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Abstract—An important but seldom-discussed problem in the field of blind source separation of real 

convolutive mixtures is the determination of the role of the demixing filter structure and the 

criterion/optimization method in limiting separation performance. This issue requires the knowledge of 

the optimal performance for a given structure, which is unknown for real mixtures. Herein the authors 

introduce an experimental upper bound on the separation performance for a class of convolutive blind 

source separation structures, which can be used to approximate the optimal performance. As opposed to a 

theoretical upper bound the experimental upper bound produces an estimate of the optimal separating 

parameters for each dataset in addition to specifying an upper bound on separation performance. 

Estimation of the upper bound involves the application of a supervised learning method to the set of 

observations found by recording the sources one at a time. Using the upper bound it is demonstrated that 

structures other than the FIR should be considered for real (convolutive) mixtures, there is still much 



room for improvement in current convolutive BSS algorithms, and the separation performance does not 

appear to be limited by local minima. 

  Index Terms—Convolutive source separation, BSS, ICA, upper bound, speech enhancement. 

  

I. INTRODUCTION 

There are three components of an adaptive filter each of which can limit separation performance of 

convolutive blind source separation (BSS) methods [1]. First, the demixing filter topology may be 

insufficient for the given mixture. Second, the criterion used may not be capable of finding the best 

solution given the demixing filter. Third, the optimization method also affects the solution since it can, 

among other items, cause convergence to a local minimum. Using the term ‘algorithm’ to denote the 

combination of the criterion and the optimization method, one can ask to what degree (1) the filter 

topology or (2) the algorithm limits separation performance. Knowing the answer to these two questions 

would be very helpful in, e.g., prioritizing research efforts. One way to address these questions requires 

the estimation of the optimal separation performance for a given filter structure. Notice that BSS criteria 

cannot be used for this endeavor since they necessarily employ a proxy for separation performance such 

as correlation [2], [3], kurtosis [4], or mutual information [5]. 

   Using the approach presented here, however, it is possible to approximate the optimal separation 

performance for a class of demixing filters. This approach is appropriate for any application that involves 

a convolutive mixture of sources as long as the designer has at least a limited access, as explained in a 

later section, to the inputs of the mixing channel in question. The list of possible applications includes 

speech recognition devices, audio enhancement for hearing aids, and multi-user digital and analog 

communication systems. The ability to approximate the optimal performance allows one to make direct 

comparisons of the separation performance of different filter structures without the added uncertainty of 

the performance of the BSS algorithm. In addition it provides an absolute level of separation performance 

against which any algorithm can be judged. Relative algorithm performance is easily obtained by 

comparing different algorithms using the same structure. Using the proposed approach one can go a step 



further and determine how closely a given algorithm approaches the optimum performance level for the 

filter structure under consideration. Unlike theoretical bounds, the experimental upper bound also 

produces the set of parameters needed to approximate the best performance. 

   Application of the experimental upper bound to real, convolutive data yields several discoveries, three 

of which are listed next. First, for convolutive BSS one should consider replacing the ubiquitously used 

FIR structure with either a Gamma or a Laguerre filter. These two alternative structures, which are briefly 

reviewed in Section II.B, require fewer adaptable parameters. Consequently, the expected level of 

misadjustment is reduced, which may, in turn, permit an improvement in separation performance relative 

to that of the FIR. Second, the separation performance of two recent convolutive BSS algorithms is well 

below the level of performance that is achievable (for the data under consideration). Third, the separation 

performance of these algorithms does not appear to be limited by the presence of local minima in the 

performance surface. 

II. CONVOLUTIVE BLIND SOURCE SEPARATION 

In the convolutive mixing paradigm a (Ns x 1) vector of unknown sources at time n, s(n), are collected at 

Ns sensors after having undergone an unknown convolutive mixing represented by H(z), which is a (Ns x 

Ns) matrix of Z-transforms of the individual mixing filters. The receiver only has access to the (Ns x 1) 

observation vector, x(n), the individual constituents of which are given by, 
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for i = 1, 2, …, Ns, where “*” represents convolution and hij(n) represents the length-Lh impulse response 

associated with the ijth entry of H(z). 

   Demixing can be performed in the frequency-domain [12], [13] or in the time-domain using either the 

feedforward (FF) [3], [5], [9] or feedback (FB) [2], [14], [15], [16] architecture. The time-domain FF 

demixing architecture is given by, 
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where yi(n) is the ith output at time n and wij(n) are the parameters of the demixing filter from the jth sensor 

to the ith output having Lw adjustable parameters and an effective length of Lw* samples (for an FIR filter 

Lw = Lw*). Under the linear model framework the individual demixing filters belong either to the 

autoregressive (AR) [6], moving average (MA, also known as FIR) [6], or autoregressive-moving average 

(ARMA) [6] models, or to generalized feedforward structures such as the Laguerre and Gamma [7]. 

Notice that the acronyms FF and FB are used here to refer to the multiple-input, multiple-output (MIMO) 

global connectivity of the demixing filters irrespective of their local structure, which can be (locally) 

feedforward or feedback. For the purposes here the most important difference between these two types of 

systems is that overall stability can be guaranteed for FF systems whenever the local filters are stable, 

whereas local stability is insufficient to guarantee overall stability for FB systems. In simple terms, the 

goal of BSS is to adjust the parameters of wij(n) such that each output, yi(n), approximates a single source, 

sj(n). 

   Suppose there are Ns = 2 sources and observations and that the demixing structure is, without loss of 

generality, restricted to have z-L terms on the main diagonal. In this case, the two separating solutions are, 
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for the non-permuted and permuted solutions, respectively, where L > 0 is a user-defined parameter that is 

needed to implement acausal solutions. Since Y(z) = W(z)X(z) = W(z)H(z)S(z), Equation (3) may be 

verified by noticing that G(z) = W(z)H(z) at the separating solution must be either a diagonal or anti-

diagonal matrix. 

   The upper bound is used below to compare the class of FF structures that incorporate generalized 

feedforward filters, which include the FIR, Gamma, and Laguerre filter. As a brief reminder the Gamma 

and Laguerre filters are IIR and have a memory depth, Lw*, that is a function of the single feedback 

parameter, µ. Despite being IIR both are considered to be generalized feedforward filters since the 

adaptable coefficients (assuming µ is fixed) determine the locations of only the zeros of the transfer 



function. The µ parameter can take any value between 0 and 2 and, for either filter, µ = 1 corresponds to 

an FIR filter. To increase the memory depth the designer can either increase the filter order, Lw, or he/she 

can make an appropriate change in the value of µ. Changing µ governs the trade-off between memory 

depth and resolution, the latter of which is expressed in units of taps per sample. Table I shows how the 

memory depth and the resolution are affected by Lw and µ for each of these filters. The memory depth for 

the Gamma filter is from Principe et al. [7] and the value for the Laguerre filter is an approximation of the 

minimum length needed to capture 90% of the total energy contained in the impulse response. Notice that 

the memory depth of the FIR filter, unlike the other two, is directly coupled to the number of adjustable 

parameters. 

   Several characteristics of the Gamma and Laguerre are important for this discussion. The output of 

each, v(n), is a weighted summation of the signals produced by passing the input, u(n), through Lw – 1 

generalized delay functions, 
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The Laguerre uses an identical all pass section for each generalized delay function except for the very 

first one, which is a low pass filter. The Gamma also uses identical generalized delay functions. The 

difference is that the Gamma delays are all either low pass filters (for 0 < µ < 1) or high pass filters (for 1 

< µ < 2). This is critical since repeatedly applying either a  low  pass  or a  high pass filter causes the input 

correlation matrix to become ill conditioned as i becomes large, such as occurs for large Lw. The value of 

Lw for which this becomes problematic depends on µ as shown in Figure 1. This figure shows a contour 

plot of c, the log of the condition number of Ru, where u(n) = [u1(n) u2(n) … uLw(n)]T and Ru = 



E[u(n)u(n)T] is the correlation matrix of u(n) (the data used to generate this plot are the same data used in 

the first experiment described in Section V). Notice that this definition of Ru becomes the usual auto-

correlation matrix only when µ = 1, in which case u(n) = [u(n) u(n-1) … u(n-Lw+1)]T. Values of c < -16 

(the particular value depends on the machine precision) indicate that Ru is nearly singular. The condition 

of Ru is important for the proposed upper bound since it requires estimation of Ru
-1; therefore, some form 

of matrix conditioning should be used whenever c < -16. The condition of Ru is also relevant for BSS 

algorithms that do not require Ru
-1 since ill conditioning is indicative of a large eigenvalue spread, which 

causes unacceptably slow convergence of the adaptive parameters [6]. Notice that for µ = 1, which 

corresponds to an FIR, Ru is well-conditioned for all values of Lw shown. However, for the Gamma filter 

values of µ < 0.5 require that Lw be constrained to be less than or equal to 25. The Laguerre filter does not 

suffer from this matrix-conditioning problem since it uses an all pass filter and it is the preferred topology 

when longer filters are needed. The only papers known to the authors that consider a generalized 

feedforward filter for convolutive blind source separation are a paper by the authors [5] and one written 

by Stanacevic et al. [11]. 

III. FIGURES OF MERIT FOR SEPARATION 

The proposed upper bound requires a measurable quantity of separation performance of real convolutive 

mixtures. Numerous methods have been used in the published literature to indicate separation 

performance. The list includes MSE [20], [21] bit/symbol error rate [22], [23], Frobenius distance [24], 

multi-channel row and multi-channel column ISI [25], plot of global mixing filter responses [26], [27], 

[28], SNR [29], [30], [31], ISR [19], SIR [32], [33], [34], [35], [36], [37], [38], one-at-a-time SIR [8], ISI 

[39], [40], [41], bias and standard deviation of filter coefficients [42], [43], plot of estimated sources in 

the time or frequency domain [44], [45], [46], hand-segmented SIR [47], automatic speech recognition 

rate [48], [33], [34], and the mean opinion score [18]. Several of these are not ideal for comparisons 

because they are either subjective, such as the plots and the mean opinion score, or require knowledge of 

the mixing filters, which makes them inapplicable for real mixtures. Several others are not desirable for 

speech because they give preference to BSS methods that temporally whiten the estimated sources, such 



as the ISI-based measures, or are more suitable for digital communications. The automatic speech 

recognition is an excellent measure, but it requires that the sources are speech signals and it requires a 

large amount of training data and time. For real recordings two of the more interesting methods are the 

one-at-a-time SIR (signal-to-interference ratio) and the hand-segmented SIR. The latter method can be 

used when all the sources are recorded at the same time, but it requires that the sources must not overlap 

significantly in the time domain. The one-at-a-time SIR has no restrictions on the temporal overlap of the 

sources, but it requires that each source be recorded separately. The drawback for this approach is that 

each source will have a different background noise if recordings are not made in a silent environment 

such as a soundproof room. 

   Schobben et al. [8] introduced the one-at-a-time SIR performance metric and suggested its use for real 

recordings. Since sound waves are additive, the separately recorded sources can be summed together to 

produce proper mixtures which may then be presented to any BSS algorithm. For example, if there are Ns 

= 2 sources and sensors then recording each source separately produces two sets of two-sensor 

observations. To “create” the mixtures, the two signals occurring at the first sensor, one due to the first 

source and one due to the second, are summed together. This should also be done for the two signals 

occurring at the second sensor. The SIR is easily estimated by passing the set of observations due to a 

single source, one at a time, through the previously optimized demixing filters and measuring the power 

of that source in each output. More formally, the one-at-a-time SIR, hereafter referred to as simply SIR, is 

defined as, 
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where ki, for i = 1, 2, .., Ns, is an element of {1, 2, ..., Ns}, ki not equal to kj for i not equal to j, Py(i)|s(ki) is 

the power of output i due only to source ki, (e.g., the power of (h11(n-L) + h21(n)*w12(n))*s1(n) when i = 1, 

ki = 1 and Ns = 2), and Py(i) is the total power of output i. The Ns-factorial set of ki terms, k, are determined 

by assuming a particular permutation of the output signals with respect to the original sources. Since the 



order of the outputs is immaterial for separation quality (and represents an indeterminacy for BSS), the k 

that maximizes Equation (5) produces the SIR of interest. Values of SIR above 15 dB for convolutive 

mixtures are indicative of fairly good separation. While there is no single perfect measure the one-at-a-

time SIR is one of the most promising for objective general-purpose comparisons. Moreover, recording 

sources in this fashion allows the approximation of the upper bound of separation performance for a given 

mixture, as discussed next. 

IV. EXPERIMENTAL (APPROXIMATE) UPPER BOUND 

For Ns = 2 the signals that are produced when recording one source at a time are h11(n)*s1(n), h21(n)*s1(n), 

h12(n)*s2(n), and h22(n)*s2(n). Suppose that we have an FIR adaptive filter and that -h22(h)*s2(n) is used as 

the input and h12(n)*s2(n) is delayed by L and used as the desired signal. This is identical to a system 

identification problem in adaptive filter theory where the desired transfer function is H12(z)z-L/H22(z). 

Notice that the desired transfer function equals the optimal (non-permuted) solution for w12(n) as 

previously specified in Equation (3). Figure 2 shows how to use supervised training to estimate both 

filters of W(z) for either permutation, where the desired permutation is the one that results in a larger 

value of SIR. The parameters are found using the mean square error criterion, which is guaranteed to 

yield a performance surface free of local minima when used with an FIR structure [1]. Furthermore, while 

this supervised learning method does not maximize SIR, it does minimize the power of the interfering 

signal, which is the denominator of the SIR. Verification of this claim is easily obtained by noting that the 

error signal of the system identification is precisely the appropriate interfering signal of the BSS system 

(and recalling that the performance surface is free of local minima). For example, when estimating w12(n) 

for the case of no permutation the error signal of the system identification is (w12(n)*h22(n) + h12(n-

L))*s2(n), which equals g12(n)*s2(n), where gij(n) is the impulse response associated with the ijth entry of 

G(z). 

   This approach is easily extended for Ns > 2, although a numerical solution is required since the filters in 

each row of W(z) must be determined simultaneously. Furthermore, this approach can be used to estimate 

the demixing parameters for the FF/FIR for any combination of acausality parameter, L, and filter length, 



Lw, and it can be used with structures such as the FF/Gamma and the FF/Laguerre. While this approach is 

not applicable for global FB structures, it may be used with any type of FF structure. The Gamma and the 

Laguerre have the advantage that, similar to the FF/FIR, the performance surface of both is guaranteed to 

be free of local minima (when the feedback parameter is fixed) and it is trivial to guarantee stable 

operation (unlike AR filters). 

   The experimental upper bound does not replace the need for BSS. Instead, it is meant to be used as a 

tool during the design process. In order for it to be viable the application in question must allow the 

possibility to record one signal at a time through the channel. Note that this recording need only be done 

once and is done off-line so that continual access to the individual inputs of the channel is not necessary. 

Since the experimental upper bound produces results that are specific to a given dataset the set of one-at-

a-time recordings should include all combinations of signals and environments that are expected to occur 

frequently. Expected background noise sources should also be recorded one at a time as they may be 

treated as additional sources for the purposes of BSS. It is not possible to treat certain types of noise 

separately, such as sensor noise and model error. When these are present and non-negligible Equation (1) 

should be changed as outlined in the appendix. The main shortcoming of the upper bound is that it is 

pessimistic when the source spectra do not significantly overlap. This occurs since only Ns-1 sources are 

present in each system identification task; hence, it is not able to take into account spectral diversity 

among all sources. 

   Before proceeding the validity of the proposed upper bound is checked using a synthetic mixture for 

two values of Lh. For these examples an FF/FIR structure is used for both the mixing and demixing with 

Ns = 2, Hii(z) = 1, and Lw = Lh. For this particular choice the optimal solution has an SIR of infinity. The 

SIR that results after optimizing the demixing parameters for Lh = 5 is, in fact, infinite. This indicates that 

the magnitude of the error is smaller than the precision of the machine. Likewise, the result for Lh = 4000 

is 51.6 dB. The input SIR, measured before the demixing is applied, is 1.5 dB for Lh = 5 and 0.7 dB for Lh 

= 4000. Typical results obtained using a BSS algorithm for synthetic mixtures are on the order of 20-40 

dB for Lh = 5 (depending on the BSS algorithm), whereas results for Lh = 4000 are on the order of 0-5 dB. 



V. RESULTS 

Binaural recordings were collected in a 2.5 m by 3.2 m by 2.4 m double-walled soundproof room. This 

room has a 0.1 s reverberation time, defined as the time for the mean-squared sound pressure of a 1 kHz 

signal to drop 60 dB. The sources (pre-recorded speech from a male and a female speaker) were played 

over a single loudspeaker, one at a time, and collected at a distance of 2.3 m by a pair of Audio Technica 

AT853 miniature condenser microphones having a cardiod pickup pattern. The microphones were placed 

inside synthetic ears made by Knowles Electronics, which were placed on either side of a dummy head of 

width 0.14 m. The data were recorded at fs = 44.1 kHz for N = 120k samples. By rotating the stand on 

which the dummy head was attached, recordings were collected at 0o to 360o azimuth in increments of 

10o. Recordings were also taken at 45o, 135o, 225o, and 315o. The entire dataset is available on the Internet 

at http://www.cnel.ufl.edu/itl.html by selecting the “Data” link. For the following results the data are 

downsampled to 11.025 kHz after using an appropriate anti-aliasing filter. 

   Results are shown for the experimental upper bound and two different BSS algorithms, i.e., JBD and 

MRMI-SIG. These two were chosen because they use a FF/FIR structure and because they outperformed 

numerous convolutive BSS methods in a previous comparison, where MRMI-SIG performed the best for 

noiseless synthetic mixtures and JBD performed the best for real mixtures [10]. MRMI-SIG has the 

additional feature that it is easily modified to incorporate other FF structures, whereas JBD is suited only 

for the FF/FIR since the parameters of each filter are found by truncating the associated impulse response. 

   Parra et al. introduced JBD [9], which uses a frequency-domain criterion that minimizes the cross 

power spectra. This method uses second-order statistics and requires that the sources are non-stationary. 

Using a frequency-domain criterion for convolutive BSS is advantageous in that convolution in the time-

domain becomes multiplication in the frequency-domain. Consequently, the problem reduces to numerous 

instantaneous demixing problems (one for each frequency bin), each of which is very simple. The 

disadvantage is that each frequency bin has an unknown permutation (this may also be true for time-

domain methods [32]). Perfect separation in each frequency bin equates to perfect separation only if the 

permutation ambiguity is resolved. JBD computes the demixing filter in the frequency-domain, converts 



the filter to the time-domain using the inverse transform, and then truncates the resulting time-domain 

filter that is then used to produce the final source estimates. The truncation forces the solutions to be 

smooth in the frequency domain, thus coupling the information between the different frequency bins. 

Since arbitrary permutations require filters that are longer than what is available due to the truncation, the 

convergence of the algorithm tends to avoid the permutation ambiguity [9]. 

   The authors introduced MRMI-SIG [5], which minimizes an approximation of Renyi’s mutual 

information between length-Lt segments of the estimated sources. The mutual information is 

approximated by summing the Ns marginal Renyi entropies and subtracting the (single) joint Renyi 

entropy. For convolutive mixtures MRMI-SIG requires that each of the sources has a super-Gaussian 

distribution, which is normally the case for speech signals. Experimental evidence indicates that the set of 

parameters that minimize/maximize Renyi’s entropy are very nearly the same as those that 

minimize/maximize Shannon’s entropy when the sources are super-Gaussian. To the extent that this 

approximation holds MRMI-SIG minimizes the (Shannon) mutual information [50] between segments of 

the estimated sources, which can be shown to be a contrast as long as the user-defined segment-length is 

chosen sufficiently large [49]. It is not known, however, whether Shannon’s mutual information is 

discriminating (there may be local minima). MRMI-SIG is an information-theoretic approach that 

operates entirely in the time-domain. This makes it more computationally intensive than JBD, especially 

as Lw becomes large or µ approaches 0. 

   The solutions for the experimental upper bound are found using the well-known Wiener-Hopf 

solution, Ru
-1pud [1], where Ru is the correlation matrix of u(n) (as defined previously), pud = 

E[u(n)d(n)] is the cross-correlation vector between the input vector, u(n), and the desired signal, 

d(n), and both u(n) and d(n) are as shown in Figure 2. The temporal correlation matrix, Ru, 

should not be confused with the spatial auto-correlation matrix that is commonly used to sphere 

the observations in BSS. For the JBD algorithm the length of the FFT is varied from 256 to 

16384. The values for the other user-defined parameters are kept as close to the default values as 



possible, although they had to be reduced for large FFT-lengths. The results shown are for the 

FFT-length that produced the highest SIR. The user-defined parameters for MRMI-SIG are Lt = 

2Lw* – 1 and σ = 1, where σ is the kernel size. The acausality parameter in all cases is fixed at L 

= 0. There are three important parameters for each filter topology, Lw, Lw*, and µ, but because of 

the relationship between them previously given in Table I only two of these need to be given to 

completely specify the parameters of the FF/Gamma and FF/Laguerre and only one is needed to uniquely 

specify the FF/FIR. 

   For the first experiment the loudspeaker is oriented at 45o azimuth when rendering the female speech, 

s2(n), and at 0o azimuth when rendering the male speech, s1(n), where a value of 0o corresponds to the 

location directly in front of the dummy head. Figures 3 and 4 show how the performance of the upper 

bound for the FF/Laguerre varies with Lw and µ. For these two figures the input SIR is 4.5 dB. Notice in 

Figure 3 that the FF/Laguerre (for this data) always outperforms the FF/FIR as a function of the number 

of adaptable parameters. The fact that the SIR improves for the FF/Laguerre as µ is decreased from 1 to 

0.25 indicates that increasing the memory depth for this dataset is more important to performance than 

maintaining a high resolution. 

   Figure 4 shows how the FF/Gamma compares to the FF/Laguerre and FF/FIR as a function of 

memory depth. The FF/Gamma uses matrix regularization whenever its inclusion improves the 

SIR. In this figure µ = 0.5 for the FF/Laguerre and µ for the FF/Gamma is chosen so that the 

filter length of these two topologies is equal, whereas the filter length of the FF/FIR is roughly 

three times that of the other two. Notice that the FF/Laguerre performance nearly equals that of the 

FF/FIR despite having only 1/3 the number of adaptable parameters. A paper by Stanacevic et al. also 

makes this claim [11]. The measure of performance used in Stanacevic’s paper was the fit of the impulse 

response of the FIR and Laguerre filters to an estimated room impulse response. The results here 

substantiate this claim using a much more rigorous basis, namely by using a direct measure of separation 



performance on real convolutive mixtures. Figure 4 also shows that the separation performance of all 

three topologies is comparable for small memory depths and that the eigenvalue spread limits the 

performance of the FF/Gamma to approximately 12.5 dB. 

   Besides determining the preferred filter topology in an algorithmic-independent fashion, the 

experimental upper bound is also useful for providing an absolute measure of algorithm performance. For 

example, comparing the JBD performance in Figure 4 with the upper bound that uses the same topology 

indicates that JBD is performing well for small memory depths. However, the vertical line in this figure 

indicates how much room there is for improvement as Lw* increases. A similar judgment can be made for 

MRMI-SIG using the results shown in Table II (due to computational complexity the results for MRMI-

SIG are restricted to a subset of Lw*, also, due to differing filter lengths care should be taken when using 

this table to compare topologies). Similar to JBD the performance of MRMI-SIG for all three topologies 

is near the upper bound when the memory depth is 25, but then falls off rapidly as the memory depth is 

increased. For this figure the SIR prior to demixing is the same as before, i.e., 4.5 dB. 

   Results of the second experiment are shown in Figures 5 and 6 as the location of s2(n) is changed to -

90o, -45o, 0o, 45o, and 90o azimuth, while s1(n) remains fixed at 0o azimuth. A plot of the input SIR is 

shown since each data point in these two figures represents a different mixture. In fact, when the second 

source is located at 0o azimuth the two sources are collocated so that the mixing matrix is not full rank. 

However, it is still possible to produce some degree of separation due to spectral differences of the speech 

signals. It is expected that the result at 0o would noticeably drop if the sources perfectly overlapped in the 

frequency domain. The values of Lw* = 250 for Figure 5 and Lw* = 25 for Figure 6 are used since these 

values represent the best performing memory depth for the JBD and MRMI-SIG algorithms, respectively. 

Also, as was done in Table II, FF/Gamma uses µ = 0.3 and FF/Laguerre uses µ = 0.5. As such Figures 5 

and 6 are more appropriate for determination of absolute algorithm performance than for filter topology 

comparison. Even though the memory depth in both figures is optimized for the respective BSS 

algorithm, there is a noticeable difference between how well the two BSS algorithms performed 



compared to how well they could perform. Keep in mind that this difference would be much larger if the 

memory depth were optimized for the upper bounds. 

   An additional set of experiments was conducted in order to assess bias in the expected SIR 

performance. In the previous two experiments the demixing parameters of JBD and MRMI-SIG were 

initialized randomly. To estimate performance bias both algorithms were also adapted after initializing the 

demixing parameters with the solution found using the experimental upper bound. Estimating the 

performance bias in this way is valid to the extent that the solution using the upper bound is near the 

optimal solution. The results are not shown, but the difference in SIR of the solutions found with this 

initialization and with random initialization was negligible in almost every case. Hence, the results 

reported here are indicative of the bias introduced by each algorithm and are not simply due to limitations 

imposed by local minima of the respective performance surface. 

VI. CONCLUSIONS 

The experimental upper bound reveals how much the structure and the algorithm limit separation 

performance. For the data used in these experiments the limitation of the FF/Gamma (with µ = 0.3) 

relative to the FF/FIR filter structure, e.g., is roughly 1.5 dB for Lw* = 100. Likewise, the MRMI-SIG 

algorithm in this case further limits the performance by approximately 11.9 – 5.3 = 6.6 dB. Figure 6 

indicates that MRMI-SIG with the FF/Gamma structure produces a result that is only slightly above the 

input SIR for three of the five mixtures and is very nearly equal to the experimental upper bound for the 

remaining two. This type of information is invaluable for finding and eliminating weaknesses of any 

given BSS algorithm. Without the experimental upper bound one only has the knowledge of relative 

separation performance, which can lead to inaccurate conclusions, e.g., when an algorithm performs 

better for dataset A than for dataset B although the performance for A is well below the upper bound and 

the performance for B nearly equals the upper bound. Many other inferences are also possible using the 

proposed experimental upper bound. As a final example, it could be argued from Figure 4 that the FF/FIR 

and the FF/Laguerre structures produce asymptotically identical results so that there is no need to 

consider any structure other than the FF/FIR, which is used almost exclusively for time-domain demixing. 



However, Figure 4 and Table II also indicate that the two BSS algorithms suffer from misadjustment. The 

consequence for practical BSS algorithms is that Lw should be kept reasonably small. Based on the data 

used here small values of Lw tend to favor the use of the FF/Gamma (for Lw* < 100) or the FF/Laguerre 

structure over the FF/FIR. 

   In conclusion, the one-at-a-time SIR allows for an objective and unambiguous comparison of any linear 

demixing BSS method, including FB structures. Moreover, the data collection procedure that it requires 

makes possible the proposed approach of estimating the experimental upper bound to separation 

performance of FF structures. This approach is novel not because of an advancement of signal processing 

technique, but rather due to the recognition that recording the sources one at a time and applying the 

system identification method known from adaptive filter theory causes the minimization of the power of 

the interfering signal in the BSS paradigm. The result is a tool that allows for a quick estimation of the 

optimal separation coefficients and the associated upper bound of the SIR for any given set of (real or 

synthetic) mixtures. The approximate upper bound is not subject to local minima or local permutations, it 

uses supervised learning, it minimizes the power of the interfering signal in each output, it provides an 

estimate of performance bias, it can be used to evaluate the difficulty of a given real (convolutive) data 

set, it illustrates the advantage of using a Gamma or Laguerre filter topology, it allows quick estimation of 

the optimal values for the feedback parameter, filter length, and acausality parameter for one or more 

representative sets of data, and it exposes just how poorly two recent BSS algorithms (including the 

authors’) perform for real mixtures. 

APPENDIX 

For sake of explication the previous discussion of the experimental upper bound ignores the presence of 

noise and model error. This is justifiable in certain conditions, e.g., for audio applications as long as the 

recordings are made in a soundproof room, the transfer functions of the microphones and the amplifiers 

are nearly linear, and the signal power as measured at each transceiver is much greater than the power of 

the corresponding sensor noise. To the extent possible background noises should be treated as additional 



sources which are to be recorded separately. To account for all other types of non-negligible perturbations 

Equation (1) should be modified to the following, 
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            (6) 

where ei(n) represents noise and model error at the ith sensor. The separating solutions are still given by 

Equation (3) since the concern in BSS is to separate the sources from each other without regard to 

contamination by ei(n). However, when ei(n) is not zero for all i and all n, the Wiener-Hopf solution using 

the available signals can no longer be guaranteed to converge asymptotically to the separating solution. 

Suppose once again that there are Ns = 2 sources and observations. Recording the sources one at a time 

produces the signals h11(n)*s1(n) + e11(n), h21(n)*s1(n) + e21(n), h12(n)*s2(n) + e12(n), and h22(n)*s2(n) + 

e22(n), where two subscripts are used for each e(n) since the recordings of s1(n) and s2(n) are made at 

different times. For consistency with Equation (6) it is necessary that ei(n) = eii(n) + eij(n), where i does 

not equal j. These four signals are used as u(n) and d(n) as previously shown in Figure 2. When it is 

reasonable to assume that eij(n) is not correlated with si(n) for all combinations of i, j, the eij(n) term 

occurring in d(n) has no effect on determining the Wiener-Hopf solution of the demixing filter [1]. The 

eij(n) term occurring in u(n), on the other hand, always biases the solution. In order to mitigate the bias the 

Wiener-Hopf solution should be replaced with the Error Whitening Criterion (EWC) [17]. Equation (5), 

which in the present case refers to the signal-to-interference/noise ratio (SINR), remains the same with the 

understanding that a portion of the output power, Py(i), is due to e(ki).  
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Figure 1.  Contour of c, the log condition number of the correlation matrix for the 

Gamma filter as a function of feedback parameter, µ, and filter length, Lw. 

 

Figure 2. System identification formulations for the permuted and non-permuted solutions of the 

approximate upper bound. 

 

Figure 3. SIR of the experimental upper bound for the FF/Laguerre topology as a function of the filter 

length, Lw, for different µ. 

 

Figure 4.  SIR of the experimental upper bound for the FF/Laguerre topology as a function of the 

feedback parameter, µ, for different Lw. 

 

Figure 5.  SIR as a function of memory depth, Lw*, for the upper bound and for JBD. For 

the upper bound (FF/Laguerre) µ = 0.5 and for the upper bound (FF/Gamma) µ is such 

that the filter length of the Gamma and Laguerre is equal (resulting in 0.32 < µ < 0.4). 

 

Figure 6.  SIR as a function of azimuth using Lw* = 250. 

 

Figure 7. SIR as a function of azimuth using Lw* = 25. 

 

TABLE I: Memory depth and resolution as a function of Lw and µ. 

 

TABLE II: SIR values (in dB) for the MRMI-SIG algorithm. The value of the associated upper bound is 

given in parentheses. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Table 1. 

Structure Memory Depth, Lw* Resolution 
FIR Lw 1 

Gamma Lw/µ µ 
Laguerre (1 + 0.4|µ-1|log10Lw) Lw /µ µ / (1 + 0.4|µ-1|log10Lw) 



 

 

 

 

 

 

 

 

 

Memory 
Depth, Lw* 

MRMI-SIG 
(FF/FIR) 

µ = 1 

MRMI-SIG 
(FF/Laguerre) 

µ = 0.5 

MRMI-SIG 
(FF/Gamma) 

µ = 0.3 
25 5.7 dB (7.9) 6.2 dB (8.0) 7.9 dB (8.4) 
50 4.3 (9.3) 6.0 (9.4) 5.9 (9.8) 

100 4.8 (13.4) 5.7 (12.6) 5.3 (11.9) 
 

 

 

 

 

 

 

 

 

 

 

 

Table 2. 


