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Abstract

Supervised learning is conventionally performed with pairwise input–output labeled data. After the training procedure, the adaptive

system’s weights are fixed while the testing procedure with unlabeled data is performed. Recently, in an attempt to improve classification

performance unlabeled data has been exploited in the machine learning community. In this paper, we present an information theoretic

learning (ITL) approach based on density divergence minimization to obtain an extended training algorithm using unlabeled data during the

testing. The method uses a boosting-like algorithm with an ITL based cost function. Preliminary simulations suggest that the method has the

potential to improve the performance of classifiers in the application phase.
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1. Introduction

Supervised learning, including system identification,

regression and classification, is performed with input–

output labeled data1 using linear and nonlinear system

topologies and optimal criteria based on statistics of the

error between the desired samples and the system output. In

the classification problem, the purpose of learning is to

extract as much information as possible from the labeled

training data to obtain optimal system weights so that they

generalize to unlabeled data (typically by splitting the data

set into the training and testing sets). Once the system is

trained, there is no further optimization carried out over the

unlabeled data during the actual application (testing) phase2

(Haykin, 1999). This approach is considered natural to all
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since labels are not available for the testing data to further

train the adaptive system. However, there is partial new

information contained in the input test data that is simply

discarded. In particular, if the test data is not drawn

uniformly from the class distributions as frequently happens

in biomedical applications (the inter subject variability is

normally very large with each subject data lying in a

subspace of the within class manifold), seeking ways to

adapt the weights during testing seem reasonable.

Researchers in machine learning have been proposing

learning methods from mixing labeled and unlabeled data

due to the fact that labeled samples are much more

expensive to collect when compared with unlabeled

samples. The challenge is to design classifiers that can

utilize the information present both in the labeled as well

as in the unlabeled data. One method is transductive

inference using support vector machines proposed by

Vapnik et al. (Gammerman, Vapnik, & Vowk, 1998;

Saunders, Gammerman, & Vowk, 1999). Transduction

goes from particular (past) samples to particular (future)

samples without any attempt to generalize. Another

prominent approach is active learning where the learner

can ‘ask’ the expert for a label of a sample in contrast to

normal (passive) machine learning where the learner is

presented with a static set of examples used to construct a

model (Novak, 2004). There are also some other methods

in the literature such as the EM algorithm in a maximum
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likelihood framework (Blum & Mitchell, 1998; Nigram,

McCallum, Thrum, & Mitchell, 2000); Smoother function

approximation of unlabeled data using the representer

theorem in the context of regularization (Belkin, Niyogi,

& Sindhwani, 2004). Recently, Erdogmus et al. and Jeong

et al. introduced an information theoretic framework

based on Kullback–Leibler divergence minimization for

training adaptive systems in supervised learning settings

using both labeled and unlabeled data (Erdogmus, Rao, &

Principe, 2005; Jeong, Xu, & Principe, 2005). This

information theoretic learning framework can exploit the

information of the labeled and unlabeled data to improve

the performance of classifiers in the application phase.

This information theoretic learning framework has the

potential to exploit the information contained in the

labeled and unlabeled data to improve the performance of

classifiers in the application phase by exploiting the

distance between the system outputs during training and

testing. In this paper, we propose the Euclidean distance

based probability density function (pdf) matching algor-

ithm to extend the adaptive system training even after

supervised learning is completed. We use the aggregate

information of the system output from the training data

and the output to unlabeled novel testing data to adjust the

classifier weights. One big advantage of this new

information theoretic approach is the simplicity of

computation. We also elucidate the circumstances under

which our method can improve the performance of

classification. Additionally, we propose a new boosting-

like algorithm to make up for the absence of the a priori

probability knowledge for the test data set. The paper is

organized as follows. First, we give the description of the

problem. Then the Euclidean distance based probability

density function matching algorithm and a new boosting-

like procedure are presented in Section 3. Next, we discuss

the conditions under which our method might improve the

performance of classification. In order to test our

algorithm, we apply our method to the classification

problem with an artificial data set and a real biomedical

data set in Section 5.
2. Problem description

Consider a general function approximation problem.

Suppose we have input–output data {(u1,y1),.,(uN,yN)}

available from an unknown nonlinear function as follow:

d Z f ðuÞCn (1)

The observed output (desired response) d is called the

label of the input signal u and n is additive noise that

translates our imprecise knowledge of the label. In

function approximation, the labels are continuous-valued

while in classification problem, the labels are discrete. The

goal of supervised learning is to construct an adaptive
system with input signal u, output y, and weights w to

approximate the function f or classify the output into

different categories.

y Z gðu;wÞ (2)

The adaptive system could be a linear filter (yZwTu), a

neural network, or any other topology. The process of

supervised learning seeks to optimize the weights to

extract relevant information from input–output sample

pairs for a specific task. The optimization is carried out by

minimization or maximization of an optimality criterion.

Typically the mean square error (MSE) (Haykin, 1999;

Widrow & Stearns, 1985) is used, however, there are also

alternative selections such as minimum error entropy

(Principe, Xu, & Fisher, 2000) or the 2-insensitive loss

function (Cristianini & Taylor, 2000). The error signal is

defined as the difference between the available desired

output and the output produced by the adaptive system for

a particular input (eZdKy). In the training phase, the

adaptive system weights are adjusted to obtain an

approximation to f or classify the input data into different

categories by minimizing the error. In the application

(testing) phase, the weights are fixed and the trained

system is tested on novel unlabeled input data {uNC

1,.,uK}. The probability distributions of the input signal

for the training {u1,.,uN} and for the testing {uNC

1,.,uK} can be the same or different. The following

question is to be answered in this paper: How can we

continue updating the weights of the adaptive system in

the application phase and under what conditions can we

improve performance?
3. Information theoretic learning with unlabeled data

3.1. Euclidean distance-matching algorithm

3.1.1. General idea

Our initial idea was to combine the desired response in

the training with the classifier output to unlabeled input data

in the test set in order to continue adjusting the system

weights (Jeong et al., 2005). When the a priori probability of

each class during the test is the same as for the training, the

system weights during the application phase continue to be

adapted by the Euclidean distance pdf matching algorithm

given by

min
w

Ð
ðfdtrnðxÞK fytstðxÞÞ

2 dx (3)

where fdtrn(x) is the pdf of desired signal during the training

phase, fytst(x) is the pdf of system output signal during the

testing phase and w is the weight vector of the adaptive

system. If the two distributions are close to each other, the

Euclidean distance pdf matching cost function minimizes

the divergence between the training desired signal and

the testing output signal. In other words, we create a desired



K.-H. Jeong et al. / Neural Networks 18 (2005) 719–726 721
signal for the input data during the testing by utilizing the

pdf information of the desired signal encountered during the

training. This is the reason why we must require the same a

priori probabilities between the training and testing. Instead

of setting the matching problem in the input data space

directly, the Euclidean distance pdf matching criterion

utilizes the system output space, which avoids the curse of

dimensionality.

The Euclidean distance pdf matching cost function can

be computed directly from data samples (i.e. nonparame-

trically). This requires a smooth (i.e. continuous and

differentiable) estimator for the two probability density

functions fdtrn(x) and fytst(x). One nonparametric method to

estimate the densities is the Parzen window method (Parzen,

1962). Given N independent and identically distributed (iid)

samples {x1,.,xN}, the pdf can be approximated by

f̂ xðxÞ Z
1

N

XN

iZ1

kðx Kxi;s
2Þ (4)

where k($, s2) is typically a zero-mean Gaussian kernel with

standard deviation s. One of the advantages of Parzen

window with Gaussian kernel is that we can avoid the

integral computation directly, since the integral of the

product of two Gaussian kernels generates another Gaussian

kernel with a different double standard deviation, that is, the

convolution of two Gaussian kernels centered at ai and aj is

a Gaussian centered at aiKaj with covariance equal to the

sum of the original covariance (Principe et al., 2000).

3.1.2. Continuous-valued pdf estimation

A Parzen pdf estimate is in general biased. The bias can

be asymptotically reduced to zero by selecting an unimodal

symmetric kernel function (such as the Gaussian) and

reducing the kernel size monotonically with increasing

number of samples, so that the kernel asymptotically

approaches a Dirac-delta function. In the finite sample

case, the kernel size must be selected according to a trade-

off between estimation bias and variance: decreasing the

kernel size increases the variance, whereas increasing the

kernel size increases the bias. Therefore, selection of

optimal kernel size is one of the important steps in the

Parzen windowing method. In the classification problem of

(3), the desired signal is the discrete-valued label, such as

C1 and K1. The labels essentially just contain the

information about the a priori probability of each class,

and no pdf shape information. Therefore, the methodology

of (3) is too much dependent upon the assumption of a priori

probability and does not exploit the shape information of the

pdfs during training and testing.

In this paper we propose an alternate criterion that uses

the output of the classifier instead of the desired response

because it contains much more information for pdf matching

than the discrete value labels. The cost function becomes

min
w

Ð
ðfytrnðxÞK fytstðxÞÞ

2 dx (5)
where fytrn(x) is the pdf of system output during the training

phase, fytst(x) is the pdf of the system output signal during

the testing phase and w is the weight vector of the adaptive

system. The system output is still low dimensional and

preserves better the information of the training data set.
3.1.3. Algorithm details

Next, we derive a gradient descent algorithm for the cost

function in (5). For convenience, we derive the algorithm in

one dimension, but this can be easily extended to

multidimensional cases.

JðwÞ Z
Ð
ðf̂ ytrnðx; yÞK f̂ ytstðx; yÞÞ

2 dx

Z
Ð

f̂
2
ytrnðx; yÞ dx K2

Ð
f̂ ytrnðx; yÞf̂ ytstðx; yÞ dx

C
Ð

f̂
2
ytstðx; yÞ dx

Z J0 CJ1ðwÞCJ2ðwÞ (6)

where

J0 Z
1

N2

XN

iZ1

XN

jZ1

kð ~yi K ~yj; 2s2Þ;

J1ðwÞ ZK
2

NM

XN

iZ1

XM

jZ1

kð ~yi KyjðwÞ; 2s2Þ;

J2ðwÞ ZK
1

M2

XN

iZ1

XM

jZ1

kðyiðwÞKyjðwÞ; 2s2Þ

(7)

J0 is not a function of w, ~y is the system output signal

during the training, N is the number of the training samples

and y is the system output during the testing phase with M

samples. Only J1 and J2 are functions of w through yZg(u,

w). In order to adjust the weights in the testing phase, we

take the derivative of J with respect to w to obtain the

gradient descent update

wnew Z wold KhVJðwÞ (8)

where the gradient is evaluated from

VJðwÞ Z VJ1ðwÞCVJ2ðwÞ;

VJ1ðwÞ Z
2

NM

XN

iZ1

XM

jZ1

k0ð ~yi Kyj; 2s2Þ
dyj

dw
;

VJ2ðwÞ Z
1

M2

XM

iZ1

XM

jZ1

k0ðyi Kyj; 2s2Þ
dðyi KyjÞ

dw

(9)

A batch method is used here to compute the weights

update. An online approach is also possible with the

introduction of stochastic information gradient (Erdogmus,

Principe, & Hild, 2003).
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3.2. Boosting-like algorithm

The hypothesis of our Euclidean distance pdf matching

algorithm for the classification application is still based on

the assumption that the a priori probability of the testing class

is unchanged from the training class. However, in practical

applications, we do not know the true mix of classes in the

testing data. Unfortunately, a change of a priori probabilities

between training and testing has in general an important

impact on the decision boundary obtained by the proposed

method. In order to minimize the effect of the a priori

probability, we propose a boosting-like iterative procedure

with the criterion in (5). Similar to the general boosting

algorithm, our method consists of two steps: (1) generate

several decision boundaries with the procedure outlined

above with different random subsets of samples from the

testing data. The test data subsets are matched for the same a

priori probability according to the classifier obtained in the

training set. (2) combine the collection of individual decision

boundaries. We describe our algorithm for the two-

classification problem in Algorithm 1.

Summary of the boosting-like procedure

1 Train the adaptive system with the labeled data

2 After the training phase, bypass all the unlabeled data

through the classifier and count the numbers of each classes

(called pseudo classes), i.e. estimate the a priori probabilities

of pseudo classes based on the decision boundary obtained

from the training data

3 Pick new testing samples randomly so that a priori

probabilities are the same as those for the training data

4 Update the adaptive system weights with our ITL criterion

and generate a new decision boundary

5 Bypass all the unlabeled data through the new classifier and

estimate the a priori probabilities of pseudo classes based on

the decision boundary obtained from previous step

6 Iterate (3) to (5) until there is not much change in the decision

boundary

7 Combine a collection of decision boundaries
Theoretical analysis of the ensemble classifier was

provided by the bias/variance decomposition in (Naftaly,

Intrator, & Horn, 1997). Let F(u) denote the input–output

function realized by the network and FI(u) denote the average

of the input–output function of the expert network over

different initial conditions. Then the following results hold

ED½FðuÞ
2�RED0 ½FIðuÞ

2� (10)

VD0 ðFIðuÞ%VDðFðuÞÞ (11)

where D is the space encompassing the distribution of all data

set and the distribution of all initial conditions and D 0 is the

remnant space. Eq. (10) and (11) imply that the variance is

reduced by ensemble averaging the experts over the initial

conditions, leaving the bias unchanged.

In our proposed iterative boosting-like method, the

classifier is trained on the testing data with different data

subsets, just like the Boosting method.
4. Discussion

Our methodology requires that the a priori probability of

each class remains the same during the training and

application phase, but it allows for slight differences

between the pdf of the training and testing. To examine

further, we employ the Bayesian method to find out under

what conditions performance can be improved. Consider a

classification problem with two classes, C1 and C2 with the a

priori probability P(C1) and P(C1) respectively. The optimal

discriminant function separating the two classes is given by

Pðy Z CijuÞ Z
Pðujy Z CiÞPðy Z CiÞ

PðuÞ
; i Z 1; 2 (12)

Since we use the probability of output data for training as

a pseudo desired signal in the testing phase in order to

continue updating the classifier weights, we have to assume

that priors do not change from the training to the testing set,

i.e. P(Ci; training)ZP(Ci; testing) for iZ1, 2. In the case

that the likelihood functions P(ujyZCi) change from the

training to the testing set, obviously the optimal decision

boundary obtained from the training set will not be the

optimal for the testing set. Under this condition, our

algorithm will adjust the decision boundary to a better

position such that the correct classification probability

increases. In the case that the likelihood functions do not

change from the training to the testing set, then according to

the Bayesian Eq. (12) the optimal decision boundary

obtained from the training phase will remain optimal,

since the value of the a posterior probability remains the

same. Then there is no need to apply our algorithm. We will

illustrate these two cases in the next simulation section.
5. Simulation results

In this section, we will give the simulation results of the

proposed boosting-like algorithm with the Euclidean

distance pdf matching criterion in a simple pattern

classification problem as well as a real biomedical

classification problem. In the simulation, we used the

same simple neural network topology for the training and

testing. The objective of the experiment is to distinguish

(classify) two classes of overlapping two-dimensional

patterns labeled class 1 and class 2. Let C1 and C2 denote

the set of events for which a random vector u belong to

Class 1 and 2, respectively. In the first simulation, we

artificially generated two classes with conditional pdf for

class 1, P(ujC1), being a Gaussian distributed with zero

mean and unit variance; the conditional pdf for class 2,

P(ujC2), has mean vector [2,2] and unit variance respect-

ively. The two classes have equal a priori

probabilities.(P(C1; training)ZP(C2; training)Z0.5)

In order to illustrate the effectiveness of our algorithm,

we simulated with four different cases. In the first case,
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the conditional distributions of the testing pattern 1 and 2

are the same as those of the training patterns and a prior

probabilities of the testing classes are equal to the training,

i.e. P(C1; training)ZP(C2; training)Z0.5. Ideally, the

decision boundary will not change after we apply our

algorithm since the decision boundary is optimal both for

the training and testing data sets. But due to the finite sample

data effects, the likelihood functions will differ slightly for

both simulations and the decision boundary will not be

optimal during the testing. In Fig. 1, the dashed line is the

decision boundary for the training data set and the solid line

is the one after we applied the algorithm for the unlabeled

data set (this assignment will be kept for all other figures).

The figure shows that the decision boundary resulting from

the training data moves slightly in the testing data after we

applied our algorithm. The correct classification probability

increases from 0.915 to 0.927. In this situation, our

algorithm is able to improve generalization by counteracting

overfitting. In the second case, we generated another testing

data set of slightly different likelihood functions compared

with the training data to mimic the normal variability

between experimental conditions. For the testing data class

1 is a gaussian with mean vector [0.2,0.2] and its variance is

1.2, while class 2 is a gaussian with mean vector [2.1,2.1]

and variance is 0.8. P(C1; testing)ZP(C2; testing)Z0.5.

The results are given in Fig. 2 and 3. Fig. 2 plots the decision

boundaries with and without continuous training in the

testing data set. The dashdot line is the boundary at the last

iteration stage of our boosting-like algorithm and the solid

line is the combined decision boundary by averaging a

collection (20) of boundaries obtained during iteration. We

can see that the decision boundary shifts to a new position

where the correct classification probability increases. The

correct classification probability increases from 0.792 to

0.883 and 0.85(combined) by applying our algorithm. The

third testing data shares the same distribution with the
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Fig. 1. Case1: Decision boundaries with and without continuous training in

testing data set in the case P(ujCi; training)ZP(ujCi; testing), P(C1;

testing)ZP(C2; testing)Z0.5 for simulation 1.
training data, only a priori probabilities of each testing class

are different. P(C1; testing)Z0.3 and P(C2; testing)Z0.7.

The result in Fig. 4, based on Bayes theory, the optimal

boundary should slightly move toward class 1 by the a prior

probability ratio. In Fig. 4, our method indeed changes the

decision boundary to balance the effect of the a priori

probability. The correct classification probability is

increased slightly from 0.908 to 0.911. In the case boosting

is not used, the proposed criterion may worsen performance

since the a priori probability hypothesis for our Euclidean

distance pdf matching algorithm is not satisfied. Therefore,

our boosting-like procedure seems to deal with the effect of

different a priori probabilities. The fourth case has a

different distribution and a different a priori probability.

The distribution is the same as the second simulation, but

the a priori is 0.3 for class 1 and 0.7 for class 2. In this case,
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Fig. 3. Case3: Decision boundaries with and without continuous training in

testing data set in the case P(ujCi; training)ZP(ujCi; testing) P(C1;

testing)Z0.3,P(C2; testing)Z0.7 for simulation 1.
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training in testing data set for patient 1 in simulation 2.

K.-H. Jeong et al. / Neural Networks 18 (2005) 719–726724
the correct classification probability is increased from 0.878

to 0.933 and 0.929(combined).

In the second simulation, we apply the proposed our

algorithm to the classification of a biomedical data set.

This data set was obtained from neural recordings in the

surgical treatment of Parkinson’s disease. Spike trains are

collected from thalamic (Thal) and subthalamic nucleus

(STN) cellular activity using deep brain stimulation. The

objective of classification is to distinguish the two classes

Thal and STN. A second order autoregressive(AR) model

is applied to segments of the neural activity as a feature

extractor (Sanchez, Pukala, Principe, Bova, & Okun,

2005). The classifier uses the weights of the AR model.

Since Thal and STN signals are different across patients,

the conditional probability functions for the training and

testing will differ. The simulation results are presented in

Figs. 5–8 with class 1 for STN and class 2 for Thal.
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Fig. 5. Training data set and decision boundary in simulation 2.
Fig. 5 shows the scatter plot of the two classes and the

decision boundary obtained from a perceptron in the

training set comprising the three patients. The total

number of the training set is 12198 samples and the a

priori probabilities of each classes are P(C1; training)Z
0.6002, P(C2; training)Z0.4008. The correct classifi-

cation probability after the conventional training is

0.7537. Then we tested our algorithm in each of the

different patients and the results are given in Figs. 6–8,

respectively. The number of the testing set in each test

patients are 1976, 2148 and 4086 samples respectively.

The a priori probabilities of each testing classes are

P(C1; patient1)Z0.622, P(C2; patient1)Z0.378, P(C1;

patient2)Z0.7072, P(C2; patient2)Z0.2928, P(C1;

patient3)Z0.665, P(C2; patient3)Z0.335, respectively.

Since the individual patient distributions as well as

the a priori probabilities are different from those of

the training set, the performance of the conventional
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Fig. 7. Test patient 2: Decision boundaries with and without continuous

training in testing data set for patient 2 in simulation 2.



Table 1

Comparison of correct classification probabilities

Testing

data

Only

test

Our algorithm

with boosting-like

(combined)

Our algorithm

without boosting-

like

Test patient 1 0.583 0.7646 (0.7758) 0.7844

Test patient 2 0.3073 0.7211 (0.6550) 0.5601

Test patient 3 0.8823 0.8872 (0.9033) 0.8921

An abbreviated version of some portions of this article appeared in (Jeong

et al., 2005), published under the IEEE copyright.
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Fig. 8. Test patient 3: Decision boundaries with and without continuous

training in testing data set for patient 3 in simulation 2.
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classifier in the testing phase is not as good as the

overall training result. Then we apply our algorithm

with and without boosting (20 times, data sub sets of

20, respectively) and the results are shown in Table 1.

From Table 1, we see that the classification perform-

ance can be improved by applying our method either

with boosting-like algorithm or without it in this

biomedical data application. The simulation in the

real biomedical data illustrates the decision boundaries

shift so that the overall correct classification probabil-

ities increase after applying the Euclidean distance pdf

matching algorithm.
6. Conclusions

This paper proposed a new information theoretic

approach for training an adaptive system using unlabeled

data even after supervised learning is completed. This so

called the Euclidean distance pdf matching algorithm

utilizes the information of the training system output and

outputs of the unlabeled input during the testing phase,

which provides a straightforward method to adjust system
weights for better performance. For classification, the

method requires preservation of a priori probability for

each class during both the training and testing, which may

be unrealistic in many applications. The simulations on the

artificial data set and the real biomedical data suggest that

the Euclidean distance pdf matching algorithm can improve

classification performance. For future research, we should

provide a theoretical treatment of the method, and

systematic ways to combine a collection of decision

boundaries and stop criterion for the boosting-like

algorithm.
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