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Abstract—A method to perform convolutive blind source sep-
aration of super-Gaussian sources by minimizing the mutual
information between segments of output signals is presented.
The proposed approach is essentially an implementation of an
idea previously proposed by Pham. The formulation of mutual
information in the proposed criterion makes use of a nonpara-
metric estimator of Renyi’s -entropy, which becomes Shannon’s
entropy in the limit as approaches 1. Since can be any number
greater than 0, this produces a family of criteria having an infinite
number of members. Interestingly, it appears that Shannon’s
entropy cannot be used for convolutive source separation with
this type of estimator. In fact, only one value of appears to
be appropriate, namely = 2, which corresponds to Renyi’s
quadratic entropy. Four experiments are included to show the
efficacy of the proposed criterion.

Index Terms—Convolutive blind source separation (BSS), in-
formation theoretic learning, nonparametric entropy estimator,
Renyi’s entropy.

I. INTRODUCTION

CONVOLUTIVE blind source separation (BSS) involves
the transformation of a set of observations, where each is

a different mixture of a common set of sources, in an attempt
to recover the original (unmixed) sources. The observations in
(linear) convolutive BSS are related to the sources in the fol-
lowing manner:

(1)

for , where denotes the th observation at
time denotes the th source at time is the signal
at time that accounts for model error and additive noise,
is the number of sources and observations, and is the length
of the individual mixing filters . It is also commonly as-
sumed that at most 1 of the sources is Gaussian-distributed
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and all sources are mutually statistically independent, which
makes independent component analysis (ICA) an appropriate
method to find a solution for BSS. Equation (1) may be written
compactly as , where , and

are vectors and is a matrix of -trans-
forms of the individual mixing filters. Applications for which
the model of (1) are appropriate include speech enhancement
for hearing aids, hands-free telephony, speech recognition [1],
[2], sonar signal processing [3], [4], and communications sys-
tems [5], [6], [7].

In the BSS paradigm the receiver knows neither the mixing
filters nor the sources. Consequently, BSS algorithms must sep-
arate the sources by training demixing filters using only the ob-
servations. One structure for time-domain demixing is the feed-
forward (FF) architecture represented by

(2)

where is the th output at time is the length of the
demixing filters and the individual demixing filters are
described by an impulse response the implementation of which
can have one of several different (local) structures. Note that the
acronyms FF and FB (feedback) are used here in a global sense
while the individual demixing filters are free to be locally feed-
forward or feedback. A partial list of local filters includes the au-
toregressive (AR) [8], moving average (MA, also known as FIR)
[8], autoregressive-moving average (ARMA) [8], Laguerre [8],
[9], and Gamma filters [10]. Using the compact notation, (2) is
given by , where is the vector of
outputs at time and is the matrix of -trans-
forms of the individual demixing filters.

II. PUBLISHED TECHNIQUES

The existing convolutive source separation algorithms could
be classified in any number of different ways. Fig. 1 shows one
possible way to categorize most of the published methods using
characteristics of the demixing filters (i.e., FF time domain, FB
time domain, or frequency domain) and the cost function (e.g.,
whether it uses second order statistics, higher order statistics,
or is information theoretic). The structure determines what pa-
rameters need to be adapted, whereas the criterion determines
how they are adapted. For example, the parameter updates for
the Type II JBD algorithm [11] are found after applying an FFT
to the observations; hence it is a frequency domain criterion.
However, the demixing is performed by the time domain struc-
ture that results from applying an inverse FFT to the previously

1057-7122/$20.00 © 2005 IEEE



HILD et al.: CONVOLUTIVE BSS 2189

Fig. 1. Method for categorizing convolutive BSS systems.

TABLE I
CATEGORIZATION OF CONVOLUTIVE BSS SYSTEMS

found solution. Several methods that did not fit into this partic-
ular classification include subspace methods and linear predic-
tion methods, which are referred to as Type VI and Type VII,
respectively. Using this approach, a total of approximately 90
papers are categorized in Table I. On occasion the task of cat-
egorizing a particular method proved formidable. In fact, the
impetus for creating the categories is precisely due to the diffi-
culty encountered when attempting to decipher some of the al-
gorithms. The principal complication stems from the subtle dif-
ference that exists between Types II, IV, and V. Consequently,
many of them are grouped together near the bottom of Table I.
The difficulty arises from the fact that each uses a frequency-
domain criterion, and the conversion to time-domain filters, re-

quired by Types II and IV, is very straightforward. Even though
the distinction is subtle, there are important differences in the
performance of each. Because of the qualitative differences in
performance, Types II, IV, and V are kept as three distinct types.
The reader is referred to the first author’s dissertation [12] for
more details on this particular approach to categorization, which
is hoped to facilitate the succinct description of BSS algorithms
by authors of future papers.

Generally speaking, Types II, IV, and V require less time/
computation to produce a solution than the other types due to
their use of frequency-domain criteria and/or structures. Types
III and IV are unable to implement general acausal solutions,
which will cause a large drop in performance for certain types
of mixtures. However, some criteria need to use FB structures
since they do not work well with FF structures, i.e., it has been
noted that the Bell and Sejnowski InfoMax algorithm prefers to
temporally whiten rather than separate the outputs when used
with a FF structure [13]. Finally, Type V methods produce out-
puts that sound artificial due to the lack of a “time-domain con-
straint” [8]. Supposing that the computation time is not a lim-
iting factor, Types I and II appear to be the most promising.

Pham discusses several variants of an information-theoretic
(IT) criterion suitable for a Type I implementation, which
makes use of spatial information across multiple lags [14], [15].
This criterion involves the minimization of Shannon’s mutual
information between segments of processes and is, in fact,
the canonical contrast for finding independent components.
However, neither of these papers discusses the implementation
of this criterion. More specifically, the criterion in both papers
includes an entropy function but no reference is given to the
means by which the entropy is estimated. Herein, the criterion
discussed by Pham is implemented (approximately) by means
of a nonparametric entropy estimator. The details of this crite-
rion are given in Section III.
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III. PROPOSED CRITERION

The (Shannon) mutual information [16] between segments of
processes, which is a contrast for jointly stationary processes
[15], may be approximated by a function of Renyi’s entropies
[17] as follows:

(3)

where each
is an vector, is the extent of the temporal infor-

mation used in the criterion, is Renyi’s -entropy
of the random vector from which is drawn, and is an

vector given by,
. To show that (3) is a valid approximation, it is suf-

ficient to show that the following two approximations are valid

(4)

(5)

where
is Renyi’s entropy of the output (mar-

ginal or joint; i.e., or ) as a function
of the set of demixing parameters, is a positive constant,

is any constant, and is used to denote Shannon’s
entropy. The use of to denote Shannon’s entropy is
the natural choice since Renyi’s entropy becomes Shannon’s
entropy in the limit as approaches 1 [17].

Concerning the approximation of (4), equality is ob-
tained when the sampling frequency is large enough to
guarantee that becomes indistinguishable from

. This is easily shown by
substituting for

(for ) into
the expression for . With this substitution the
joint entropy becomes

, which is equal to
) as shown

in Cover and Thomas for Shannon’s entropy [16] and which
is also easily shown to be true in the case of Renyi’s entropy.
Notice that this latter representation of the joint entropy is
identically . Needless to say, it is not possible to
obtain the equality for any practical sampling frequency. Con-
sequently, (4) remains an approximation the quality of which
is assessed in this paper only in terms of how well the overall
criterion separates sources. The need for this approximation
will be explained later.

The approximation of (5) simply states that the parameter
shouldbechosen inamanner such thatRenyi’sentropy isapprox-
imately linearly related to Shannon’s entropy in the space of the
demixing parameters. If this is the case, the criteria based on these
two definitions of entropy will produce the same solution since an
additive constant and a positive multiplicative constant have no
effect on the location of the minimum value. Since two entropy
measures can have a nonlinear relationship yet still produce the
same solution, (5) represents a sufficient but unnecessary require-
ment. No mathematical proof is known that demonstrates the ex-

istence of a value of , other than 1, that has this linear relation-
ship. However, extensive experience with this criterion indicates
this condition is met for Renyi’s quadratic entropy when
the signals are i.i.d. and have a super-Gaussian distribution. In
particular, in Hild et al. [14] a plot of Renyi’s quadratic entropy
and Shannon’s entropy as a function of the demixing parameter is
included where the sources are super-Gaussian and the values of

and have been properly selected. In this plot, the curves rep-
resenting and are indistinguishable. A three-di-
mensional (3-D) plot showing similar results for a higher-dimen-
sional case may be found in the first author’s dissertation [12].
Equation (5) does not hold for sub-Gaussian sources, although
the need for this approximation is easily circumvented for the
case of instantaneous mixtures [14].

All that is needed to implement the criterion of (3) is an es-
timator for Renyi’s -entropy. A paper by Erdogmus et al. [18]
introduces one such estimator, which is given by

(6)

where is the block size, is the Gaussian func-
tion evaluated at and having variance . This is based on
a previously published entropy estimator [19] for , but
was generalized by Erdogmus in order to allow for any posi-
tive value of . The nonparametric estimator in (6) (as well as
the estimator on which it is based) has complexity, uses
Parzen Window density estimation [20], and is computed di-
rectly from the data by considering all pair-wise interactions of
the output samples. Using a change of variables (6) can also be
represented as

(7)

where represents the valid set of values for , which is nec-
essarily a function of for finite . Using this representation
the inner summation uses a fixed lag of and the outer summa-
tion computes an average over all possible lags. This entropy
estimator is asymptotically unbiased for i.i.d. data due to the
consistency of the Parzen window density estimator on which it
is based. A modification to this entropy estimator, referred to as
the Stochastic Information Gradient (SIG) [21], was introduced
1 yr later. The modification amounts to the removal of the outer
summation in (7) such that the new estimator is a func-
tion of only a single lag. This estimator is given by

(8)

where is commonly chosen to be 1. This entropy estimator is
also asymptotically unbiased for i.i.d. data; however, it only es-
timates Renyi’s quadratic entropy [12]. A simple argu-
ment for this claim is that, for i.i.d. data and as goes to infinity,
the argument of the log in (6) and (7) becomes an expectation
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that equals the argument of the log in (8) only when .
Equations (6)–(8) are given for the univariate case. The exten-
sion to the multi-variate case only requires that the scalar be
replaced by the covariance matrix, , where is the identity
matrix whose size is commensurate with the random vector in
question, i.e., or . It should also be mentioned that
these entropy estimators are a function of the dimensionality of
the constituent random vector when the amount of data is finite
[22]. As a result, if the dimensionalities of the random vectors
used in the marginal and joint entropies are not identical then
one or the other (i.e., the sum of marginal entropies or the joint
entropy) will be more heavily weighted in the criterion of (3),
which is suboptimal. The approximation represented by (4) was
introduced in order to ameliorate this problem. Although the di-
mensionalities of the marginal entropies and the joint entropy
are identical only if is an integer multiple of , it appears
to be sufficient in practice if is approximately an integer mul-
tiple of .

Not only is the entropy estimator of (8) much more
practical for training long demixing filters due to the signifi-
cantly reduced computational complexity, but it has also been
experimentally determined to be much more robust to the i.i.d.
assumption when estimating joint entropies. This is critical
since is almost never i.i.d. for convolutive mixtures due
to the very nature of the problem (the problem of robustness
is not encountered when mutual information can be expressed
in terms of only marginal entropies, which is possible for
instantaneous demixing [14]). On the other hand, if the desire
is to use the criterion the authors recommend using an
architecture that includes a deconvolving filter at each demixer
output. The lack of robustness to the i.i.d. assumption reduces
the accuracy of the entropy estimator for convolutive
demixing. Consequently, for the minimization of the mutual
information by means of the family of entropy estimators given
in (6)–(8), is the preferred choice. Notice that this
precludes the use of Shannon’s entropy.

The proposed method for convolutive BSS involves the struc-
ture defined by (2) and the criterion formed by plugging (8) into
(3). The resulting criterion to be minimized is given by

(9)

Without loss of generality the filters are constrained to
be . The filters, for not equal to , are found using
gradient descent, which requires the derivative of (9) with re-
spect to each . This is given by (10) at the bottom of the
page, where the square brackets are used to denote a row vector
formed from the constituent signals. For convenience a scalar
gain is also applied to each output prior to the computation of
(10) such that each output has unit variance [this variable is not
shown in (10)].

Due to the similarities of the underlying criterion, the pro-
posed method retains the same designation, MRMI-SIG, used
previously for feature extraction of static data [23] and instanta-
neous BSS [14]. There are four variables that must be chosen for
this method. Two of these, the window size and the length of
the demixing filters , are common for any time-domain struc-
ture. The remaining two are the temporal extent of the criterion

and the kernel size . If the variance of the output is fixed
at 1, it has been experimentally determined that the kernel size
should be approximately 0.25. Concerning , Pham implicitly
uses the value of [15]. However, since the sources are
assumed to be independent, the mixing and demixing filters are
the only cause of the dependencies between the outputs. As a re-
sult, need not be any larger than , which equals
the length of the impulse response of the combined mixing and
demixing. Even if and/or equal infinity, a finite-valued

may produce good separation results as long as its value is
greater than or equal to the effective length of the combined
mixing and demixing. However, is unknown (as is the ef-
fective ). Therefore, the suggestion is to use .
Performance is expected to decrease if is chosen too small.

IV. PERFORMANCE

Table II shows a representative set of convolutive source
separation algorithms, which are used to demonstrate how the
separation performance of the proposed method fares. Each
time-domain structure is given in terms of

. Notice that one or two methods from each
of the five categories of Fig. 1 are included. Bingham and
Hyvarinen describe the Fixed Point method [25], although they
did not use the FB/FIR structure. Fixed point was chosen for
the Type IV method based on its speed, which is imperative
since as many as 8000 (complex) instantaneous BSS solutions
are required for each separation task using a BSS algorithm
of this category. For JADE, the minimum Frobenius norm
between the separating and the estimated solution was used
to correct for (local) permutations at each frequency [12].

(10)
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TABLE II
REPRESENTATIVE SET OF CONVOLUTIVE SOURCE SEPARATION METHODS

Fig. 2. SIR as a function of L where L = L .

Therefore, the results for JADE represent a best-case scenario
for Type V methods. For the Nonholonomic, MRMI-SIG, SAD,
and InfoMax algorithms, the stepsize was adjusted in order to
optimize separation performance. Likewise, optimization of the
block size (which determines the number of frequency bins)
was performed for the Fixed Point and JADE algorithms and
optimization of both the stepsize and the block size was done
for JBD.

The figure of merit that is used is the signal-to-interference
ratio (SIR), which for a given permutation is given by

(11)

where , for , is an element of
which is used to define the particular permutation, not equal
to for not equal to is the power of source in output
, and is the total power in output . In words, the SIR for

the th output, , is defined as 10 times the log of the ratio of
the signal power to the interference power found in the specified
output and the overall SIR of (11) is the mean of the individual
SIR values.

Figs. 2–5 show the SIR as a single parameter of a synthetic
mixture is varied while all other parameters assume the fol-
lowing default values, except as noted. The default number of
sources/sensors is , the diagonal elements of the Z-trans-
form of the mixing matrix are , the acausal factor for the
mixing is , the length of the data is ,
the length of the mixing filters is , the length of the
demixing filters is , and the diagonal elements of

Fig. 3. SIR as a function of L for L = 25.

Fig. 4. SIR as a function of L.

the Z-transform of the demixing matrix are constrained to be
for all methods except for the Nonholonomic method.

Furthermore, the sources are speech signals and the off-diagonal
components of the Z-transform of the mixing matrix are
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Fig. 5. SIR as a function of SNR.

where is the element of the matrix located at the
th row and the th column and where both transforms given

above are modified so that the corresponding impulse response
is truncated to the desired length . For and the
mixing matrix defined above, a perfect separating solution is
possible for: (1) all the time-domain algorithms in Table I when-
ever and and (2) all the FF time-domain al-
gorithms whenever , and the acausality
parameter of the demixing is larger than , the acausality pa-
rameter of the mixing. These conditions are met for the default
set of parameters used in the simulation. The second condition
above is valid only for FF systems since FB systems are very
restricted in their ability to implement acausal solutions.

Fig. 2 shows the results as is varied from 2 to 100. In this
experiment so that a perfect separating solution is al-
ways possible for all the time-domain methods. Values of SIR
above 15 dB represent fairly good separation. The performance
for SAD is only shown for small due to stability problems
encountered whenever , which also explains the exclu-
sion of SAD from the subsequent figures. Fig. 3 shows how the
SIR varies as a function of for . For this experi-
ment a perfect separating solution for the time-domain methods
is possible only when . Notice that JBD, InfoMax, and
MRMI-SIG are robust to a factor of two overestimation of .
The performance for JADE in this plot is shown as a straight
line since it is not a function of .

Fig. 4 shows how the convolutive source separation methods
perform as is increased, which causes the separating solution
to become increasingly acausal. No additional results are shown
for the Nonholonomic method due to poor separation perfor-
mance for these specific datasets. In this experiment the diag-
onal elements of the demixing matrix are fixed at for the
FF methods and 1 for the FB methods, which are unable to im-
plement the required acausal solution for . Due to the
choice of the mixing filters it is expected that the performance
of the FB methods will fall as transitions from 0 to 1, and as
it transitions from 3 to 4. Fig. 4 indicates that the performance
of InfoMax does indeed fall for the transition between 0 and 1,
but the second transition is not very noticeable.

Fig. 5 shows how the separation performance is affected by
the power of the spatially and temporally uncorrelated Gaussian
noise that is added to the observations. The power of the noise
is not removed in the calculation of the denominator of the SIR.
Consequently, the SIR values are reduced from those shown in
the previous plots, although this is inconsequential for relative
performance comparisons. Notice that the proposed method,
MRMI-SIG, is the least robust to additive noise while InfoMax
performs quite well.

V. CONCLUSION

The proposed method MRMI-SIG implements Pham’s sug-
gested approach to convolutive BSS. The stochastic gradient
coupled with a nonparametric estimation of Renyi’s quadratic
entropy of segments of signals is able to exploit both spatial
and temporal information about the mixing process, thus al-
lowing its use in convolutive source separation. Simulations of
the method (not shown) demonstrated a very noticeable increase
in performance by applying the approximation of (4), the idea
of which came from insights provided by Morejon [22]. One
item that is particularly interesting is that Shannon’s entropy
does not appear to be robust for convolutive BSS when used in
a nonparametric entropy estimator. Moreover, only the choice
of produces an efficient criterion. Much work
is still required to determine if there are additional conditions
for which the proposed method might fail. The possible advan-
tages of the proposed criterion are that it is IT, and it allows
the use of a FF structure. This last item is important since there
is some evidence that the (global) FF structure provides an im-
proved separation performance than the alternatives [12], it is
inherently stable unlike the FB structure, and it can easily im-
plement arbitrary acausal solutions unlike the FB structure. The
weaknesses of this criterion, which are left as open problems,
are that it only works for super-Gaussian sources and it does
not work well when the observations are noisy.

REFERENCES

[1] S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, “Fundamental
limitation of frequency domain blind source separation for convolutive
mixture of speech,” in Proc. Int. Conf. Acoustics, Speech, Signal Pro-
cessing, vol. 5, Salt Lake City, UT, May 2001, pp. 2737–2740.

[2] M. Knaak, S. Araki, and S. Makino, “Geometrically constraint ICA for
convolutive mixtures of sound,” in Proc. Int. Conf. Acoustics, Speech,
Signal Processing, vol. 2, Hong Kong, Apr. 2003, pp. 725–728.

[3] M. Gaeta, F. Briolle, and P. Esparcieux, “Blind separation of sources
applied to convolutive mixtures in shallow water,” in IEEE Signal
Process. Workshop Higher Order Statistics, Banff, Canada, Jul. 1997,
pp. 340–343.

[4] Z. Xinhua, Z. Anqing, F. Jianping, and Y. Shaoqing, “Study on blind
separation of underwater acoustic signals,” in Proc. Int. Conf. Signal
Processing, vol. 3, Beijing, China, Aug. 2000, pp. 1802–1805.

[5] E. S. Warner and I. K. Proudler, “Single-channel blind signal separation
of filtered MPSK signals,” in Proc. IEE-Radar, Sonar, Navig., vol. 150,
Dec. 2003, pp. 396–402.

[6] C. Andrieu, A. Doucet, and S. Godsill, “Bayesian blind marginal
separation of convolutively mixed discrete sources,” in Proc. Neural
Networks for Signal Processing, Cambridge, MA, Aug. 1998, pp.
43–52.

[7] G. Leus, P. Vandaele, and M. Moonen, “Deterministic blind modulation-
induced source separation for digital wireless communications,” IEEE
Trans. Signal Process., vol. 49, no. 1, pp. 219–227, Jan. 2001.

[8] S. Haykin, Adaptive Filter Theory, 4th ed. Englewood Cliffs, NJ: Pren-
tice-Hall, 2001.



2194 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 10, OCTOBER 2005

[9] T. Oliveira e Silva, “On the equivalence between gamma and laguerre
filters,” in Proc. Int. Conf. Acoustics, Speech, Signal Processing, vol. 4,
Adelaide, Australia, Apr. 1994, pp. 385–388.

[10] J. C. Principe, N. R. Euliano, and W. C. Lefabvre, Neural and Adaptive
Systems. New York: Wiley, 1999.

[11] L. Parra and C. Spence, “Convolutive blind separation of nonstationary
sources,” IEEE Trans. Speech Audio Process., vol. 8, no. 3, pp. 320–327,
May 2000.

[12] K. E. Hild II, “Blind separation of convolutive mixtures using Renyi’s
divergence,” Ph.D. dissertation, Dept. Elect. Comp. Eng., Univ. Florida,
Gainesville, Nov. 2003.

[13] K. Torkkola, “Blind separation of convolved sources based on informa-
tion maximization,” in Proc. Neural Networks for Signal Processing,
Kyoto, Japan, Sep. 1996, pp. 1–10.

[14] K. E. Hild II, D. Erdogmus, and J. C. Principe, “Blind source separation
using information theoretic learning,” Signal Process., to be published.

[15] D. Pham, “Mutual information approach to blind separation of stationary
sources,” IEEE Trans. Inform. Theory, vol. 48, no. 7, pp. 1935–1946, Jul.
2002.

[16] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley , 1991.

[17] A. Rényi, Probability Theory. Amsterdam, The Netherlands: North-
Holland, 1970.

[18] D. Erdogmus, K. Hild II, and J. C. Principe, “Blind source separation
using Renyi’s alpha-marginal entropies,” Neurocomp., vol. 49, no. 1, pp.
25–38, Dec. 2002.

[19] J. Principe, D. Xu, and J. Fisher, “Information theoretic learning,” in
Unsupervised Adaptive Filtering, S. Haykin, Ed. New York: Wiley,
2000, pp. 265–319.

[20] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Math. Stat., vol. 33, no. 3, pp. 1065–1076, Sep. 1962.

[21] D. Erdogmus, K. E. Hild II, and J. C. Principe, “On-line entropy manipu-
lation: Stochastic information gradient,” IEEE Signal Process. Lett., vol.
10, no. 8, pp. 242–245, Aug. 2003.

[22] R. A. Morejon, “An information-theoretic approach to sonar automatic
target recognition,” Ph.D. dissertation, Dept. Elect. Comp. Eng., Univ.
Florida, Gainesville, 2003.

[23] K. E. Hild II, D. Erdogmus, K. Torkkola, and J. C. Principe, “Sequential
feature extraction using information-theoretic learning,” IEEE Trans.
Pattern Anal. Mach. Intell., submitted for publication.

[24] S. Douglas and X. Sun, “Blind separation of acoustical mixtures without
time-domain deconvolution or decorrelation,” Proc. Neural Networks
for Signal Processing, pp. 323–332, Sep. 2001.

[25] E. Bingham and A. Hyvarinen, “A fast fixed-point algorithm for inde-
pendent component analysis of complex valued signals,” Int. J. Neural
Syst., vol. 10, no. 1, pp. 1–8, Feb. 2000.

[26] S. Van Gerven and D. Van Compernolle, “Signal separation by
symmetric adaptive decorrelation: Stability, convergence, and unique-
ness,” IEEE Trans. Signal Process., vol. 43, no. 7, pp. 1602–1612,
Jul. 1995.

[27] J. F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian
signals,” in Proc. IEE-Radar, Signal Process., vol. 140, Dec. 1993, pp.
362–370.

[28] F. Ehlers and H. Schuster, “Blind separation of convolutive mixtures and
an application in automatic speech recognition in a noisy environment,”
IEEE Trans. Signal Process., vol. 45, no. 10, pp. 2608–2612, Oct. 1997.

[29] U. Lindgren and H. Broman, “Source separation using a criterion based
on second-order statistics,” IEEE Trans. Signal Process., vol. 46, no. 7,
pp. 1837–1850, Jul. 1998.

[30] H. Sahlin and H. Broman, “Separation of real-world signals,” Signal
Process., vol. 64, no. 1, pp. 103–113, Jan. 1998.

[31] C. Fancourt and L. Parra, “The coherence function in blind source sep-
aration of convolutive mixtures of nonstationary signals,” Proc. Neural
Networks for Signal Processing, pp. 303–312, Sep. 2001.

[32] E. Weinstein, M. Feder, and A. Oppenheim, “Multi-channel signal sepa-
ration by decorrelation,” IEEE Trans. Speech Audio Process., vol. 1, no.
4, pp. 405–413, Oct. 1993.

[33] R. Aichner, S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, “Time
domain blind source separation of nonstationary convolved signals by
utilizing geometric beamforming,” in Proc. Neural Networks for Signal
Processing, Martigny, Switzerland, Sep. 2002, pp. 445–454.

[34] B. Krongold and D. Jones, “Blind source separation of nonstationary
convolutively mixed signals,” in Proc. IEEE Workshop Statistical Signal
Array Processing, Pocono Manor, PA, Aug. 2000, pp. 53–57.

[35] M. Kawamoto, A. Barros, A. Mansour, K. Matsuoka, and N. Ohnishi,
“Real world blind separation of convolved nonstationary signals,” in
Proc. Int. Workshop ICA Signal Separation, Jan. 1999, pp. 347–352.

[36] M. Kawamoto, K. Matsuoka, and N. Ohnishi, “Real world blind sep-
aration of convolved speech signals,” in Proc. Int. Joint Conf. Neural
Networks, vol. 2, Washington, DC, Jul. 1999, pp. 993–997.

[37] H. Wu and J. Principe, “A unifying criterion for blind source separa-
tion and decorrelation: Simultaneous diagonalization of correlation ma-
trices,” in Proc. Neural Networks for Signal Processing, Sep. 1997, pp.
496–505.

[38] L. Parra and C. Spence, “On-line convolutive blind source separation of
nonstationary signals,” J. VLSI Signal Process. Syst. Signal Image Video
Technol., vol. 26, no. 1/2, pp. 39–46, Aug. 2000.

[39] H. Bousbia-Salah, A. Belouchrani, and K. Abed-Meriam, “Jacobi-like
algorithm for blind signal separation of convolutive mixtures,” Electron.
Lett., vol. 37, no. 16, pp. 1049–1050, Aug. 2001.

[40] , “Blind separation of convolutive mixtures using joint block diago-
nalization,” in Proc. Int. Symp. Signal Process. Applications, Aug. 2001,
pp. 13–16.

[41] H. Buchner, R. Aichner, and W. Kellermann, “A generalization of blind
source separation algorithms for convolutive mixtures based on second-
order statistics,” IEEE Trans. Speech Audio Process., vol. 13, no. 1, pp.
120–134, Jan. 2005.

[42] X. Sun and S. Douglas, “Adaptive paraunitary filter banks for contrast-
based multichannel blind deconvolution,” in Proc. Int. Conf. Acoustics,
Speech, Signal Processing, vol. 5, May 2001, pp. 2753–2756.

[43] N. Charkani and Y. Deville, “Self-adaptive separation of convolutively
mixed signals with a recursive structure. Part I: Stability analysis and
optimization of asymptotic behavior,” Signal Process., vol. 73, no. 3,
pp. 225–254, Jan. 1999.

[44] M. Stanacevic, M. Cohen, and G. Cauwenberghs, “Blind separation of
linear convolutive mixtures using orthogonal filter banks,” in Proc. Int.
Workshop ICA Signal Separation, Dec. 2001, pp. 260–265.

[45] L. De Lathauwer, B. De Moor, and J. Vandewalle, “An algebraic ap-
proach to blind MIMO identification,” in Proc. Int. Workshop ICA Signal
Separation, Jun. 2000, pp. 211–214.

[46] P. Comon, E. Moreau, and L. Rota, “Blind separation of convolutive
mixtures, a contrast-based joint diagonlization approach,” in Proc. Int.
Workshop ICA Signal Separation, Dec. 2001, pp. 686–691.

[47] M. Kawamoto, Y. Inouye, A. Mansour, and R.-W. Liu, “Blind deconvo-
lution algorithms for MIMO FIR systems driven by fourth-order colored
signals,” in Proc. Int. Workshop ICA Signal Separation, Dec. 2001, pp.
692–697.

[48] D. Yellin and E. Weinstein, “Criteria for multichannel signal separation,”
IEEE Trans. Signal Process., vol. 42, no. 8, pp. 2158–2167, Aug. 1994.

[49] R. Liu and Y. Inouye, “Blind equalization of MIMO-FIR channels driven
by white but higher order colored source signals,” IEEE Trans. Inform.
Theory, vol. 48, no. 5, pp. 1206–1214, May 2002.

[50] I. Fijalkow and P. Gaussier, “Self-organizing blind MIMO deconvolution
using lateral-inhibition,” in Proc. Int. Workshop ICA Signal Separation,
Aussois, Jan. 1999, pp. 221–226.

[51] C. Simon, P. Loubaton, C. Vignat, C. Jutten, and G. d’Urso, “Blind
source separation of convolutive mixtures by maximization of fourth-
order cumulants: The non-IID case,” in Proc. Asilomar Conf. Sig-
nals Systems Computers, vol. 2, Pacific Grove, CA, Nov. 1998, pp.
1584–1588.

[52] Y. Inouye and K. Tanebe, “Super-exponential algorithms for multi-
channel blind deconvolution,” IEEE Trans. Signal Process., vol. 48, no.
3, pp. 881–888, Mar. 2000.

[53] J. Tugnait, “On blind separation of convolutive mixtures of independent
linear signals in unknown additive noise,” IEEE Trans. Signal Process.,
vol. 46, no. 11, pp. 3117–3123, Nov. 1998.

[54] E. Moreau and J. Pesquet, “Generalized contrasts for multichannel blind
deconvolution of linear systems,” IEEE Signal Process. Lett., vol. 4, no.
6, Jun. 1997.

[55] A. Touzni, I. Fijalkow, M. Larimore, and J. Treichler, “A globally con-
vergent approach for blind MIMO adaptive deconvolution,” IEEE Trans.
Signal Process., vol. 49, no. 6, pp. 1166–1178, Jun. 2001.

[56] J. Tugnait, “Adaptive blind separation of convolutive mixtures of inde-
pendent linear signals,” in Int. Conf. Acoust., Speech, Signal Process.,
vol. 4, Seattle, WA, May 1998, pp. 2097–2100.

[57] P. Comon, “Contrasts for multichannel blind deconvolution,” IEEE
Signal Process. Lett., vol. 3, no. 7, pp. 209–211, Jul. 1996.

[58] H. Attias and C. E. Schreiner, “Blind source separation and deconvolu-
tion: The dynamic component analysis algorithm,” Neur. Comput., vol.
10, no. 6, pp. 1373–1424, Aug. 1998.

[59] M. Ohata and K. Matsuoka, “Stability analyzes of information-theoretic
blind separation algorithms in the case where the sources are nonlinear
processes,” IEEE Trans. Signal Process., vol. 50, no. 1, pp. 69–77, Jan.
2002.



HILD et al.: CONVOLUTIVE BSS 2195

[60] B. Pearlmutter and L. Parra, “Maximum likelihood blind source sepa-
ration: A context-sensitive generalization of ICA,” Adv. Neur. Inform.
Process. Syst., pp. 613–619, Dec. 1996.

[61] X. Sun and S. Douglas, “A natural gradient convolutive blind source
separation algorithm for speech mixtures,” in Proc. Int. Workshop ICA
Signal Separation, Dec. 2001, pp. 59–64.

[62] D. Pham, “Mutual information approach to blind separation of sta-
tionary sources,” in Proc. Int. Workshop ICA Signal Separation,
Aussois, France, Jan. 1999, pp. 215–220.

[63] H. Attias and C. Schreiner, “Blind source separation and deconvolution
by dynamic component analysis,” in Proc. Neural Networks for Signal
Processing, Amelia Island, FL, Sep. 1997, pp. 456–465.

[64] J. Reilly and L. Mendoza, “Blind signal separation for convolutive
mixing environments using spatial-temporal processing,” in Proc. Int.
Conf. Acoustics, Speech, Signal Processing, vol. 3, Mar. 1999, pp.
1437–1440.

[65] I. Sabala, A. Cichoki, and S. Amari, “Relationships between instanta-
neous blind source separation and multichannel blind deconvolution,”
in Proc. Int. Joint Conf. Neural Networks, vol. 1, Anchorage, AK, May
1998, pp. 39–44.

[66] S. Amari, S. Douglas, A. Cichocki, and H. Yang, “Multichannel blind
deconvolution and equalization using the natural gradient,” in Proc.
Workshop Signal Processing Advances in Wireless Communication,
Apr. 1997, pp. 101–104.

[67] L. Zhang, A. Cichocki, and S. Amari, “Multichannel blind deconvo-
lution of nonminimum phase systems using information backpropaga-
tion,” in Proc. Int. Conf. Neural Information Processing, vol. 1, Nov.
1999, pp. 210–216.

[68] L. Parra, C. Spence, and B. De Vries, “Convolutive blind source sep-
aration based on multiple decorrelation,” in Proc. Neural Networks for
Signal Processing, Cambridge, MA, Aug. 1998, pp. 23–32.

[69] J. Principe and H. Wu, “Blind separation of convolutive mixtures,” in
Proc. Int. Joint Conf. Neural Networks, vol. 2, Washington, DC, Jul.
1999, pp. 1054–1058.

[70] H. Wu and J. Principe, “Simultaneous diagonalization in the frequency
domain (SDIF) for source separation,” in Proc. Int. Work. ICA Signal
Separation, Aussois, France, Jan. 1999, pp. 245–250.

[71] M. Ikram and D. Morgan, “A multiresolution approach to blind
separation of speech signals in a reverberant environment,” in Proc.
Int. Conf. Acoustics, Speech, Signal Processing, vol. 5, May 2001,
pp. 2757–2760.

[72] T. Lee and R. Orglmeister, “A contextual blind separation of
delayed and convolved sources,” in Proc. Int. Conf. Acoustics,
Speech, Signal Processing, vol. 2, Munich, Germany, Apr. 1997,
pp. 1199–1202.

[73] H. N. Thi and C. Jutten, “Blind separation for convolutive mixtures,”
Signal Process., vol. 45, no. 2, pp. 209–229, Aug. 1995.

[74] J. Platt and F. Faggin, “Networks for the separation of sources that
are superimposed and delayed,” Adv. Neur. Inform. Process. Syst., pp.
730–737, Dec. 1991.

[75] N. Charkani, Y. Deville, and J. Herault, “Stability analysis and optimiza-
tion of time-domain convolutive source separation algorithms,” in Proc.
Workshop Signal Processing Advanced Wireless Communication, Apr.
1997, pp. 73–76.

[76] N. Charkani and Y. Deville, “A convolutive source separation method
with self-optimizing nonlinearities,” in Proc. Int. Conf. Acoustics,
Speech, Signal Processing, vol. 5, Mar. 1999, pp. 2909–2912.

[77] , “Self-adaptive separation of convolutively mixed signals with a re-
cursive structure. Part II: Theoretical extensions and application to syn-
thetic and real signals,” Signal Process., vol. 75, no. 2, pp. 117–140, Jun.
1999.

[78] M. Girolami, “Symmetric adaptive maximum likelihood estimation for
noise cancellation and signal separation,” Electron. Lett., vol. 33, no. 17,
pp. 1437–1438, Aug. 14, 1997.

[79] N. Kanlis, J. Simon, and S. Shamma, “Complete training analysis of
feedback architecture networks that perform blind source separation
and deconvolution,” in Proc. Int. Workshop ICA Signal Separation, Jun.
2000, pp. 139–144.

[80] K. Torkkola, “Blind separation of delayed sources based on information
maximization,” in Proc. Int. Conf. Acoustics, Speech, Signal Processing,
vol. 6, Atlanta, GA, May 1996, pp. 3509–3512.

[81] T. Lee, A. Bell, and R. Lambert, “Blind separation of delayed and con-
volved sources,” Adv. Neur. Inform. Process. Syst., pp. 758–764, Dec.
1996.

[82] K. Rahbar and J. Reilly, “Blind source separation algorithm for MIMO
convolutive mixtures,” in Proc. Int. Workshop ICA Signal Separation,
Dec. 2001, pp. 242–247.

[83] M. Handa, T. Nagaim, and A. Kurematsu, “Frequency domain
multi-channel speech separation and its applications,” in Proc. Int.
Conf. Acoustics, Speech, Signal Processing, vol. 5, May 2001, pp.
2761–2764.

[84] L. Parra and C. Alvino, “Geometric source separation: Merging con-
volutive source separation with geometric beamforming,” IEEE Trans.
Speech Audio Process., vol. 10, no. 6, pp. 352–362, Sep. 2002.

[85] K. Rahbar and J. Reilly, “Blind source separation of convolved sources
by joint approximate diagonalization of cross-spectral density matrices,”
in Proc. Int. Conf. Acoustics, Speech, Signal Processing, vol. 5, Salt Lake
City, UT, May 2001, pp. 2745–2748.

[86] A. Koutras, E. Dermatas, and G. Kokkinakis, “Continuous speech recog-
nition in a multi-simultaneous-speaker environment using decorrelation
filtering in the frequency domain,” in Proc. Int. Workshop Speech Com-
puters, St. Petersburg, Russia, Oct. 1998, pp. 253–256.

[87] , “Blind signal separation and speech recognition in the frequency
domain,” in Proc. IEEE Int. Conf. Electronics Circuits Systems, vol. 1,
Sep. 1999, pp. 427–430.

[88] J. Anamuler and B. Kollmeier, “Amplitude modulation decorrelation for
convolutive blind source separation,” in Proc. Int. Workshop ICA Signal
Separation, Jun. 2000, pp. 215–220.

[89] M. Kawamoto, A. Barros, K. Matsuoka, and N. Ohnishi, “A method
of real-world separation implemented in frequency domain,” Proc. Int.
Workshop ICA Signal Separation, pp. 267–272, Jun. 2000.

[90] C. Mejuto, “A second-order method for blind source separation of con-
volutive mixtures,” in Proc. Int. Workshop ICA Signal Separation, Aus-
sois, France, Jan. 1999, pp. 395–400.

[91] W. Wang, S. Sanei, and J. A. Chambers, “Penalty function-based joint di-
agonalization approach for convolutive blind separation of nonstationary
sources,” IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1654–1669,
May 2005.

[92] W. Baumann, B. Kohler, D. Kolossa, and R. Orglmeister, “Real time
separation of convolutive mixtures,” in Proc. Int. Workshop ICA Signal
Separation, San Diego, CA, Dec. 2001, pp. 65–69.

[93] A. Dapena and C. Serviere, “A simplified frequency-domain approach
for blind separation of convolutive mixtures,” in Proc. Int. Workshop ICA
Signal Separation, San Diego, CA, Dec. 2001, pp. 569–574.

[94] D. Yellin and E. Weinstein, “Multichannel signal separation: Methods
and analysis,” IEEE Trans. Signal Process., vol. 44, no. 1, pp. 106–118,
Jan. 1996.

[95] J. Pesquet, B. Chen, and A. Petropulu, “Frequency-domain contrast
functions for separation of convolutive mixtures,” in Proc. Int. Conf.
Acoustics, Speech, Signal Processing, vol. 5, May 2001, pp. 2765–2768.

[96] A. Dapena, M. Bugallo, and L. Castedo, “Separation of convolutive mix-
tures of temporally-white signals: A novel frequency-domain approach,”
in Proc. Int. Workshop ICA Signal Separation, Dec. 2001, pp. 179–184.

[97] N. Mitianoudis and M. Davies, “New fixed-point algorithms for con-
volved mixtures,” Proc. Int. Workshop ICA Signal Separation, pp.
633–638, Dec. 2001.

[98] C. Serviere, “Blind source separation of convolutive mixtures,” in Proc.
IEEE Workshop Statistical Signal and Array Processing, Corfu, Greece,
Jun. 1996, pp. 316–319.

[99] R. Lambert and A. Bell, “Blind separation of multiple speakers in a mul-
tipath environment,” in Proc. Int. Conf. Acoustics, Speech, Signal Pro-
cessing, vol. 1, Munich, Germany, Apr. 1997, pp. 423–426.

[100] F. Asano, S. Ikeda, M. Ogawa, H. Asoh, and N. Kitawaki, “A com-
bined approach of array processing and independent component analysis
for blind separation of acoustic signals,” in Proc. Int. Conf. Acoustics,
Speech, Signal Processing, vol. 5, Salt Lake City, UT, May 2001, pp.
2729–2732.

[101] T. Lee, A. Bell, and R. Orglmeister, “Blind source separation of real
world signals,” in Proc. Int. Conf. Neural Networks, vol. 4, Houston,
TX, Jun. 1997, pp. 2129–2134.

[102] P. Smaragdis, “Efficient blind separation of convolved sound mixtures,”
in Proc. IEEE ASSP Workshop Applications of Signal Processing Audio
and Acoustics, New Paltz, NY, Oct. 1997, pp. 19–22.

[103] M. Joho, H. Mathis, and G. Moschytz, “An FFT-based algorithm for
multichannel blind deconvolution,” in Proc. IEEE Int. Symp. Circuits
Systems, vol. 3, Orlando, FL, Jul. 1999, pp. 203–206.

[104] C. Mejuto, A. Dapena, and L. Castedo, “Frequency-domain infomax for
blind separation of convolutive mixtures,” in Proc. Int. Workshop ICA
Signal Separation, Jun. 2000, pp. 315–320.

[105] P. Smaragdis, “Blind separation of convolved mixtures in the frequency
domain,” Neurocomp., vol. 22, no. 1–3, pp. 21–34, Nov. 1998.

[106] N. Mitianoudis and M. E. Davies, “Audio source separation of convo-
lutive mixtures,” IEEE Trans. Speech Audio Process., vol. 11, no. 5, pp.
489–497, Sep. 2003.



2196 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 10, OCTOBER 2005

[107] A. Mansour, C. Jutten, and P. Loubaton, “Adaptive subspace algorithm
for blind separation of independent sources in convolutive mixture,”
IEEE Trans. Signal Process., vol. 48, no. 2, pp. 583–586, Feb. 2000.

[108] W. Hachem, F. Desbouvries, and P. Loubaton, “On the identification
of certain noisy FIR convolutive mixtures,” in Proc. Int. Workshop ICA
Signal Separation, Jan. 1999, pp. 401–405.

[109] E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, “Subspace
methods for the blind identification for multichannel FIR filters,” IEEE
Trans. Signal Process., vol. 43, no. 2, pp. 516–525, Feb. 1995.

[110] K. Abed-Meriam, Y. Hua, Ph. Loubaton, and E. Moulines, “Subspace
method for blind identification of multichannel FIR systems in noise
field with unknown spatial covariance,” IEEE Signal Process. Lett., vol.
4, no. 5, pp. 135–137, May 1997.

[111] C. Simon, G. d’Urso, C. Vignat, P. Loubaton, and C. Jutten, “On the
convolutive mixture source separation by the decorrelation approach,”
in Proc. Int. Conf. Acoustics, Speech, Signal Processing, vol. 4, Seattle,
WA, May 1998, pp. 2109–2112.

[112] N. Delfosse and P. Loubaton, “Adaptive blind separation of convolutive
mixtures,” in Proc. Int. Conf. Acoustics, Speech, Signal Processing, vol.
5, Atlanta, GA, May 1996, pp. 2940–2943.

[113] , “Adaptive blind separation of convolutive mixtures,” in Proc.
Asilomar Conf. Signals, Systems, Computers, vol. 1, Pacific Grove, CA,
Oct. 1995, pp. 341–345.

[114] S. Icart and R. Gautier, “Blind separation of convolutive mixtures using
2nd and 4th order moments,” in Proc. Int. Conf. Acoustics, Speech,
Signal Processing, vol. 5, Atlanta, GA, May 1996, pp. 3018–3021.

Kenneth E. Hild, II (M’90) received the B.S.E.E.
and M.S.E.E. degrees from The University of Okla-
homa, Norman, with emphasis on signal processing
and communications, and the Ph.D. degree in elec-
trical engineering from The University of Florida,
Gainesville.in 1992, 1996, and 2003, respectively.

He then worked at Seagate Technologies, where
he served as an Advisory Development Engineer in
the Advanced Concepts Group. He taught several
classes on adaptive filter theory and stochastic
processes and studied information theoretic learning

and blind source separation in the Computational NeuroEngineering Lab-
oratory, The University of Florida. He is currently with the Biomagnetic
Imaging Laboratory, Department of Radiology, The University of California
at San Francisco, where he is applying Variational Bayesian techniques for
biomedical signal processing of electroencephalographic (EEG), magnetoen-
cephalographic (MEG), and magnetocardiographic (MKG) data. He has also
studied Biomedical Informatics at Stanford University, Palo Alto.

Dr. Hild is a member of Tau Beta Pi and Eta Kappa Nu, and the International
Society for Brain Electromagnetic Topography..

David Pinto (M’02) received the M.S.E.E., B.S.E.E.,
and C.E.E.E. degrees from the University of Florida,
Gainesville, all in 2003.

His scholastic emphasis was placed on digital
signal processing, controls, adaptive and neural
systems, pattern recognition, information theoretic
algorithms, and computer information sciences. He
has been with Sandia National Labs, Albuquerque,
NM, since 2004 where he focuses on sensor net-
works and software architecture.

Deniz Erdogmus (M’02) received the B.S. degree
in electrical and electronics engineering and mathe-
matics in 1997 and the M.S. degree in electrical and
electronics engineering, with emphasis on systems
and control, in 1999, both from the Middle East
Technical University, Ankara, Turkey. He received
the Ph.D. degree in electrical and computer engi-
neering from the University of Florida, Gainesville,
in 2002.

He was a Research Engineer with the Defense
Industries Research and Development Institute

(SAGE), Ankara, from 1997 to 1999. From 1999 until 2004, he was with the
Computational NeuroEngineering Laboratory, University of Florida, under the
supervision of Dr. J. C. Principe, the last two years of which he was a Postdoc-
toral Fellow. He is currently an Assistant Professor with a joint appointment
in the Department of Computer Science and Engineering and the Department
of Biomedical Engineering, Oregon Health & Science University, Beaverton.
His current research interests include information theory and its applications to
adaptive systems and adaptive systems for signal processing, communications,
and control.

Dr. Erdogmus is a member of Tau Beta Pi and Eta Kappa Nu.

Jose C. Principe (M’83–SM’90–F’00) received
the Licenciatura in electrical engineering from the
University of Porto, Portugal, in 1972, the M.Sc.
and Ph.D. degrees in electrical engineering from
the University of Florida, Gainesville, in 1974, and
1979, respectively, and the Agregado degree from
the University of Aveiro, Portugal in 1985.

He is Distinguished Professor of Electrical and
Biomedical Engineering with the University of
Florida, Gainesville, where he teaches advanced
signal processing and artificial neural networks

(ANNs) modeling. He is BellSouth Professor and Founder and Director of the
University of Florida Computational NeuroEngineering Laboratory (CNEL).
He has been involved in biomedical signal processing, brain machine inter-
faces, nonlinear dynamics, and adaptive systems theory (information theoretic
learning). He has more than 100 publications in refereed journals, 10 book
chapters, and over 200 conference papers. He has directed 42 Ph.D. degree
dissertations and 57 Master’s degree theses.

Dr. Principe is Editor-in-Chief of the IEEE TRANSACTIONS ON BIOMEDICAL

ENGINEERING, President of the International Neural Network Society, and
formal Secretary of the Technical Committee on Neural Networks of the IEEE
Signal Processing Society. He is also a member of the Scientific Board of the
Food and Drug Administration, and a member of the Advisory Board of the
University of Florida Brain Institute.


	toc
	Convolutive Blind Source Separation by Minimizing Mutual Informa
	Kenneth E. Hild, II, Member, IEEE, David Pinto, Member, IEEE, De
	I. I NTRODUCTION
	II. P UBLISHED T ECHNIQUES

	Fig.€1. Method for categorizing convolutive BSS systems.
	TABLE I C ATEGORIZATION OF C ONVOLUTIVE BSS S YSTEMS
	III. P ROPOSED C RITERION
	IV. P ERFORMANCE

	TABLE II R EPRESENTATIVE S ET OF C ONVOLUTIVE S OURCE S EPARATIO
	Fig.€2. SIR as a function of $L_h$ where $L_w = L_h$ .
	Fig.€3. SIR as a function of $L_w$ for $L_h = 25$ .
	Fig.€4. SIR as a function of $L$ .
	Fig.€5. SIR as a function of SNR.
	V. C ONCLUSION
	S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, Fundamenta
	M. Knaak, S. Araki, and S. Makino, Geometrically constraint ICA 
	M. Gaeta, F. Briolle, and P. Esparcieux, Blind separation of sou
	Z. Xinhua, Z. Anqing, F. Jianping, and Y. Shaoqing, Study on bli
	E. S. Warner and I. K. Proudler, Single-channel blind signal sep
	C. Andrieu, A. Doucet, and S. Godsill, Bayesian blind marginal s
	G. Leus, P. Vandaele, and M. Moonen, Deterministic blind modulat
	S. Haykin, Adaptive Filter Theory, 4th ed. Englewood Cliffs, NJ:
	T. Oliveira e Silva, On the equivalence between gamma and laguer
	J. C. Principe, N. R. Euliano, and W. C. Lefabvre, Neural and Ad
	L. Parra and C. Spence, Convolutive blind separation of nonstati
	K. E. Hild II, Blind separation of convolutive mixtures using Re
	K. Torkkola, Blind separation of convolved sources based on info
	K. E. Hild II, D. Erdogmus, and J. C. Principe, Blind source sep
	D. Pham, Mutual information approach to blind separation of stat
	T. M. Cover and J. A. Thomas, Elements of Information Theory . N
	A. Rényi, Probability Theory . Amsterdam, The Netherlands: North
	D. Erdogmus, K. Hild II, and J. C. Principe, Blind source separa
	J. Principe, D. Xu, and J. Fisher, Information theoretic learnin
	E. Parzen, On estimation of a probability density function and m
	D. Erdogmus, K. E. Hild II, and J. C. Principe, On-line entropy 
	R. A. Morejon, An information-theoretic approach to sonar automa
	K. E. Hild II, D. Erdogmus, K. Torkkola, and J. C. Principe, Seq
	S. Douglas and X. Sun, Blind separation of acoustical mixtures w
	E. Bingham and A. Hyvarinen, A fast fixed-point algorithm for in
	S. Van Gerven and D. Van Compernolle, Signal separation by symme
	J. F. Cardoso and A. Souloumiac, Blind beamforming for non-Gauss
	F. Ehlers and H. Schuster, Blind separation of convolutive mixtu
	U. Lindgren and H. Broman, Source separation using a criterion b
	H. Sahlin and H. Broman, Separation of real-world signals, Signa
	C. Fancourt and L. Parra, The coherence function in blind source
	E. Weinstein, M. Feder, and A. Oppenheim, Multi-channel signal s
	R. Aichner, S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari
	B. Krongold and D. Jones, Blind source separation of nonstationa
	M. Kawamoto, A. Barros, A. Mansour, K. Matsuoka, and N. Ohnishi,
	M. Kawamoto, K. Matsuoka, and N. Ohnishi, Real world blind separ
	H. Wu and J. Principe, A unifying criterion for blind source sep
	L. Parra and C. Spence, On-line convolutive blind source separat
	H. Bousbia-Salah, A. Belouchrani, and K. Abed-Meriam, Jacobi-lik
	H. Buchner, R. Aichner, and W. Kellermann, A generalization of b
	X. Sun and S. Douglas, Adaptive paraunitary filter banks for con
	N. Charkani and Y. Deville, Self-adaptive separation of convolut
	M. Stanacevic, M. Cohen, and G. Cauwenberghs, Blind separation o
	L. De Lathauwer, B. De Moor, and J. Vandewalle, An algebraic app
	P. Comon, E. Moreau, and L. Rota, Blind separation of convolutiv
	M. Kawamoto, Y. Inouye, A. Mansour, and R.-W. Liu, Blind deconvo
	D. Yellin and E. Weinstein, Criteria for multichannel signal sep
	R. Liu and Y. Inouye, Blind equalization of MIMO-FIR channels dr
	I. Fijalkow and P. Gaussier, Self-organizing blind MIMO deconvol
	C. Simon, P. Loubaton, C. Vignat, C. Jutten, and G. d'Urso, Blin
	Y. Inouye and K. Tanebe, Super-exponential algorithms for multic
	J. Tugnait, On blind separation of convolutive mixtures of indep
	E. Moreau and J. Pesquet, Generalized contrasts for multichannel
	A. Touzni, I. Fijalkow, M. Larimore, and J. Treichler, A globall
	J. Tugnait, Adaptive blind separation of convolutive mixtures of
	P. Comon, Contrasts for multichannel blind deconvolution, IEEE S
	H. Attias and C. E. Schreiner, Blind source separation and decon
	M. Ohata and K. Matsuoka, Stability analyzes of information-theo
	B. Pearlmutter and L. Parra, Maximum likelihood blind source sep
	X. Sun and S. Douglas, A natural gradient convolutive blind sour
	D. Pham, Mutual information approach to blind separation of stat
	H. Attias and C. Schreiner, Blind source separation and deconvol
	J. Reilly and L. Mendoza, Blind signal separation for convolutiv
	I. Sabala, A. Cichoki, and S. Amari, Relationships between insta
	S. Amari, S. Douglas, A. Cichocki, and H. Yang, Multichannel bli
	L. Zhang, A. Cichocki, and S. Amari, Multichannel blind deconvol
	L. Parra, C. Spence, and B. De Vries, Convolutive blind source s
	J. Principe and H. Wu, Blind separation of convolutive mixtures,
	H. Wu and J. Principe, Simultaneous diagonalization in the frequ
	M. Ikram and D. Morgan, A multiresolution approach to blind sepa
	T. Lee and R. Orglmeister, A contextual blind separation of dela
	H. N. Thi and C. Jutten, Blind separation for convolutive mixtur
	J. Platt and F. Faggin, Networks for the separation of sources t
	N. Charkani, Y. Deville, and J. Herault, Stability analysis and 
	N. Charkani and Y. Deville, A convolutive source separation meth
	M. Girolami, Symmetric adaptive maximum likelihood estimation fo
	N. Kanlis, J. Simon, and S. Shamma, Complete training analysis o
	K. Torkkola, Blind separation of delayed sources based on inform
	T. Lee, A. Bell, and R. Lambert, Blind separation of delayed and
	K. Rahbar and J. Reilly, Blind source separation algorithm for M
	M. Handa, T. Nagaim, and A. Kurematsu, Frequency domain multi-ch
	L. Parra and C. Alvino, Geometric source separation: Merging con
	K. Rahbar and J. Reilly, Blind source separation of convolved so
	A. Koutras, E. Dermatas, and G. Kokkinakis, Continuous speech re
	J. Anamuler and B. Kollmeier, Amplitude modulation decorrelation
	M. Kawamoto, A. Barros, K. Matsuoka, and N. Ohnishi, A method of
	C. Mejuto, A second-order method for blind source separation of 
	W. Wang, S. Sanei, and J. A. Chambers, Penalty function-based jo
	W. Baumann, B. Kohler, D. Kolossa, and R. Orglmeister, Real time
	A. Dapena and C. Serviere, A simplified frequency-domain approac
	D. Yellin and E. Weinstein, Multichannel signal separation: Meth
	J. Pesquet, B. Chen, and A. Petropulu, Frequency-domain contrast
	A. Dapena, M. Bugallo, and L. Castedo, Separation of convolutive
	N. Mitianoudis and M. Davies, New fixed-point algorithms for con
	C. Serviere, Blind source separation of convolutive mixtures, in
	R. Lambert and A. Bell, Blind separation of multiple speakers in
	F. Asano, S. Ikeda, M. Ogawa, H. Asoh, and N. Kitawaki, A combin
	T. Lee, A. Bell, and R. Orglmeister, Blind source separation of 
	P. Smaragdis, Efficient blind separation of convolved sound mixt
	M. Joho, H. Mathis, and G. Moschytz, An FFT-based algorithm for 
	C. Mejuto, A. Dapena, and L. Castedo, Frequency-domain infomax f
	P. Smaragdis, Blind separation of convolved mixtures in the freq
	N. Mitianoudis and M. E. Davies, Audio source separation of conv
	A. Mansour, C. Jutten, and P. Loubaton, Adaptive subspace algori
	W. Hachem, F. Desbouvries, and P. Loubaton, On the identificatio
	E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, Subspa
	K. Abed-Meriam, Y. Hua, Ph. Loubaton, and E. Moulines, Subspace 
	C. Simon, G. d'Urso, C. Vignat, P. Loubaton, and C. Jutten, On t
	N. Delfosse and P. Loubaton, Adaptive blind separation of convol
	S. Icart and R. Gautier, Blind separation of convolutive mixture



