needed for super-Gaussian sources and, even without the changes as Figure 2 shows for β = 10, 
there is roughly a 50% probability of obtaining the global minimum for sub-Gaussian sources. While 
Parzen windows may be applied to create a non-parametric BSS algorithm for any positive value of α, 
three reasons are given why α = 2 (corresponding to MRMI-SIG) is preferred over all other values of 
α including α = 1, which corresponds to Shannon’s entropy. They are as follows: (1) nearly minimal 
normalized standard deviation, (2) the ability to exploit spectral diversity, and (3) exponentially reduced 
computational complexity. 
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Fig. 1. Renyi’s theoretical entropy, for α = 1 and α = 2, versus β. 
 
 
Fig. 2. Renyi’s quadratic theoretical entropy versus rotation angle (kπ/2 rad is solution). Upper left, upper 
right, lower left, lower right subplots are for β = 1, 2.7, 5, 10, respectively. 
 
 
Fig. 3. Renyi’s entropy estimator using SIG for four values of kernel size (σ = 0.1, 0.25, 0.5, 
and 1) versus β. The thick line is the result for Renyi’s theoretical entropy. 
 
 
Fig. 4. Renyi’s entropy estimators vs. β. Upper left, upper right, and lower left subplots are for 
σ = 0.25, 0.5, and 1, respectively. The lower right subplot shows, for sake of comparison, 
the results for Renyi’s theoretical entropies. 
 
 
Fig. 5. Monotonicity requirements. 
 
 
Fig. 6. Normalized standard deviation of several different entropy and moment estimators versus 
β (N = 1000, σ = 0.25). 
 
 
Fig. 7. Normalized standard deviation versus α. The left column shows results for β = 1, 2, and 10. The 
right column is the mean of the results for β = 1, 2, and 10. 
 
 
Fig. 8. SIR versus N for the competing BSS methods for i.i.d. sources. A) β = 1, B) β = 1.2, C) β = 1.7, 
D) β = 2.7, E) β = 5, F) β = 10. 
 
 
Fig. 9. Mean SIR as a function of N, averaged over β = 1, 1.2, 1.7, 2.7, 5, and 10, for i.i.d. sources. 
 
 
Figure 10. SIR as a function of N data samples, for M = 5 audio sources. 
 
 
Fig. 11. SIR as a function of M audio sources, for N = 10,000 data samples. 
 
 
Table 1: Adaptation time (in relative magnitudes of order). 
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Fig. 9 
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 M = 5 

N = 100 
M = 5 

N = 1000 
M = 20 

N = 10,000 
MRMI-SIG 3 4 7 

JADE 1 1 2 
Infomax 3 4 6 

Comon’s MI 3 4 8 
FastICA 1 1 3 
MSMI 4 5 (N = 500) 6 (N = 500) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 


