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Abstract—Training multilayer neural networks is typically
carried out using descent techniques such as the gradient-based
backpropagation (BP) of error or the quasi-Newton approaches
including the Levenberg—Marquardt algorithm. This is basically
due to the fact that there are no analytical methods to find the op-
timal weights, so iterative local or global optimization techniques
are necessary. The success of iterative optimization procedures is
strictly dependent on the initial conditions, therefore, in this paper,
we devise a principled novel method of backpropagating the desired
response through the layers of a multilayer perceptron (MLP),
which enables us to accurately initialize these neural networks in
the minimum mean-square-error sense, using the analytic linear
least squares solution. The generated solution can be used as an
initial condition to standard iterative optimization algorithms.
However, simulations demonstrate that in most cases, the perfor-
mance achieved through the proposed initialization scheme leaves
little room for further improvement in the mean-square-error
(MSE) over the training set. In addition, the performance of the
network optimized with the proposed approach also generalizes
well to testing data. A rigorous derivation of the initialization
algorithm is presented and its high performance is verified with
a number of benchmark training problems including chaotic
time-series prediction, classification, and nonlinear system iden-
tification with MLPs.

Index Terms—Approximate least-squares training of multilayer
perceptrons (MLPs), backpropagation (BP) of desired response,
neural network initialization.

1. INTRODUCTION

q LTHOUGH examples of neural networks have appeared
in the literature as possible function approximation and
adaptive filtering tools as early as 1950s [1]-[5], due to the
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extremely high computational loads required for optimally
training these structures, the interest in them seemed to decline
for about two decades. In the 1980s, Rumelhart et al. proposed
the well-known and widely appreciated error backpropagation
(BP) algorithm for training multilayer perceptrons (MLPs)
and other neural networks belonging to Grossberg’s additive
model [6]. For the last two decades, while appreciating this
brilliant algorithm, researchers have focused their efforts on
improving the convergence properties of BP, the main concern
being the slow convergence speed due to its gradient-descent
nature. Among these, we mention the momentum term [6], [7],
adaptive stepsizes [8], Amari’s natural gradient [9], and more
advanced search methods based on line search (conjugate gra-
dient) [10], [11], and pseudo-Newton methods [10], [12]-[16],
and even exact evaluation of the Hessian [17], [18]. A clear
problem with all of these iterative optimization techniques is
their susceptibility to local minima. In order to conquer this
difficulty global search procedures have to be introduced. From
simple methods using random perturbations [19] to more prin-
cipled global search algorithms based on genetic algorithms
[20] or simulated annealing [21], such proposals have also
appeared in the literature; most without a striking success.

A less researched area deals with the search for good ini-
tialization algorithms. An interesting approach by Husken and
Goerick was to utilize evolutionary algorithms to select a good
set of initialization weights for a neural network from a set of
optimal weight solutions obtained a priori for similar problems
[22]. After all, if we could approximately choose the weights
close to the global optimum, then BP or any other descent al-
gorithm (e.g., Levenberg—Marquardt) could take the network
weights toward the optimum fast and reliably. This initialization
problem, however, is not trivial. Since typically random weight
initialization is utilized, Thimm and Fiesler investigated the ef-
fects of the distribution type and its variance on the speed and
performance of training [23], while Colla et al. discussed using
the orthogonal least squares method for selecting weights for
the processing elements (PEs) from a predetermined library ac-
cording to the output mean-square-error (MSE) [24]. Nguyen
and Widrow proposed assigning each hidden PE to an approx-
imate portion of the range of the desired response [25]. Drago
and Ridella, on the other hand, proposed the statistically con-
trolled activation weight initialization, which aimed to prevent
PEs from saturating during adaptation by estimating the max-
imum values that the weights should take initially [26]. There
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have been heuristic proposals of least-squares initialization and
training approaches [27]-[29], which did not rigorously con-
sider the transformation of desired output through the layers.!
Castillo ef al. also proposed a linear least squares training ap-
proach for single-layer nonlinear neural networks; the nonlin-
earity of the neurons were also adapted besides the weights in
order to optimize performance [30]. Along these lines, Cho and
Chow proposed optimizing the output layer using linear least
squares (assuming a linear output layer) and optimizing the pre-
ceding layers using gradient descent [31].

In this paper, we propose a new initialization algorithm that
is based on a simple linear approximation to the nonlinear
solution that can be computed analytically with linear least
squares. We reason in the following way for the single hidden
layer MLP (this reasoning can be extended to two hidden layer
MLPs also). The single-hidden-layer MLP is approximating the
solution for the regression or classification problem by com-
puting at the same time the best adaptive basis functions and the
best projection on them. In this MLP, the outputs of the hidden
layer neurons could be regarded as the adaptive basis functions
©i(x), where 7 is the index running over the hidden PEs and
x is the input vector to the MLP. The first layer weights are
then the parameters of the adaptive basis functions. The second
layer weights then can be regarded as the projection coefficients
of the desired response to the nonlinear manifold spanned by
these basis functions in a multidimensional space. The difficulty
arises because both the basis functions and the projection must
be optimized at the same time, and the projection manifold
is nonlinear, which means that local optimum solutions exist.
Motivated by a recent paper by Castillo ef al. [30], we studied
a linear approximation methodology to approximate both the
basis functions and the best projection. Castillo ef al. considered
the approximate least squares optimization of a postnonlinear
network of single layer weights (no-hidden layer), assuming
the MSE before the nonlinearity as the criterion rather than the
MSE after the nonlinearity. The desired response at the output
of the nonlinearities is simply converted to a desired response
at the input of the nonlinearities by utilizing the inverse of the
sigmoidal nonlinearities. In this paper, we extend the approach
to networks consisting of multiple layers of weights (MLPs).
In addition, we improve the optimization accuracy by further
considering the local scaling effects of the nonlinearities at the
operating points dictated by the current value of the desired
outputs.

The idea is to reflect the desired response at the output of the
nonlinearity of the PEs back to the input of the nonlinearity of
the PEs [30], but also considering the slope of the nonlinearity
at the current value of the desired signal), and then solve ana-
Iytically a linear regression problem for each layer of weights.
The proposed algorithm sweeps the layers from the first to the
last (optimizing first the basis functions and then the projection
coefficients), however, the opposite sweep direction could also
be utilized. Hence, the name of this methodology is BP of the
desired response.

1Of special interest is [29], where three least-squares initialization schemes
were compared for speed and performance. However, all three approaches ig-
nored the scaling effects of the sigmoidal nonlinearities’ slopes in the least
squares problem, which is important as we will discuss later.
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Fig. 1. Assumed MLP structure and the designated variable names.

The organization of this paper is as follows. First, we estab-
lish the rules for backpropagating the desired response through
nonlinearities and linear layers of weights, since these are the
two fundamental building blocks of MLPs. Once the desired
response is backpropagated through the layers, it is necessary
to optimize each layer using its corresponding input and de-
sired output samples. The linear least squares problem that is
required to be solved is mathematically expressed and the so-
lution, which is in the form of a linear system of equations, is
derived. Then the algorithm for initializing a two-layer MLP is
presented. A section discussing various key issues on the suc-
cessful application of the algorithm to practical problems of
different types follows the algorithm description. Finally, we
investigate the performance of the proposed BP of the desired
response approach on benchmark problems including a classifi-
cation problem (this represents discrete-valued desired outputs),
two real-world chaotic time-series prediction examples and a re-
alistic nonlinear system identification problem (these represent
continuous-valued desired outputs).

II. BACKPROPAGATING THE DESIRED SIGNAL
THROUGHTHE LAYERS

Considering the MLP architecture shown in Fig. 1, we notice
that there are two parts to backpropagating the desired signal
through the layers. Each layer consists of a linear weight matrix
and an additive bias term followed by a preselected nonlinear
mapping, usually chosen to be a sigmoid-type function.2 For
the successful operation of the proposed algorithm, it is crucial
that the nonlinearity is monotonically increasing, but the range
does not have to be the whole real number set (the sigmoid-
type nonlinearities satisfy this condition and will be used in the
numerical examples). In the following, we designate the output
of the Ith layer of an MLP by z' before the nonlinearity and y'
after the nonlinearity. The weight matrix of each layeris W' and
the bias vector is b’. The input vector to the MLP is x. For future
convenience, n; is the number of neurons in the corresponding
layer and nyg is the number of inputs (including the bias inputs).
Also, we let N be the number of training samples given in the
form (xh dtL) , Where ¢ is the sample vector index and L is the
number of layers in the MLP. In addition, we will denote by
d' the desired response for the output of the Ith layer after the

nonlinearity and by d the desired response for the output of this
layer before the nonlinearity. The overall goal of this process
is to generate weight matrices W' and b’ that lead to small

2The bias vector of each layer can be incorporated into the weight matrix as
an additional column since it is equivalently the weight of a constant unit input
from the previous layer. However, for explanation convenience in the following
sections, we will continue to treat it as a separate parameter.
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output MSE over the training data. The MSE, which is possibly
weighted across outputs, is given by E[(dF —y*)TH(dL —y )]
and the expectation is approximated by sample mean over the
training samples.> Two points are important to mention at this
point are.

1) In most cases, the optimality criterion is unweighted
MSE, thus, the weighting factor H is identity. How-
ever, for the sake of completeness we will include this
weighting factor in the formulations.

2) The goal of the initialization algorithm is to provide
weights with as small MSE as possible on the training
set, so that a possible further training with iterative al-
gorithms (like BP and Levenberg—Marquardt) require
minimal number of updates to converge.

The latter means generalization and overfitting issues are not
explicitly considered in the presented algorithm due to the fol-
lowing reasons: this issue can be handled in the subsequent iter-
ative updates via a cross-validation set, and given a sufficiently
large training set (compared to the size of the network being
trained) overfitting will not become a problem. Nevertheless, in
order to demonstrate successful generalization of the initializa-
tion solution to novel test data, numerical results will also be
presented.

A. Backpropagating the Desired Response Through the
Nonlinearity

Consider a single-layer nonlinear network for which the
equations z = Wx + b and y = f(z) define the forward flow
of signals, where W, b, f(.) denote the weight matrix, the bias
vector, and the output nonlinearity, respectively. Suppose the
weighted MSE for a vector output y is the chosen optimization
criterion and d is the desired response. Let H be the weighting
factor as described previously. Then Rule 1 describes the BP
of the desired response through the output nonlinearity f(.).
The output nonlinearity f : R” — R™ consists of elementwise
application of the same sigmoidal nonlinear function f(.) as
shown in Fig. 1.

Rule I: Letd,y,z,d € R" be the desired and actual out-
puts after the nonlinearity and before the nonlinearity, W €
R b € R™*! be the weight matrix and the bias vector,
and f, f~, f' : R — R be the (sigmoid) nonlinearity, its in-
verse, and its derivative. Also assume that d is in the range of
f. Minimization of the weighted MSE between d and y at the
output of the nonlinearity is equivalent (up to first order) to min-
imizing a weighted MSE between z and d = £~1(d), where
the inverse function is evaluated at each entry separately. In the

3For notational simplicity, the expectation operator E[.] is sometimes used to
denote averaging over samples. In this particular case

Fl(@ ! H@ -y = (1) Sk - yE)HGaE - v,

“Note that without loss of generality, we assume that the desired output at
the output of the nonlinearity is in the range of the sigmoid nonlinearity so that
the inverse exists. This could be achieved easily by a linear shift-and-scale op-
eration on the desired output signal. In an MLP, this shift-and-scale operation
can be accomplished by modifying the weight matrix and the bias vector of the
following layer accordingly. We will discuss this issue later in the light of the
complete algorithm for multiple layers.

latter, each error sample is also weighted according to the value
of the derivative of the nonlinearity at the corresponding oper-
ating point. Mathematically, this is given by

: T . 1T« STE(() o =
min B(d—y)"H(d—y)]~min E[(f'(d) e 8) " H(f'(d) ¢ €)]
)
where e denotes the element-wise product of the vectors f’(d)
and€ = d — z.
Derivation: In the Appendix.

Thus, we conclude that, to backpropagate the desired signal
through the nonlinearity, we evaluate the inverse of the nonlinear
function at the value of the desired signal after the nonlinearity.
The weights then must be optimized according to the criterion
given in (1). The scaling term f'(d) ensures that each error
sample corresponding to an input—output pair of the training set
is magnified appropriately according to the operating point of
the nonlinearity at the corresponding value of the desired signal.
This result also agrees with commonsense. For example, when
the PE is near its saturation level, the variance caused by an error
sample before the nonlinearity corresponds to a small variance
after the nonlinearity. On the other hand, the variance of the error
corresponding to a desired signal operating at a large-slope re-
gion of the nonlinearity will be magnified by that slope while
passing through the nonlinearity. Note that if var (||d||) is also
small, then since the operating point of the nonlinearity will al-
most be fixed for all samples, this scaling term becomes unnec-
essary. All the previous applications of least squares to initialize
the weights in MLPs failed to take the variance of d into ac-
count, because they simply reflected the desired response to the
input of the nonlinearity. This is a poor approximation and as
(1) shows, and the scaling effect of the nonlinearity on the vari-
ance of the error before the nonlinearity should be considered in
minimizing the MSE at the output of the nonlinearity. In general,
for more accurate results one may want to use more terms in the
Taylor series expansion, however, this brings in the higher order
moments of the error, which prevents us from using the linear
least squares fitting algorithms for training.

B. Backpropagating the Desired Signal Through the Linear
Weight Layer

Consider a linear layer whose output is given by
z=Wx+Db and the desired signal d is given for z. In
this scheme, we assume the weights W and b are fixed, but
the input vector x is the free optimization variable. In the MLP
context, X will correspond to the output (after the nonlinearity)
of the previous layer. The previous layers will produce output
vectors only in a bounded range due to the limited range of the
sigmoidal nonlinearities, however, for now this limitation will
be ignored. Consequently, during the BP of the desired signal
of z to a desired signal for x, only the weighting factor of the
MSE criterion will change. The result is summarized in Rule 2.

Rule 2: Letd,z € R™ be the desired output and the actual
output. Let d, x € R™ be the desired input and the actual input.
Let W € R"°X™ b € R™*! be the fixed weight matrix and
the bias vector. Then, the optimal input x that minimizes the
weighted MSE between d and z is the input x that minimizes
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a modified weighted MSE criterion between itself and the best
solution to Wd + b = d the least squares sense. That is

min E|(d-2)"H(d -2) =
min E[(d — x)"WTHW (d - x)]
2

where d is the least square solution to the equality Wd =(d —
b) taking H into account if necessary.
Derivation: In the Appendix.
There are two situations that require special attention.

1) If » > m (more outputs than inputs), then d =
(WTHW) " 'WTH(d — b) is the unique least squares
solution for the over-determined system of linear equa-
tions (Wd = (d — b) with weighting factor H also taken
into account). In an MLP, this corresponds to the situation
where the layer has more hidden PEs at the output side
than at the input side.

2) If n < m, then the QR factorization may be used to
determine the minimum norm least squares solution for
this underdetermined system of linear equations (Wd =
(d — b)) [32]. Since in this underdetermined case there
are infinitely many solutions that yield zero error to the
equation, the factor H becomes redundant and need not be
considered. In this case the procedure is to obtain Q and
R by a QR decomposition of W and then calculate d =
Q[R~"(d—-b) 07]T, where ~7 denotes the matrix
inverse-transpose operation and 0 is a vector of zeros with
length m — n.

In both cases, this result tells us that, given a desired signal H’
for the linear output z' of the /th layer, we can translate this
signal as a desired signal d'~' for the nonlinear output of the
previous layer in the MLP structure. The latter value can then be
backpropagated through the nonlinearity as described in Rule 1.

C. Scaling the Desired Output Down to the Range of the
Nonlinearity

An important issue that we have ignored until now is the
bounded range of the sigmoidal nonlinearities used in MLPs.
Consequently, the domain of the inverses of these nonlinear-
ities are also bounded, thus, they are not defined everywhere
on the real axis. When the desired response is backpropagated
through a linear layer of weights in accordance with Rule 2,
the resulting values may be amplified to values that exceed the
range of the nonlinearity of the previous layer (due to the matrix
inversions involved in computing d). Hence, translating these
desired response values through the nonlinearity according to
Rule 1 is impossible. However, to overcome this problem, the
desired value could be linearly shifted and scaled to fit the range
of these nonlinearities.> Considering the /th layer of an MLP, this
means, when the desired output of the /th layer (d") is backprop-
agated to the output of the (I — 1)th layer, the desired values

5An alternative solution that is observed to work in all simulations we tried
is to extend the inverse of the nonlinear function periodically. In particular, for
the arctangent nonlinearity, the periodic tangent function becomes a suitable
periodic inverse automatically. However, the mechanism behind this solution is
not fully understood at this time. Therefore, we will not discuss this possibility
further.
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for the (I — 1)th layer’s nonlinear outputs (d'~!) could end
up outside the range of the specific nonlinear function. In this
case, we suggest utilizing a linear shift-scale operation to obtain
d-! —Td"'+s (where T is an invertible matrix) such that
each entry of the new scaled value of d'~! is inside the range of
the nonlinearity. Then to get the same output from the network,
should the first layer be optimized according to the new value
of d!~1, the /th layer weights need to be modified as follows:
W! — W!T-! and b! «— —W!T~!s + b'. For simplicity,
T can be selected to be a diagonal matrix with entries adjusted
such that the maximum value of the unscaled value of d'~! is
mapped to a value less than the maximum value of the range of
the nonlinearity.

A simple transform that works is found by setting T to a di-
agonal matrix with ones on all diagonal entries except for those
that correspond to rows of d! that have values exceeding the
range of the nonlinearities. These entries of T can be set to the
inverse of the dynamic range of the corresponding row of d?.
The shift vector s can be set to all zeros most of the time, except
when a row of d! is constant throughout the training set. In this
case, the corresponding entry of s is set to the negative of this
constant value that the mentioned row of d! has.

III. SOLVING FOR THE OPTIMAL WEIGHTS
USING LEAST SQUARES

Once the desired signal at the output layer is backpropagated
according to the procedures outlined in the previous section, the
remaining task is to solve for the optimal weights of each layer
using linear least squares.® The optimization of the weight ma-
trix of a certain layer, however, must be done immediately after
each least square, since the BP of the desired signal through
the layers introduce couplings between individual outputs of
layer through the weighted MSE problem that arises due to the
weight matrices of the following layers (notice in Rule 2 that
the weighting factor for MSE changes from H to WTHW). In
addition, the BP through nonlinearities introduces a scale factor
for each error sample that depends on the slope of the nonlin-
earity of the layer for that sample (notice in Rule 1 that f'(d)
is introduced into the least squares problem). These considera-
tions can be summarized in the following optimization problem.

A. Problem 1

We are given a linear layer of the form z = Wx + b, W €
R>¥m b € RN™X! with the training samples (xs,as) s =
1,..., N, where s is the sample index, and also a matrix
G = [y;;] as the weighting factor of MSE (here G is used
to represent a generic weighting factor, which could be H or
WTHW according to the previous notation). We define the
error for every sample of the training data and for every entry

of the output vector as
g, =d,—2z, s=1,...,N 3)
where each output entry is evaluated using
zs=b+Wx, s=1,...,N. 4
6Although these weights are referred to as optimal, they are only optimal

in the least square sense after all the mentioned approximations. They are not
necessarily the true optimal weights of the MLP in the grand scheme.
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The optimal weights for this layer according to the arguments
presented in Rule 1 and Rule 2 are the solutions to the following
minimization problem:

N
1 _\T — _
man— ngl (f'(d,) #&,)"G(f'(d,) ®E,).  (5)

Solution: In order to solve for the optimal weights for
Problem 1, we take the derivatives of the cost function with
respect to the weights of the system and equate to zero. Since
this is a quadratic cost function in terms of the optimization
parameters, there is a unique global optimum. The solution for
the case of an arbitrary symmetric positive definite weighting
factor G is quite cumbersome and its derivation is provided in
the Appendix for the interested readers. As will be seen in the
experimental section, generally assuming that G = I provides
extremely satisfactory results. Therefore, here we will only
consider this special case, for which the solution is also simple
to obtain and express. If G = I, then the overall least squares
problem decomposes to multiple least squares problems (one
for each output). Specifically, the cost function in (5) becomes

man z": ! Z 6]5 (6)
7j=1 s=1

where the subscript 7 runs over the outputs (j = 1,...,n) and
the elementwise product reduces to standard multiplication of
scalars. Defining the column vector w; = [b;W.]* using the
jth entry of b and the jth row of W and u = [1 xT]7, the
modified input vector, we have the following expression for the
error at the jth output channel: ;5 = d;s —u! w;. The gradient
of (6) with respect to a particular wy, is

0_ = —2 EN [f’Q(d,€ )(dg —ulwk)u] E=1,...,n
owy, N il ° ° ® ’ Y
(7

Each wj, can be solved independently by equating the corre-
sponding gradient given in (7) to zero. The solution is a slightly
modified version of the Wiener-Hopf equation, one that takes
the local scaling effects of the nonlinearity into account

N N
[Z flz(ajs)djsus] = [Z flz(gjs)usuZ:| wi k=1,....,n.
s=1 s=1

®)

IV. TRAINING ALGORITHM FOR A SINGLE HIDDEN LAYER MLP

In this section, we will describe how to apply the procedures
devised in the preceding sections to the training of a two-layer
MLP (one hidden layer). Although we restrict this algorithm to
only two layers here, the idea can be generalized easily to MLPs
with more layers. However, it is known that an MLP with only
a single hidden layer that contains a sufficiently large number
of hidden PEs can approximate any continuous-differentiable
function [33], [34], thus, this topology is sufficient, in general.

Consider a two-layer MLP with ng inputs, n; hidden PEs, and
no output PEs. For the sake of generality, we also assume that
the output layer contains nonlinearities. We denote the weight
matrix and the bias vector of layer / with W' and b!, respec-
tively, where [ = 1,2. The output vectors of this layer before and

after the nonlinearity are denoted by z’ and y', and d and d'
denote the desired signals for these outputs, in the same order.
Assuming that unweighted MSE is the optimization criterion
(H = I), the proposed initialization algorithm for this MLP
follows the following procedure:

Initialization: Obtain training data in the form x,,d2, s =
1,...,N. Select random initial values for the weights W1,
b', W2, b2. Bvaluate z!,yl, 22 y? corresponding to the
input sample x using these randomly selected weights. Set
Jopt = E[(d?* —y*)T(d? — y?)]. Also assign current weights
as Wépt = Wl,bépt = bl, ngt = W2 b2 ot = = b2
Step 1) Compute Hz = f1(d?2), Vs as the desired signal
for z2.

If ny > ny, then assign d! = (W2TW2)_1

w2t (Hi — b?) as the desired signal for y}.

Step 2)

If ng < mng, then obtain Q, R by a QR
decomposition of W?2 and assign d! =
Q[R—T(Hi —b?) 07]", where 0 is a vector

of zeros of length n1 — ne, as the desired signal for
Ys-

In any case, if there exist d; values that are out-
side the range of the nonlinearity of PEs, employ the
scale-shift technique to bring these values into the
range. (In this forward sweep approach modifying
W?2 and b? accordingly is not necessary since they
will be optlmlzed later in the procedure anyway.)
Compute d = f71(dl), Vs as the desired signal
for z?.

Optimize W' and b! using the linear least squares
equations in (8), using x; as input samples and d
as desired output samples. Here, we assume G = I
for simplicity.’

Evaluate z!, y! using the new values of first layer
weights.

Optimize W2 and b? usmg the linear least squares
equations in (8), using y? as input samples and d
as desired output samples.

Evaluate z2, y?2 using the new values of second-
layer weights.

Evaluate the value of J = E[(d? —y?)T(d? - y?)],
with the new output samples. If J < Jop¢, set Jopy =
Jyand WE =W pl o =pl W2 = W2 p?

5 opt — » Yopt T opt — opt -
b=.

Step 9) Go back to Step 2).

The algorithm presented here prefers backpropagating the de-
sired signal all the way to the first layer and then optimizes
the weights of the layers sweeping them from the first to the
last. Alternatively, first the last layer weights may be optimized,
then the desired signal can be backpropagated through that layer
using the optimized values of the weights, and so on. Thus,
in this alternative algorithm, the layers are optimized sweeping
them from the last to the first. In this alternative approach, in the
steps where the backpropagated desired output is scaled down

Step 3)

Step 4)

Step 5)

Step 6)

Step 7)

Step 8)

7According to Rule 2, we should have used G = W2TW?2, However, ex-
tensive experiments not presented here showed that this choice is not critical to
the performance of the algorithm. The simpler choice of G = I gived satisfac-
tory results in all experiments.
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P P 6) V W, b0 (Step 2)

Joint 2
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Joint 1

Fig. 2. Tllustration of the robot arm analogy for the operation of the algorithm.

to the range of the nonlinearities (such as Step 2) the weights
of the following layer should be modified accordingly, as op-
posed to the previous algorithm where this modification is not
necessary. Extensive experiments with both approaches yielded
similar results.

Finally, once this algorithm is iterated a number of times (two
to five is usually sufficient), the weight values that correspond
to the smallest MSE error that is encountered are stored and can
be assigned as initial conditions to a standard iterative descent
algorithm. Since the algorithm does not explicitly minimize the
MSE, in applications where the designer aims to obtain the op-
timal weights as accurately as possible, the postapplication of a
standard descent algorithm may be necessary. In many applica-
tions, however, the aim is to obtain a sufficiently accurate solu-
tion in a short amount of time even if this solution is not optimal.
For example, in an online control scenario that employs adap-
tive MLPs for various functions (controller, plant model etc.),
it is not always necessary to obtain the actual optimal solution;
rather, it is desired to achieve a preset level of modeling accu-
racy as quickly as possible. The algorithm outlined previously
can achieve this task in a few iterations with little computational
requirements.

In order to understand the operation and the behavior of
the algorithm better (for the two-layer MLP case), consider an
analogy to a robotic arm with two joints (depicted in Fig. 2).
This analogy is a mechanical equivalent of adapting the bases
and the projections at the same time in a two-layer MLP. In
this analogy, the weights of the two layers become the angles
of the two joints of the robot arm, whose one end is fixed
at a given point (a given sample of the input vector) and the
other end is trying to reach a desired position in space (the
corresponding desired response for the network). The fixed arm
lengths signify the limited choice of basis functions and the
bounded span of these bases. At each iteration, the robot arm
first evaluates the desired position for Joint 1, depending on the
current value of Joint 2 (backpropagates the desired response
through layers). Then it moves Joint 1 (first-layer weights) to
bring the first arm as close as possible to its desired location
(backpropagated desired response for the first layer). Finally,
it moves Joint 2 (second-layer weights) to bring the second
arm as close as possible to the desired position (actual desired
network response).
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V. DISCUSSION OF ALGORITHMIC ISSUES

There are a few issues about this initialization algorithm to
be noted. The most important one is why this algorithm is re-
ferred to as an initialization procedure and not as a self-con-
tained training methodology. It is clear from the derivation and
from the algorithm itself that the individual iterations of the pro-
cedure do not explicitly impose the reduction of MSE compared
to the preceding iteration. In fact, it was observed in numerous
simulations that although the algorithm achieves a very small
MSE value (very close to global optimum) at certain iterations,
it does not necessarily converge to the global minimum (or any
other local minimum for that matter). Therefore, this approach
should be utilized as an exceptionally fast way of obtaining a
nearly optimal operating point. If the weights at each training
stage are stored, then we can use the ones that correspond to the
smallest error as the ones to keep (either for the initialization of
BP or as the nearly optimal weights).

A second issue related to the previous observation is that the
algorithm does not offer a smoothly decreasing value of training
MSE through the iterations. In fact, it has been observed that at
every sweep, the algorithm jumps from a region in the weight
space to a completely different region. This should not be re-
garded as a weakness, however. On the contrary, this stochastic
search is the strength of this method as an effective search al-
gorithm to determine a good set of weights. In fact, from the
robot arm analogy we have presented in the previous section,
it is possible to see how this algorithm produces many possible
projection spaces; only limited by the vast set of possible func-
tions spanned by the MLP.

Therefore the selection of weighting factors in the individual
least squares solutions of layers becomes an important concern.
Although Rule 2 shows that one should consider the ampli-
fying effect of the following output layer in selecting the MSE
weighting factor 3, in most cases, our experience showed that
the algorithm performs equally well with an identity weighting
matrix as suggested in Step 4. The reason for this is, since at a
given iteration the second-layer weights are, in general, far from
being optimal, considering their effect on the optimization of the
first layer is not necessary. In addition, once the first layer is op-
timized with respect to the unweighted MSE, the second layer
can be optimized accordingly (as done by the algorithm in the
forward sweep scheme).

Another important aspect is the computational complexity of
the proposed initialization algorithm. To assess its complexity,
let us focus on the two-layer MLP. Recall from the previous
section that the main source of complexity is the solution of
the least-squares problems at Step 4 and Step 6. Each requires
solving the square linear system of equations in (8). In general,
for the [th layer, there are n;(1+n;_1) equations and unknowns.
Since the inversion of a size-m square matrix requires O(m?)
calculations, The computational complexity of the algorithm is
max; O(nin}_,). In the two-layer MLP case, if ng > no this is
O(n3nd).s

8To give an idea, the code running in Matlab 5.3 on a Pentium 4 desktop com-
puter with CPU speed 2.40 GHz, completes one iteration in less than 1 s. The
authors did not attempt to optimize the code for speed using advanced numer-
ical algorithms. Typically, the best solution is achieved in the second iteration.
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trained with the proposed least squares approach. (b2) Solutions in (b1) given as initial conditions to the standard BP algorithm. (b3) MLP trained with the standard

BP algorithm only.

Finally, after a desired number of iterations are performed, the
algorithm might generate initial weight estimates where some
parameters are larger than desirable.? This is especially impor-
tant in hardware implementations of neural networks since dy-
namic range of variables and parameters might be restricted by
hardware design. In such cases, the scale factor for the first layer
weights can be traded with the slope of the nonlinearity and the
scale factor of the second layer (assuming a linear output layer)
can be traded with the range of the nonlinearity. In particular, for
the single hidden layer MLP under consideration, suppose that
the nonlinear functions in the hidden layer PEs are parameter-
ized as v f(aox) where f(x) is a unit-range, unit-slope (at the
inflection point) function, such as f(x) = (2/7) arctan(mz/2).
Then, we can reduce the dynamic range of the first and second-
layer weights by dividing them by some values a; and a re-
spectively. By modifying the nonlinear function in the hidden
PEs according to the prescription given previously, we can make
the network output remain unchanged. This weight normaliza-
tion procedure can be employed after the iterations of the ini-
tialization algorithm are completed.

9Note that large weight values of an MLP do not necessarily imply any sta-
tistical approximation inability of the network. What is important is not to have
saturated nonlinearities in response to certain inputs. In all the experiments we
performed with this algorithm, we checked the nonlinearity activation values for
saturation and the trained networks do not result in saturating nonlinearities.

VI. MONTE CARLO CASE STUDIES

In this section, we will present training and testing perfor-
mances of the proposed BP of the desired signal. Time-series
prediction, nonlinear system identification, and pattern classi-
fication are benchmark problem types that are usually consid-
ered in the literature. Therefore, our case studies include the
single-step prediction of two real-world chaotic time-series (the
laser time series [35], [36], and the Dow Jones closing index
series [36]). In addition, the identification of the realistic non-
linear engine manifold dynamics (based on a car engine [37],
[38]) is carried out using an MLP. The engine manifold model
assumes the manifold pressure and manifold temperature as the
states, and the pressure as the system output. The input is the
angle of the throttle that controls the amount of air flowing into
the manifold. Finally, to as an illustrative example, the spiral
classification problem is also considered. In the following, we
summarize the settings used for each data set. For the first three
examples, the number of PEs are selected to be the smallest that
yield similar training and cross-validation errors. For the spiral
example, one PE per exemplar is utilized to guarantee perfect
classification on the training set.

* Laser Time Series: MLP size 3-11-1, predict next value
from most recent three values.

* Dow Jones Index: MLP size 5-7-1, predict next value
from most recent five values.

* Engine Identification: MLP size 4-5-1, estimate output
from most recent two inputs and two outputs.
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standard BP algorithm only.

 Spiral Classification: MLP size 2-50-1, determine which
of the two spirals the input pattern is from.

All networks have linear output PEs, arctan nonlinearities,
and are trained using 1000 input-desired pairs. Training is re-
peated starting from 100 random sets of initial weights. The fol-
lowing algorithms are utilized, all using the same data, settings,
and initial weights: BP,!0 least-squares initialization of only the
second (output) layer according to Steps 5—7 of the proposed
algorithm for only one iteration (LS1), initialization of both
the first and second layers using the LS-procedure proposed in
this paper using Steps 1-9 for three iterations (LS2), and least-
squares-initialized-BP algorithms using both results of LS1 and
LS2 for initializing the weights (LS1+BP and LS2+BP).

Since the LS-initialization procedure readily brings the
weights to the vicinity of the optimal solution, further iterations
using BP in the LS+BP approaches improve MSE on the
training sets marginally. For the three data sets (Laser, Dow
Jones, and Engine), we have allowed BP to train for 1000,
2000, and 200 iterations, respectively. In contrast, we have
allowed the LS+BP algorithms to train for 250, 500, and 50

10Tn the simulations we provide the solutions obtained with the simple BP
rule. There exist more efficient iterative algorithms in the literature that use
second-order optimization techniques such as Levenberg—Marquardt and other
quasi-Newton methods. However, the main point of these simulations is to
demonstrate that the proposed approximate least squares algorithm provides a
useful solution (in terms of training and test set MSE levels). Our goal is not to
compare the performance of this algorithm with BP or any other more advanced
training algorithm, since BP of the desired response algorithm is proposed as a
potential initialization for these iterative approaches rather than replacing them.

epochs using BP after the least-squares initialization. For all BP
phases, MATLAB’s Neural Network Toolbox was utilized and
these numbers of iterations were determined experimentally
to guarantee convergence of the BP algorithm from numerous
random initial conditions, prior to the actual Monte Carlo runs
that are utilized in the results presented here. The training
performance is measured using the normalized MSE measure,
which is defined as the ratio of the error power to the power of
the desired signal.

The results of the laser time series prediction simulations
are summarized in Fig. 3. Starting from the preselected 100
random initial weights, the LS1 and LS2 initialization schemes
both achieved MSE values in the range [0.02,0.12] [shown
in Fig. 3(al) and (bl)]. Further training with BP [shown in
Fig. 3(a2) and (b2)] did not improve MSE significantly. BP
approach [shown in Fig. 3(b3)], on the other hand, achieved
similar MSE values to those of LS1 and LS2, however, a
significant percentage of the solutions were trapped at MSE
values larger than 0.1, and some at 0.4. It is noteworthy that the
least squares initializations are computationally much simpler
compared to BP, yet they still achieve almost optimal MSE
values with a few iterations.

The results of the Dow Jones series prediction simulations
are summarized in Fig. 4. Similarly, the LS1 and LS2 initial-
ization schemes achieve almost optimal MSE values [shown
in Fig. 4(al) and (b1)]. Once again, further training with BP
did not improve MSE performance significantly. Notice that, in
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TABLE 1
AVERAGE AND STANDARD DEVIATIONS OF NORMALIZED MSE VALUES ON
TRAINING AND TEST DATA SETS OVER 100 MONTE CARLO RUNS
WITH RANDOM INITIAL WEIGHTS

Data Set Training MSE Testing MSE

Laser 5.5x102+2.7x10% | 5.9x107%+2.7x107
Engine 1.5x10° £2.9x10° | 1.6x10° +4.1x10°
Dow Jones | 7.3x107°+9.4x10° | 2.0x10" +3.5x10™

this case, BP-only approach, BP, did not achieve as small MSE
values as the least squares initialization schemes. BP was pos-
sibly always trapped at nearby local minima.

The first two examples demonstrated the advantages of the
proposed initialization scheme over using BP-only for training
neural networks. They did not however, reveal any advantages
of initializing both layers (LS2) over initializing only the output
layer (LS1). This final example demonstrates this advantage.
The results of the engine-dynamics-identification simulations
are summarized in Fig. 5. Notice that while LS1 achieves an
MSE around 5 x10~2 [shown in Fig. 5(al)], LS2 brings the
MLP weights to a region where the MSE is on the order of 10~°
[shown in Fig. 5(b1)]. Once again, further training using BP
does not improve significantly over the MSE values attained
by the LS1 and LS2 initialization schemes. The BP approach
was also trapped at the local minimum, which had an MSE of
5 x10~2. These results demonstrate clearly that initializing both
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Fig. 6. The prediction performance of a trained network on the test set of
Dow Jones data. Normalized training MSE is 7.2 X 10~2 and testing MSE is
3.6 x10~1.

layers using the proposed BP of desired response approach is
advantageous compared to both using BP alone and initializing
only the output layer.

Finally, we present results that demonstrate the generalization
capability of the solution provided by the proposed algorithm.
For this purpose, we trained the MLPs described in the previous
experiments using 1000 samples for each of the three data sets:



334

Noiseless Desired Response and G=W£W2

0.5

05}

Desired and Actual Qutputs
o

0 10 20 30 40 50
Sample Index

Training Data from Two Spirals

3 . . T -
*
*
2 - * M 0* *
M *
*, * * .
* * .
1 '*’* oo
o™~
SO0« #+ 4 LR
=
1 o F *
* *,
*
2 i A
+ *
3 L
-3 2 1 0 1 2 3 4
Input 1
(@

Fig. 7.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 2, MARCH 2005

Noiseless Desired Response and G=|

05

05

Desired and Actual Qutputs
o

0 10 20 30 40 50
Sample Index

Moisy Desired Response and GZW;W2

05

05

Desired and Actual Outputs
o

0 10 20 30 40 50
Sample Index

(b
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response and theoretically offered G = W1 W, weighted least squares training for the first layer bl) Desired and actual classification results for noiseless
desired response and G = I unweighted least squares training for the first layer. (b2) Desired and actual classification results for noisy desired response and
theoretically offered G = W1 W, weighted least squares training for the first layer.

Laser, Engine, and Dow Jones. Then, the trained networks are
tested on their corresponding 10000-sample test sets (which in-
cludes the 1000 training samples and 9000 novel samples). The
average *standard deviation of the normalized MSE values
for each data set over the 100 Monte Carlo runs is summarized
in Table L.

Notice that for the Laser and Engine data sets, the testing
errors are only slightly larger than the training errors, which
indicates good generalization without overfitting. For the
Dow Jones data set, however, the testing MSE is much higher
than the training MSE due to the nonstationary nature of this
time series. The training set consists of the last 1000 sam-
ples (approximately three years from 1991 to 1993) of the
10000-sample (approximately 30 years from 1964 to 1993) test
set. A sample prediction performance for the Dow Jones set
is presented in Fig. 6. Clearly, starting in the late 1980s, the
stock market changed its characteristics, therefore, the network
performs well on the data portion that it is trained on, but
performs very poorly on the rest.

As the final demonstration, we present training results using
the spiral classification example. The spiral classification data is
shown in Fig. 7(a2). The hidden layer PEs have arctan nonlin-
earities with range [—1, 1], so the desired outputs corresponding
to the two spirals are selected to be slightly perturbed values
around #0.6. It has been observed that, in classification prob-
lems, where the desired responses corresponding to a variety of

input patterns are constant (as in this example), the systems of
linear system equations that yield the least squares solutions for
the weight matrices may become ill-conditioned. In such case,
introducing a small additive noise to the desired output values,
as suggested in [39], helps to improve the conditioning of these
matrices as well as reduce the number of iterations required to
get a very good initializing solution. The training performance
using such a noisy desired output is presented in Fig. 7(b2).
The amount of noise, in this example, is purposely selected to
be much larger than necessary. It was observed in many trials
with different types of data sets that adding a small perturbation
to the desired output helps the algorithm achieve its minimum
MSE solution in much fewer iterations compared to when the
algorithm is employed on data with clean desired output values
(such as £0.6). In this example, the suggested weighting effect
of the second layer is utilized in the optimization of the first layer
weights. This case study serves as a useful example to demon-
strate the importance of Rule 2 in some situations. Although
in the previous example, the weighting factor G of Problem 1
was ignored (by using G = I), in classification problems it
has been observed that proper usage of Rule 2 becomes cru-
cial. For example, for the noise-free desired response of the
spiral problem, while the proper approach of G = W1 W,
yields very good initialization results, the simplified alterna-
tive of G = T does not yield a useful initialization solution
[Fig. 7(al) and (b1)]. The same behavior was also observed in
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other classification problems such as the generalized XOR (also
called the parity-bit) problem.!!

VII. CONCLUSION

Neural networks have become indispensable tools in many
areas of engineering and are continuing to receive much atten-
tion in other fields. The well-known BP algorithm and more
advanced versions that employ quasi-Newton type iterative up-
dates made it feasible to practically utilize MLPs, a widely used
topology from the family of additive networks. Two major draw-
backs of iterative learning rules are local minima and depen-
dence on the learning rate. To tackle these problems, most of
the time it is necessary to either use advanced search methods
and global optimization schemes. However, successful initial-
ization of the optimization parameters can also drastically help
improve learning time and performance.

In this paper, we have proposed a methodology for backprop-
agating the desired response of the MLP through its nonlinear
layers, allowing us to train each layer by simply solving a linear
system of equations per layer, which is the solution to a linear
least squares problem. The proposed algorithm may be utilized
as an initialization routine for a following standard BP training
scheme or even as a training algorithm itself in some applica-
tions in which it is desirable to attain small, but not necessarily
optimal, MSE in a fast manner.

The superior training and generalization performances of the
proposed initialization scheme were demonstrated in chaotic
laser time series prediction, Dow Jones time series prediction,
and realistic engine manifold dynamics identification examples.
Monte Carlo simulations illustrated that BP of the desired re-
sponse through the layers is an effective initialization/training
scheme for MLPs.

APPENDIX

A. Derivation of Rule 1
Using the fact that y = f(z) and d = f(d), we can write

min E((d — y)"H(d —y)]
= win PI(@ ~ £)"HE@) ~ £)]. (AD

Let d = f~'(d) be the desired response we seek for z and

€ = d — z, be the error before the nonlinearity. If var (||€]|)
is small, then we can use the following first-order Taylor series
approximation on each component of the output vector

f(z) = £(d — &) ~ f(d) — £'(d) e & (A2)

Un this example, the training set consisted of 50 input-desired data pairs.
Note that the size of the trained MLP is comparable to the number of training
patterns. Therefore, one would not expect good generalization performance.
However, the point of this demonstration is not to test generalization capability,
as this issue has been addressed in the previous case study. The goal of this
example is to illustrate the importance of employing Rule 2 properly in classi-
fication problems. In addition, the usefulness of perturbing the desired output
(class labels) is also discussed.

where e denotes the element-wise product of vectors. Substi-
tuting this in (A.1), we obtain

: AT ) A~ ms /TN 2 =T Y
‘r,er{gE[(d y) H(d-y)] g&{gE[(f (d) e2)" H(f'(d) e 2)]

(A.3)
which is the result we seek.

B. Derivation of Rule 2

The weighted MSE at the output of the linear layer requires
solving

min E[(d — z)TH(d — z)] = E[(d’ Hd - 2d" Hz + z7 Hz)]

* (A.4)
where H is again the weighting factor of the MSE criterion and
z = Wx + b. Suppose that d is the weighted least squares so-
lution of the equation Wx + b = d with respect to a weighting
factor H. Consequently, let Wd = (H— b)+e.. Lete = d—x,
then we have z = d + &, — We. Substituting the latter in
(A.4) and dropping the terms that are constant with respect to
the optimization variable x, the following equivalent problem is
obtained

minB[(d - z)"H(d - 2)
= m)in E[(e. — We)TH(e, — We)]
= min —2E[(e. - We)'HWe] + E[e" WTHW ]

= min —2E[el HWe] + 3E[e" W HWEe]. (A.5)

Using the identity We = Wd — Wx = (d — b +¢,) —
Wx, the first term in the last expression of (A.5) decomposes
to E[eTHWe] = E[eTH(d — b + &,)] + E[eTHWx]. The
first term is constant with respect to x and the second term is
zero due to the orthogonality of the least squares error to the

input. Hence, the equivalent minimization problem reduces to
min, E[eTWTHWEe].

C. Derivation of the Solution to Problem 1

In the general case of an arbitrary symmetric positive definite
weighting factor G, the gradient of the cost function with re-
spect to all weights are found to be

0 1 e~ = 05 O
= ij dis ! d's Eis 2 = Ejs

o= 20 22 2l B @ e
k=1,...,n, I=1,...,m

0] 1 = = L 07 07

%_N;;;%jf (dis)f (djs)[gis%‘i‘ by €js:|
k=1,....n (A.6)

where denoting the Kronecker-delta function with 6y

BEJS
by,

—— = —Z150k;, = —0pj. (A7)
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Equating all the derivatives in (A.6) to zero and rearranging
the terms in order to obtain a square system of linear equations
with n - m + 1 unknown variables yields (A.8). The solution to
Problem 1 (i.e., the optimal weights of the corresponding layer
in the MLP) is the solution of this linear system of equations for
the variables w;, and b;. The solution could be obtained using a
variety of computationally efficient approaches (e.g., Gaussian
elimination with pivoting)
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