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Abstract—We propose the use of optimized brain–machine inter-
face (BMI) models for interpreting the spatial and temporal neural
activity generated in motor tasks. In this study, a nonlinear dy-
namical neural network is trained to predict the hand position of
primates from neural recordings in a reaching task paradigm. We
first develop a method to reveal the role attributed by the model to
the sampled motor, premotor, and parietal cortices in generating
hand movements. Next, using the trained model weights, we derive
a temporal sensitivity measure to asses how the model utilized the
sampled cortices and neurons in real-time during BMI testing.

Index Terms—Analysis of neural activity, brain–machine inter-
face (BMI), motor systems, nonlinear models, recurrent neural net-
work, spatio-temporal.

I. INTRODUCTION

MANY brain–machine interface (BMI) researchers have
demonstrated the feasibility of using adaptive input–

output models for reconstructing hand trajectories [1]–[8]. All
of the proposed models in the literature demonstrated the ability
to encode and store the fundamental timing relationships be-
tween neural inputs and hand trajectory [9]–[12]. To achieve the
mapping, model parameters (weights) are adjusted to minimize
the difference between the model output and hand movements
using a statistical criterion such as mean-square error.

A natural next step is to analyze how the trained models ex-
tracted the spatio-temporal trends in the neural recordings. By
analyzing the model parameters in a signal-processing context,
we can hypothesize relationships between neurons, cortices,
motor systems, and behavior. This type of analysis exploits
the fact that the trained model embody precise functional rela-
tionships between its inputs (the neurons, cortices), and their
outputs which are a proxy for the observed behavior. Moreover,
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this relationship is not developed from empirical observation
but solely from the data along with the model architecture.

The purpose of this study is to move beyond model perfor-
mance comparisons and develop the analysis tools that may
help quantify neural activity and how it is related to behavior,
even if it is through an arbitrary biologically inspired, but
reproducible, signal processing model. Note that analysis of
neuronal interactions through trained models contrasts with
traditional neuroscience methods involving single or pair wise
neuronal events (peri-event histograms, correlograms, etc.).
The multi-input multi-output (MIMO) methodology proposed
here is prepared to simultaneously study the interactions among
large populations of neurons used in BMI experiments.

However, the success of neural analysis through signal pro-
cessing models depends on the model type, its order, training as-
sumptions and on achieving high accuracy in the mapping from
neural activity to hand kinematics. Preliminary studies com-
paring the reproducibility of this approach through linear and
nonlinear models indicated that the interpretations are consis-
tent despite the choice of model [13].

The choice of model does have impact on the level of tem-
poral detail that can be assigned to the neuronal activity. For
BMI design, we feel that it is critically important to measure
how each sampled cortex and neuron is contributing to the be-
havior at each moment in time. Understanding the dynamics of
neural processing and how it is related to the external world will
help us improve the performance of our BMI models. In this pur-
suit, we first derived sensitivity measures through static linear
models that provided ranked lists of neurons important for the
task [14]. However, this analysis is of limited value because it
offers average neural importance over the training intervals. By
implementing dynamic models with states, such as the recurrent
multilayer perceptron (RMLP), we can derive sensitivity mea-
sures with the time resolution of the input data. In this paradigm,
the use of feedback in the model can be used to relate the pre-
vious samples sensitivity to the current sample. In this study, we
first train the RMLP model to predict the hand trajectory of be-
having primates using various combinations of cortical activity
from the primary motor, premotor, and posterior parietal cor-
tices, which provides information how the model uses the neural
activity of each cortex to predict the behavior. Next, we will de-
velop a temporal sensitivity measure that will relate at each step
of the movement how the model uses the sampled cortices and
neurons to track behavior.
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Fig. 1. Fully connected, state RMLP.

II. METHODOLOGY

A. Model Topology

The architecture of the RMLP used in our studies (Fig. 1) con-
sists of an input layer that accepts hundreds of neuronal chan-
nels, a fully connected hidden layer of nonlinear processing el-
ements [(PEs), in this case tanh], and an output layer of linear
PE’s to estimate the trajectory. The RMLP uses only the in-
stantaneous neural activity to compute each output (hand po-
sition in this case). The hidden layer consists of 5 tanh PEs that
are fully connected to each other with a feedback matrix (unit
time delay). Each hidden PE is a nonlinear adaptive basis for
the output that projects the high dimensional neuronal data. The
choice of the hidden layer dimensionality was optimized to pro-
duce the best performing network with the fewest elements [10].
The state vector of the hidden layer in (1) is a nonlinear function
of the linear combination of input and previous state .
The feedback of the state creates memory and allows represen-
tations on multiple timescales. We would like to note here that
the feedback state representation feature of the RMLP will later
enable us to derive temporal measures of neuronal activity. The
output layer of the network has three linear PEs (for X, Y, Z co-
ordinates) and produces the output as in (2). These projections
are then linearly combined to form the outputs (position predic-
tions) of the RMLP. The neural to motor mappings are stored
in the input , feedback , and output weights and a
biases

(1)

(2)

B. Neural and Behavioral Data

We train the RMLP with multichannel neuronal firing times
from as many as 104 cells that were collected synchronously
at Duke University using two owl monkeys (Aotus trivirgatus).
The details of the behavioral paradigm and surgical procedure
for chronic microwire recordings are described elsewhere [7].
Nevertheless, we would like to briefly describe components of
the paradigm that are important for this analysis. Microwire
electrodes were implanted in up to four cortical regions with
known motor associations [15]. Table I shows the assignment of
the electrode arrays to the cortical regions for the two primates
used in this study. The firing times of single neurons were
recorded while the primates performed a three-dimensional
(3-D) reaching task that involved a right-handed reach to food

TABLE I
ASSIGNMENT OF ELECTRODE ARRAYS TO CORTICAL

REGIONS FOR TWO PRIMATES

Fig. 2. Stereotypical reaching movement segmented into rest/food, food/
mouth, and mouth/rest motions.

and subsequent placing the food in the mouth. A stereotyp-
ical X, Y, Z trajectory plot of a single movement is given in
Fig. 2. Neuronal and positional data were collected during two
independent trials for each primate. Neuronal firings, binned
(added) in nonoverlapping windows of 100 ms, were directly
used as inputs to the RMLP. The primate’s hand position, used
as the network desired signal, was also recorded (with a time
shared clock) and digitized with 200-Hz sampling rate.

C. Model Training

Optimal weights ( , and the vectors and )
that define the neural to motor transfer function are determined
by minimizing the mean-squared error (MSE) using backprop-
agation through time (BPTT) [10], [16], [17]. A trajectory of 30
samples was chosen to approximately match the duration of a
reaching movement and learning rates of 0.01, 0.01, and 0.001
for the input, feedback, and output layers, respectively, were
used in the NeuroSolutions software package [18]. Momemtum
learning was also implemented with a rate of 0.7. One hundred
Monte Carlo simulations with different initial conditions were
conducted with 20 010 consecutive bins (2001 s) of neuronal
data to improve the chances of obtaining the global optimum. Of
all the Monte Carlo simulations, the network with the smallest
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Fig. 3. Testing trajectories for primate 1 (bold—model, thin—actual hand
position).

TABLE II
TESTING CORRELATION COEFFICIENTS FOR THE TWO SUBJECTS

error achieved a MSE of 0.0203 0.0009. A small training
standard deviation indicates the network repeatedly achieved
the same level of performance. Training was stopped using the
method of cross-validation (batch size of 1000 points) to maxi-
mize the generalization of the network [19].

In testing, the network parameters were fixed and 3000 con-
secutive bins (300 s) of novel neuronal data were fed into the
network to predict new hand trajectories. Fig. 3 shows the output
of one of the networks (primate 1) in the test set with 3-D hand
position decomposed into X, Y, and Z coordinates. We can see
from the plots that the RMLP repeatedly produces outputs that
mimic the hand trajectories. We also conclude that during the
short period of observation (5 min), there is no noticeable degra-
dation of the model fitting across time. The traditional way to
report results in BMI is through the correlation coefficient (CC)
computed between the model output and the actual hand trajec-
tory. In Table II, we present the testing CC values for both pri-
mates. The testing CC values obtained here are consistent with
those found in the BMI literature [1]–[8].

III. CORTICAL CONTRIBUTIONS

We are interested in investigating which cortical regions the
RMLP uses to reconstruct the triad of movements defined in
Fig. 2. Each reaching movement is segmented to three reaches:
rest/food, food/mouth, and mouth/rest. In typical BMI experi-
ments, since the goal it to produce the best reconstruction of the
trajectory, researchers typically utilize all of the sampled neu-
rons. However, since we are interested in understanding how the
activity of each cortex is used by the model to reconstruct the
movement, we are going to choose different cortices to train the

RMLP, and observing the network outputs, we can build a set
of hypothesis about the importance of each cortex and compare
with established neurophysiologic principles.

Using the methods described in Section II-C, we trained 15
RMLPs for primate 1’s data and 3 RMLPs for primate 2’s data.
To visualize how the cortices contribute, the X, Y, Z network
outputs (bold) and the actual hand coordinates for one sample
movement are plotted in Fig. 4 for each network and primate.
For simplicity we have plotted only one movement however de-
tailed analysis of all the testing movements provided similar re-
sults for each primate. The title of each plot indicates the cortices
used as model inputs. For example, title Area 123 indicates that
PP, M1, and PMd were used as inputs (see Table I).

For the model trained with primate 1, area 1 produced an in-
crease in amplitude during rest/food, but showed a gradual de-
crease in food/mouth. Primate 2 was not implanted in area 1 and
subsequently all models did not produce increases in trajectory
during the reach to food. The model trained with area 2 for pri-
mate 1 does not display any correlation to this desired trajectory
even though neuronal firing in this region is nonzero. Models
trained with area 4 of primate 1 and area 2 of primate 2 produce
similar trajectories during the food/mouth segment. It is inter-
esting that for primate 1 areas 2 and 4 had a similar number of
neurons and contained samples from M1 but model testing pro-
duced different trajectories. Sharp changes in the model output
appear in movement transitions for the networks trained with
Area 3 in both primates. Both the WF and RMLP display the
following trends in the hand trajectory reconstruction:

1) models require the PP cortex to reproduce rest/food
trajectories;

2) for primate 1, the array 2 M1 neuronal activity is not
used to create food/mouth trajectory;

3) models use the PMd for transitions in trajectory;
4) Models use M1 neuronal activity (Primate 1 area 4,

Primate 2 area 2) to code similar movements.

IV. TEMPORAL SENSITIVITY MEASURES

For BMI design, the ability to asses the contribution of cor-
tices and neurons in real-time for a variety of behaviors is nec-
essary to uncover the unknown aspects of functional motor sys-
tems, measure the plasticity of closed-loop neuroprosthetic con-
trol, and to provide additional information on decoding algo-
rithm design.

The procedure for deriving the sensitivity for a feedforward
topology is an application of the chain rule [20] and produces
a static measure of how modulations in the input (neuronal ac-
tivity) produce changes in its output, which is a proxi for be-
havior if the mapping is accurate. In (3), we present the chain
rule for a single hidden layer neural network

(3)

In the RMLP, a sensitivity analysis based on the Jacobian of
the output vector with respect to the input vector extends this
analysis to the sample rate of the input. Since the RMLP model
displays dependencies over time that result from feedback in
the hidden layer, the partial derivative of with respect to
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Fig. 4. Testing output X, Y, and Z trajectories (bold) for one desired movement (thin) from 15 RMLP’s trained with neuronal firing counts from all combinations
of four cortical areas. (A) Primate 1. (B) Primate 2.

must be modified to include temporal information. Starting at
each time , the sensitivities to instantaneous inputs as well as
previous inputs are computed. In the RMLP, the chain rule is
applied as shown in (4)–(7), where is the derivative of the
hidden layer nonlinearity evaluated at the operating point shown
in (5) using the input sample at time . Notice at there are
no dependencies on . If time is clocked back one cycle, the de-
pendencies introduced by the feedback must be included, which
is shown in (6). At each clock cycle back in time, an additional

is multiplied to obtain the general form in (7). Ex-
perimentally we determined that the effect of an input decays to
zero over a window of 20 samples as shown in Fig. 5. At each
time , the absolute-sensitivity of the output with respect to the
inputs is represented as the averages of the absolute values of
the sensitivities over the 20-sample. The procedure described in
(4)–(7) will produce a matrix of values of dimension (#Neurons

#Coordinates Time). Note that nowhere in this derivation
the desired response is used, just the output of the model, but if
the error is small a reasonable approximation of the sensitivity
to behavior can be estimated.

(4)

(5)

Fig. 5. Sensitivity at time t for a typical neuron as a function of�.

(6)
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Fig. 6. Temporal sensitivities for Cartesian coordinates, neurons, and cortices.
(A) Primate 1, temporal sensitivity (B) Primate 2, temporal sensitivity.

(7)

The temporal sensitivity analysis can be used to estimate mul-
tiscale cortical neural ensemble organization using the trained
RMLP as a proxi. At the most macroscopic level, we can ask
the question “How do modulations in the neuronal input affect
each of the three movement coordinate directions?” This ques-
tion can be addressed by working with the RMLP and summing
the temporal sensitivity matrix over the neural ensemble to yield
the time-series shown in Fig. 6 subplots 1. For each of the pri-
mates, the temporal sensitivity is time synchronized with a rep-
resentative movement (bottom most subplot). For simplicity, we
present only one reaching movement for each primate. We can
see that the neural contributions to each direction are markedly
different for the models trained with each of the primate’s data;
primate 1 model produces large sensitivities during food/mouth

for coordinates Y and Z while primate 2’s model does not. Ad-
ditionally, neuronal coordinate modulation produced by primate
2 is delayed 1 s after the movement compared to primate 1.

At the mesoscopic level, we can sum the RMLP temporal
sensitivity matrix down to each cortical area and produce the
time-series shown in Fig. 6, subplot 2. Over the time course, we
can see that the model assigns to each cortex a varying contri-
bution w.r.t. behavior depending on the movement type (e.g.,
rest/food, food/mouth, velocity, and constant position. Com-
paratively, primate 1’s RMLP is producing a higher level of
movement detail compared to the model trained with primate 2
because we observe modulations of sensitivity during the move-
ment. Primate 2’s RMLP modulates up and remains constant in-
dicated by a constant low sensitivity. This quantification of the
temporal sensitivity relates directly to many of the qualitative
observations expressed in III. For example, primate 1 Area 2
(M1) temporal model sensitivity is the lowest compared to the
other cortices indicating that its neuronal modulation provides
the least contribution to the output. On the other hand, area 2
(M1) for primate 2 model produced much higher temporal sensi-
tivities than area 3 indicating it is more important for producing
the movement.

At the microscopic level, we can ask which neurons are af-
fecting the output of the model the most. Fig. 6 subplot 3 de-
picts the neuronal temporal sensitivities for area 4 (primate 1)
and area 2 primate 2). For primate 1, we can see that the model
uses the strong modulation of a single neuron’s activity during
the food/mouth trajectory. Thirteen out of the 37 neurons in area
2 are modulating strongly at the beginning and end of the entire
movement and are used in primate 2 model. For each of these an-
imal models, the temporal sensitivity measure is indicating two
different neuronal distributions of representation in each cortex.

V. DISCUSSION

In BMI experiments, interpreting the relationship between
ensemble neural activity and behavior is a daunting task due to
the large dimensionality and diversity of the cortical networks
that are probed. Moreover, from a functional neurophysiology
and systems neuroscience perspective the goal of simulta-
neously studying neuronal interactions to understand motor
system invokes a need for new spatio-temporal analysis tech-
niques. We presented here tools for interpreting neural data
through optimally trained MIMO models. The critical step in
such a task was choosing an appropriate model for incorpo-
rating both the spatial and temporal aspects. The RMLP offered
just that: multiple inputs, dynamics, and nonlinearity.

It is tempting to equate directly the learned input output
model dependencies with causal relationships between neural
data and behavior, but we must remember that this is achieved
through a signal processing model, which makes the interpreta-
tion dependent upon the model type, order, training constraints,
and accuracy. However, this procedure opens a quantitative,
high resolution approach to study neural population activity,
which may corroborate or raise new hypothesis about meso-
scopic cortical activity and how it might create behavior. After
our cautious presentation, we will present the implications of
the analysis in the following. Our first comment is related to the
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neurophysiological roles of the motor, premotor, and parietal
cortices. Two themes hold true between the subjects. The PP
was necessary for reconstructing the reach to the food and the
M1 (area 4 primate 1, area 2 primate 2) was necessary for recon-
structing the reach from food to mouth. In terms of BMI design,
this indicates that the electrodes should be placed strategically
throughout the motor cortex to capture vital information. It is
still unclear if a more widespread sampling of M1 will provide
the information or if PP is truly necessary to capture the initial
segment of the reach. Even within M1, we observed diversity in
the contributions of neurons from each array (see array 2 versus
array 4, primate 1). If electrodes are not placed in a cortical
region important for a part of the movement, the trajectory is
not guaranteed to be reconstructed well. Nevertheless, we can
compare our observations with those found in experimental
neuroscience which has linked the posterior parietal cortex to
motor imagery [21], visual/tactile manipulation of objects [22],
and spatial coordinate transformations [23].

Our second comment regards the schemes of neural coding
employed by each of the animals. Multiscale temporal sensi-
tivity analysis revealed that each animal is coding the move-
ment differently at each scale. Over the movement time span,
the computed sensitivities had preferentially high values for spe-
cific Cartesian coordinates, cortices, and neurons for each an-
imal. The primary difference is that primate 2 modulated up
and down its neuronal activity only at the beginning and end of
the trajectory while primate 2 had modulations throughout. This
measurable difference in neural coding translates directly in dif-
ferences in the detail of trajectory reconstruction (see Figs. 4(A),
areas 1234, and (B), areas 23). While the animals in general per-
formed the same reaching task, the trajectories visited by each of
the animals were not identical. Since, in BMI design, we cannot
expect that all reaching movements are the same, we need to ad-
dress how models are going to address the diversity of natural
reaching movements. The degrees of freedom of neural activity
seem to be limited to local organization and modulation for this
class of signal processing models. Due to the different impor-
tance of neurons in the various segments of the reaching task, we
anticipate that important neurons will vary for different move-
ments and individuals. If this is the case, two problems arise.
First, a given sampling of neurons may provide a limited reper-
toire of reconstructable movements. Second, a network trained
for all possible movements may perform worse than one trained
just for one movement. This is particularly true for linear map-
pers, but it will affect to a certain extent nonlinear models.
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