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Abstract—This paper presents a new blind equalization ap-
proach that aims to force the probability density function (pdf)
at the equalizer output to match the known constellation pdf.
Quadratic distance between pdf’s is used as the cost function to
be minimized. The proposed method relies on the Parzen window
method to estimate the data pdf and is implemented by a sto-
chastic gradient descent algorithm. The kernel size of the Parzen
estimator allows a dual mode switch or a soft switch between
blind and decision-directed equalization. The proposed method
converges faster than the constant modulus algorithm (CMA)
working at the symbol rate, with a similar computational burden,
and reduces the residual error of the CMA in multilevel modula-
tions at the same time. A comparison with the most common blind
techniques is presented.

Index Terms—Blind equalization, CMA, information theory,
PDF, Parzen windowing.

1. INTRODUCTION

HANNEL equalization plays a key role in digital com-
munication systems. Typically, the physical channel intro-
duces a distortion to the transmitted signal that can make it dif-
ficult to recover the original data. In this case, an equalizer is
necessary to reduce, or ideally to completely eliminate, the in-
troduced intersymbol interference (ISI). Conventional equaliza-
tion techniques rely on the transmission of a reference (training)
sequence that is known at the equalizer. This sequence allows
adaptation of the equalizer parameters to minimize some cost
function that measures the distance between the actual equal-
izer output and the desired reference signal. For instance, when
the equalizer is implemented by means of a linear filter, the
filter coefficients can be easily adapted by using the well-known
least mean squares (LMS) [1], which minimizes the expectation
of the squared error. A detailed study of conventional adaptive
equalization can be found in [2].
When a training sequence is not available at the receiver, the
problem at hand is named blind equalization. Blind equalization
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has received a great amount of attention during the last years
because of its importance in communication systems [3]-[5].
Without a reference sequence, the only knowledge about the
transmitted sequence is limited to its probabilistic or statistical
properties. Two broadly defined classes of blind algorithms
can be used to exploit this knowledge [6]: methods based on
second-order statistics (SOS) and methods based on higher order
statistics (HOS). SOS methods [7], [8] exploit cyclostationarity
of the channel output. These techniques require to sample the
received signal at a rate faster than the symbol rate (thus intro-
ducing temporal diversity). Although adaptive versions have
been proposed, SOS-based methods are typically block-oriented
and computationally intensive algorithms. SOS methods provide
a fast convergence. Unlike SOS methods, the blind algorithms
based on higher order statistics can operate at the symbol rate.
HOS algorithms typically minimize a cost function that is able
to indirectly extract the higher order statistics of the signal or the
current level of ISI at the equalizer output [3]. Usually, the cost
functionis minimized by means of stochastic gradient algorithms
working at the symbol rate, which are simple to implement. The
main drawback is that these algorithms usually need a high
number of data symbols to achieve convergence. The different
characteristics (complexity versus convergence speed) of SOS
and HOS methods make these two approaches complementary
[6]. For this reason, despite the slower convergence, HOS are
currently used in a variety of communication systems, such
as the ATM-LAN [9] and VDSL [10] standards. Examples of
HOS-based algorithm include the Sato algorithm [11], which
was the first blind technique for multilevel PAM signals, and
the Godard algorithms [12]. The Constant Modulus Algorithm
(CMA) [13], which is probably the most popular blind equal-
ization technique, is a particular case of the Godard algorithms.
For multimodulus modulations, such as M-QAM, in addition
to convergence speed, CMA has another drawback: It shows a
relatively high residual error.

There are several approaches in the literature that attempt
to improve the convergence speed of conventional HOS blind
techniques without substantially increasing complexity. Nor-
malized-CMA (NCMA) [14] accelerates convergence by
estimating the optimal step size at each iteration considering
that a constant modulus constellation, like quadrature phase
shift keying (QPSK), is employed (the output modulus is
known). However, it fails for multimodulus constellations.
Renyi’s entropy has also been introduced as a cost function for
blind equalization of constant modulus signals [15]. This ap-
proach is an application of information theoretic criteria [16] to
equalization and it uses the Parzen window method (a nonpara-
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metric method) to estimate the underlying probability density
function (pdf). Although this method provides excellent results
for some channels, it fails to equalize other ones (especially
channels with zeros on the unit circle), and it is very sensitive to
noise. Similar results have been obtained when using Fisher’s
information, instead of entropy, as the cost function.

An interesting alternative consists in trying to force the proba-
bility density atthe output of the equalizer to match the known con-
stellation pdf. Several approaches have been developed following
this idea. Linear [17] and nonlinear (neural-networks-based)
equalizers [18] use the Kullback-Leibler divergence between
densities as a cost function. A new method based on the quadratic
distance between pdf’s has been proposed in [19]. A simple
Gaussian model is used for the target pdf to be fitted (it was
designed only for constant modulus constellations), and it defines
computationally efficient stochastic gradient expressions, which
are much simpler than the method in [17]. In [20], we presented
a method based on fitting the pdf of the equalizer output at some
relevant points, which are the points determined by the modulus of
the constellation symbols. Since the cost function only considers
these points, we called it sampled-pdf (SPDF) fitting.

Concerning the high residual error of CMA, typically, this is
solved by the so-called dual mode switching techniques. CMA
works until the eye is opened, and then, a hard switch to a tech-
nique providing a low residual error is performed. The clas-
sical choice is the well-known decision-directed equalization
(DDE), but several alternatives have been recently proposed
[21], [22]. Another option consists in a soft switch from blind to
decision-directed mode. Some examples are the classical Ben-
veniste-Goursat algorithm [23], which is used in digital TV sys-
tems [24], or the recently introduced Dual Mode CMA (DM-
CMA) [25] and its Stop-and-Go extension (SAG-DM-CMA)
[26]. In this case, a simple rule decides at each iteration whether
the CMA or Radius Directed Equalization (RDE), which is a de-
cision-directed-like method [27], must be employed.

In this paper, we present an adaptive algorithm that converges
faster than the CMA working at the symbol rate, with a low
computational burden and that reduces the residual error of the
CMA in multilevel modulations at the same time. The proposed
method aims to force the probability density of the equalizer
output to match the known constellation pdf. Unlike the method
in [20], which only considers a reduced set of sampling points
where the pdf is fitted, now, the whole pdf is considered. This
method is designed for multilevel modulations and works at the
symbol rate, admitting a simple stochastic gradient-based im-
plementation. In this way, its complexity is similar to CMA. The
Parzen window method is used to estimate the underlying pdf.
The proposed method improves the performance of CMA in two
senses. First, it provides a faster convergence than CMA until
the eye is opened. Second, just by changing the size of Parzen
kernel, it presents a lower residual error when convergence is
achieved, similar to decision-directed equalization. Moreover,
the adaptive control of the kernel size allows a soft switch be-
tween blind and decision-directed equalization.

The paper is organized as follows. Section II formulates the
blind equalization problem and outlines the most typical blind
algorithms. In Section III, the proposed cost function and its cor-
responding stochastic gradient expression are presented. Sec-

tion IV discusses some implementation details, and Section V
presents the results obtained with the proposed method. Finally,
Section VI discusses the main conclusions.

II. BLIND EQUALIZATION FORMULATION
AND CONVENTIONAL APPROACHES

In general, in a digital communication system, a sequence
{5k} of i.i.d. complex symbols, belonging to the constellation
of any digital modulation, is sent through a channel. Usually, the
channel is described by means of its discrete-time complex co-
efficients hj, assuming a finite impulse response (FIR) channel.
Therefore, the channel output is obtained by

L,—1

Ty = Z hnsk—n + ex (1)

n=0

where Ly, is the channel length, and ey is the noise sequence
that typically is modeled by a white Gaussian noise process.
The blind equalizer will operate on the channel output to reduce
the intersymbol interference introduced by the channel. In this
paper, a linear equalizer will be implemented by means of an
FIR filter. In this case, the equalizer output is given by

Lu—1
T
Yk = Z WpThon = W X}, 2)

n=0

where w is the vector of filter coefficients to be adapted by the
blind equalization algorithm to minimize ISI.

Without a reference sequence, the blind algorithms must
make use of some a priori knowledge of the statistics of the
underlying modulation. In the following, we will outline some
of the most common blind algorithms and the a priori assump-
tions they use.

The Godard algorithms [12] minimize the following cost
function:

Ja(w) = El(lyl” — Rp)?] ©)

where the ratio R, contains the a priori knowledge about the
current modulation. In this case
Ellsk[*]
E|sk[?]
CMA is the Godard algorithm for p = 2.
The Sato algorithm [11] defines the following error function:

R, = @)

Ep =y, — a(sgn(real(yy)) + jsgn(imag(yx)))  (5)
where 7 = /-1, and

_ Effreal(sy)[?] _ E[[tmag(s)|?]
Ellreal(sy)]]  Ef[|Imag(sy)[]

(6)

This error function is employed in the adaptation procedure in-
stead of the error with respect to the desired solution under the
MSE criterion.

The Benveniste-Goursat algorithm [23] is an extension of the
Sato algorithm. It proposes the following error function:

EP® = k\EP + ks |EP| Ef )
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where EP = y;, —decis(yy,) is the decision error. This algorithm
implements a soft transition between blind equalization and de-
cision-directed equalization. When EP is large, the second term
(the Sato term) dominates and it works in blind mode. When E ,’3
is small, both terms have the same order of magnitude, and the
noise due to E7 is removed (note that |EP| = 0 for perfect
equalization).

The Dual Mode CMA (DM-CMA) decides at each iteration if
the adaption is performed by using the error in CMA Ecya =
|yx|? — R, or the error for Radius Directed Equalization (RDE)
[27], Erpe = |yk|? — R?, where R; is the closest radius of
the underlying constellation. Frpg is selected when gy, is close
enough to R;(||lyx] — Ri| < d); otherwise, Ecna is selected.
The Stop-and-Go extension of this method (SAG-DM-CMA)
[26] proposes to adapt the weights only when the error estimates
are supposed to be reliable, which means that the sign of both
errors is the same. This can accelerate the convergence for low
noise environments.

III. PROPOSED COST FUNCTION AND STOCHASTIC ALGORITHM

Information theory is an interesting alternative to extract as
much information as possible from the available data. The data
distribution contains more information than the simple statis-
tics employed in the CMA or Sato algorithms. The proposed
algorithm aims to force the probability density of the equalizer
output to match the known constellation pdf. The method works
in the space of the modulus of the symbols raised to the power
p, i.e., it tries to fit the pdf of S? = {|s,|P}. In practice, the best
results are usually obtained for p = 2, but the method admits a
general formulation.

A. Quadratic Distance (QD) Cost Function

The proposed approach is an extension of the method pro-
posed in [19] to consider multilevel modulations. We use the
quadratic distance between pdf’s as the cost function, which is

given by
[

where Y? = {|yx|P}, S = {|sx|F}, and fz(z) denotes the pdf
of Z at z.

The Parzen window method [28] is used to estimate the cur-
rent data pdf. Using this nonparametric estimator with a window
of the L previous symbols, the estimate of the pdf fy»(z) at time
k is

J(w) (fye(2) = fsr(2))? dz ®)

L-1

Z Ko, (2 = |yk—il")

1=0

1

fre(z) = T

(€))

where K, () is the Parzen window kernel of size o. This kernel
has to be a suitable pdf function. We use Gaussian kernels with
standard deviation o

1 2

2ro

K0<x) =

(10)

For consistency, the target pdf must consider the effect of the es-
timator. To guarantee the cost function is zero at perfect equal-
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ization, the same estimator must be used to estimate fy»(z) and
to compute the target pdf fs»(z). Therefore, the pdf of the orig-
inal constellation must be the convolved with the kernel of the
Parzen estimator being used to estimate fy»(z)

N,
for(2) = ps(si) Ko, (2 — [sil?) (1)
=1

where N is the number of complex symbols in the constellation
of the corresponding modulation, and pg(s;) denotes the proba-
bility of symbol s;. In the following, symbols are supposed to be
equally likely, and therefore, ps(s;) = 1/N,. With this target
pdf, the cost function equals zero only at perfect equalization
(for a large L). Consequently, the Benveniste—Goursat—Ruget
Theorem [29] ensures that (8) is a suitable cost function for blind
equalization.
Finally, substituting (9) and (11) in (8), rearranging terms,
and taking into account that for Gaussian kernels
“+o0
Ka(y — Cl)Ka(’y — 02) dy = Km/i(Cl — 02) (12)

— 00
we obtain the following expression for the cost function

1 L—-1L-1
I SO Kollyn—ilP = lyr—il?)
i=0 j—=0
1 N; Ny
+ 32 DN Kolsil? = sil?)
S 4=1 j=1
Ns L-1

- LJQVS Z ZK”(|yk—j|P — |s]?).

i=1 j=0

(13)

For the sake of simplicity in the notation, we have denoted o, V2
as 0. Analyzing this expression, it can be seen that the first term
on the right side is the estimator of the information potential
associated with Renyi’s entropy of order 2, i.e., the cost func-
tion in [15]. However, in this case J(w) must be minimized,
whereas in [15], the information potential must be maximized.
The second term on the right side, which does not depend on w,
can be neglected in the optimization process. Finally, the third
term pulls the output of the equalizer toward the desired pdf. We
want to remark that for constant modulus modulations .J (w) be-
comes the cost function proposed in [19].

B. Stochastic Gradient Algorithm

We have considered a stochastic gradient approach using a
window length L = 1, which, in the following, we will call
stochastic gradient algorithm (SQD). We will focus on p = 2.
Under these assumptions, the derivative of (13) with respect to
the equalizer weights (neglecting the constant 2) is given by

Vwd (W)

Ns
1 *
_EZKQ(LUHZ— |si)yxy,  (14)
i=1

where K'(z) is the derivative of the kernel K (x). It is inter-
esting to compare this expression with the classical updating ex-
pression of CMA algorithm. Under a constant modulus signal,
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we can write R, = |s;|?, and the updating expression using a

Gaussian kernel becomes

_ (ykl?=Rp)?

2 _
N L =z . (15)

= X1 €
)= fror U

Up to constant terms, this is the CMA updating expression mul-
tiplied by the exponential term. Therefore, in terms of compu-
tational burden the increment with respect to CMA is reduced
to the evaluation of this exponential term.

Once the derivative of the cost function J(w},) has been eval-
uated, the equalizer coefficients weights are adapted by

Vwd (W

Wit1 = Wg — lo Vi J(W). (16)
In all cases, a normalized step size y1, = po> has been intro-
duced to compensate for the 1/0° term that appears in K (1)
for Gaussian kernels. In the following, we will only consider 1
when referring to the step size. The proposed algorithm begins
with a tap-centered equalizer and, for each received sample, es-
timates the gradient (14) and updates the equalizer by (16).

C. Alternative Cost Function

It is interesting to note that the stochastic expression (14) can
also be obtained from a different cost function

+o0
Jo(w) = / Fro(2) fsn(2) d. a7

J¢(w) is the correlation between both pdf’s, and a maximum
is obtained when the pdf of Y? matches fs»(z). Expanding the
QD cost function (8), we get three terms

oo

I = [ () + £30(0) = 2 s (2)

- (18)
The term responsible for measuring the distance is the crossed
term, while the others act as normalization for different pdf’s.
Since these entities are used as a cost function for which we want
to find an extreme, it is intuitive to use just the cross term, hoping
that the minima of the two criteria occur at the same parameter
value. Some evidence of this behavior is pointed out in [30],
where the cost function (17) provides outstanding results in an
application of information theory to clustering.

If the Parzen window method is used again to estimate the
current pdf and it is included into the target pdf for the sake
of consistency, substituting (9) and (11) in (17), we obtain the
following expression for the cost function [31]:

s L—1

N,
LJle SN EKollyeilP = |sil?)-

=1 j=0

Jé(w) =

19)

Again, we denote 0,1/2 as o for simplicity. The stochastic gra-
dient of (19) with L = 1 is equal to (14) (up to the negative sign
because now the goal is to maximize J¢(w)).

The previously proposed sampled-pdf method (SPDF) [20]
employs a similar cost function, which fits the constellation pdf

at a number N, of representative points (the sampling points).
The cost function is

NP
1

T(w) = = D (fyo(ri) = 1)

Pi=1

(20)

where T; are the target values of the pdf at ; (T; = fo» (7).
The sampling points are 7; = |s;|?. Using the Parzen estimator,
the stochastic gradient for L = 1 is

Np
AT (W) = =Y (Kq(ri — |yx?) — K,(0))

XK (ri — |y yrxi.  (21)

Basically, it is (14) multiplied by (K, (r; — |yx|?) — K, (0)).
Therefore, its computational requirement is slightly higher than
the requirements for SQD.

IV. IMPLEMENTATION DETAILS

In this section, some implementation details about the pro-
posed algorithm are discussed. We focus on L = 1.

A. Kernel Size

The kernel size of the Parzen window estimator plays a key
role in the proposed algorithm. It is responsible for both the con-
vergence speed and the accuracy of the final solution. For the
sake of speed, a large kernel size is necessary. A large kernel
size allows the interaction of each symbol with all the constel-
lation symbols (in the space of |sg|P), and this produces a fast
convergence. However, the contrary is necessary when the goal
is accuracy. In this case, a small kernel size allows only the in-
teraction of each symbol with the closest symbol of the con-
stellation. This reduced interaction produces, in practice, a de-
cision-directed equalization that is able to produce an accurate
final solution.

In communication systems, convergence speed is the main
requirement for blind equalizers. Typically, the blind algorithm
(for instance CMA) reduces ISI until the eye of the constellation
is opened. At this point, a switch to decision-directed equaliza-
tion is performed, which yields an accurate final solution. Under
these premises, the natural choice is to employ a large initial
kernel size to reinforce convergence speed. Then, when the eye
of the constellation is opened, a switch to a small kernel size, or
to decision-directed equalization, can be performed, similarly to
CMA based systems. However, an adjustable size allows a more
interesting approach. By adaptively controlling the kernel size,
a soft switch from blind to decision-directed like equalization
can be implemented. This option is detailed in Section IV-C.

We would want to point out another feature related with the
kernel size. Based on our previous experience with the Parzen
estimator [32], which suggest links with convolution smoothing,
and on the results we have obtained in this application, we can
suggest that a large kernel size has also the advantage of pro-
ducing a cost surface with fewer local minima. Fig. 1 shows the
normalized cost surface for a simple case: channel hy = 0
and an equalizer with a single coefficient, which controls the
gain. Cost surfaces using 0 = 1 and 0 = 15 for a 16-QAM,
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Fig. 1. Normalized SQD cost surface as function of a single equalizer

coefficient for different kernel sizes in a 16-QAM modulation.

are plotted. The surface with ¢ = 15 has only one minimum
in the plotted range, whereas with ¢ = 1, several local minima
appear. It seems reasonable to assume a similar behavior in a
more complex case, and this intuition has been corroborated by
experimental results, as will be shown in Section V.

B. Gain Identification

Fig. 1 also reveals another interesting feature. For o = 1, the
minimum of the cost function is obtained at unity gain. How-
ever, for 0 = 15, the minimum is not located at w = 1. In
general, the proposed algorithm equalizes a channel up to gain
identification. When a small kernel size is employed, the per-
fect equalization situation with exact gain corresponds to a min-
imum of the stochastic cost function. However, when a large
kernel size is used, the analysis of the stochastic cost function
reveals that a minimum of the cost function for perfect equaliza-
tion corresponds to a slightly scaled-down constellation (inexact
gain). This is due to the stochastic nature of the algorithm. Using
a single sample to estimate the pdf by Parzen windowing pro-
duces this undesired scaling, while the batch algorithm, which
uses a large number of samples to estimate the pdf’s, provides
equalization with gain identification. In general, L > 10 is suf-
ficient for the bias to be negligible.

In order to ensure gain identification, the adapting expression
(14) has to be analyzed, and some modification has to be in-
cluded. Taking into account that the minimum of the stochastic
cost function is a scaled version of the desired constellation, an
obvious modification is to substitute the original symbols |s; |
by some precompensated symbols
S

2

= F(o)|s:|? (22)

where F'(o) is the compensation factor that depends on the
kernel size. In this case, the compensated adaptation term is

Ns
1
Vad (W) = += S0 KL (el = Fo)lsiP i, 23)
5 =1
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Fig. 2. Numerically obtained compensation factor F(¢).

For the sake of gain identification, it is necessary to ensure that
the zero-ISI solution (y, = s ) is a minimum of the cost func-
tion. This is equivalent to ensuring that

1 Ns
EVwI(w)] = 5~ Z;E[K,',(I(Skl2 = F(0)|si*)six}] = 0.
Z (24)
Considering an infinite length equalizer, and taking into account
relationship (1), we obtain

S BIK (s8] — F(o)]s:[)]s[2] = 0.

i=1

(25)

Although it is not possible to find an analytical expression for
F(0), because of the nonlinearity of equations, it is simple to
find a numerical solution for a specific modulation. Fig. 2 shows
the numerically obtained compensation factor as a function of
the kernel size, for a 16-QAM modulation. This demonstrates
the need for a compensation factor. It must be noted that F'(o)
becomes 1 for small kernel sizes, which means that, in this case,
the compensated symbols correspond to the original symbols.

C. Soft Switch From Blind to Decision-Directed Equalization

We have discussed the fact that the kernel size controls the
convergence speed and the final accuracy of the solution and
the fact that both requirements are in opposition to each other.
A dual mode technique can be used to switch from blind to deci-
sion-directed modes. However, an interesting approach consists
of adaptively controlling the kernel size to have a large value in
the blind stage and to progressively decrease it during conver-
gence to obtain a more accurate final equalization.

An error measure, which is based on the variance of the error
with respect to the closest target, has been employed to control
the kernel size. This measure is iteratively adapted, using a for-
getting factor «, by means of
((yel* = 15:1*))- (26)

min

E =aF 1-—
k1 = B+ ( @) {i=1,...,N,}
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A linear relationship between the kernel size and this error mea-
sure has been assumed. In this case

o =aF, +b 27
where a and b are empirically determined constants. For in-
stance, for a 16-QAM modulation, we have found, after testing
in a large number of channels, that ¢ = 3.5 and b = —9.5 pro-
vide very good results.

In order to obtain a suitable soft transition, the compensated
symbols |s¢|? have to be adapted at each iteration with the cur-
rent kernel size to guarantee a convergence with gain identifica-
tion. A look-up table has been used to evaluate F'(o).

Taking this into account, the soft transition algorithm can be
summarized in the following steps:

1) Initialize p, E1, o, and wq (tap-centered).
2)Fork = 1,2, ... (sample-by-sample adaptation)
a) Evaluate o, by (27)
b) Update pu, = uaf
¢) Obtain F (o) (by look-up table)
d) Update |s|? = F(o)]s:|?
e) Evaluate V, J(w) by (14) using |s$|?
f) Update w11 by (16)
g) Estimate E/, 11 by (26)
End

V. RESULTS

In this section, some results obtained with the proposed
methods are presented.

A. Blind Mode

We start by analyzing the performance of the proposed algo-
rithm in blind mode. To maximize convergence speed a fixed,
large kernel size is employed. The proposed method is com-
pared with CMA, which is the most commonly used blind al-
gorithm for QAM modulations, and SPDF. ISI will be used as
the figure of merit, i.e.,

> 16,,]? — max,, |6, |?

(28)

where # = h * w is the combined channel-equalizer impulse
response.

To assess the blind convergence properties of the SQD
method, we equalized 200 random channels having seven
coefficients by using a 21-tap linear equalizer with tap-cen-
tered initialization. The proposed algorithm converged for all
channels. Table I compares the proposed method with CMA
and SPDF in terms of the mean number of iterations needed to
achieve convergence and in terms of the mean residual ISI at
convergence. By achieving convergence, we mean to achieve
the final residual ISI level. These results correspond to the
optimal fixed step sizes for both methods for each channel.
Noiseless and noisy environments have been tested. The noisy
case corresponds to a signal-to-noise ratio (SNR) of 10 dB. The
proposed method requires a lower mean number of iterations

TABLE 1
CONVERGENCE OF CMA, SPDF, AND THE SQD METHOD FOR 200
RANDOM CHANNELS

Method | Noiseless SNR=10 dB
Iterations Resid. ISI  Iterations Resid. ISI
CMA 18680  -16.47 dB 42175 -9.66 dB
SPDF 17126  -16.45dB 38005 -9.69 dB
SQD 16625  -16.53 dB 37110 -9.83 dB
5 T ‘
--- CMA
~. o SPDF
0 .
75 L
3
= —10t
[
*15 L
20+ d
-25 : ‘
0 20 40 60 80 100
[terations (symbols) x 1000
Fig. 3. Convergence curves for H1(z) with SNR = 30 dB.

to achieve convergence in both cases. Moreover, it presents a
similar residual ISI (even slightly better) than CMA and SPDF.

In general, we have observed that in channels where CMA
provides a fast convergence, SQD converges at the same rate.
However, for channels where the CMA is slow, SQD usually
provides a faster convergence. For instance, a 16-QAM modu-
lation (using {1, 3} levels for in-phase and quadrature com-
ponents) and the following channel:

Hi(z) = (0.2258 4+ 0.51612 7 + 0.6452272 + 0.5161273),

have been considered in the following example. A filter with
L,, = 21 taps is employed for the equalizer. The taps are initial-
ized using the tap-centered strategy. Fig. 3 compares the average
results obtained in 100 Monte Carlo trials for a signal-to-noise
ratio (SNR) of 30 dB. The following parameters have been em-
ployed: ¢ = 15 and step sizes (i) of le-5, le-2, and le-4 for
CMA, SPDF, and SQD, respectively. These step sizes are the
largest ones that guarantee stable convergence for each method
(obtained by cross-validation). For this channel, the proposed
method clearly converges faster than SPDF and much faster than
CMA.

B. Decision-Directed Mode

In this section, we will show that the proposed method can
also provide a low residual error for multilevel signals. Re-
ducing the kernel size, we have observed for large SNRs that
the proposed method behaves almost exactly like DDE in terms
of both convergence speed and residual error. However, the pro-
posed method has demonstrated a lower noise sensitivity. For
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small SNRs, it converges faster than DDE. Fig. 4 illustrates this
point. Noise has been added to the output of the channel

Hs(z) = 0.225840.5161271 +0.6452272-0.51612"2 (29)

to obtain a SNR of 10 dB. After the initial blind convergence,
DDE and SQD have been applied to reduce the residual ISI.
The results of 100 experiments have been averaged, and results
obtained with the optimum step size (the one resulting in the
fastest stable convergence) are plotted. The proposed method
again converges faster than DDE in this situation; furthermore,
it reaches a lower residual ISI.

C. Soft Switch Between Blind and Decision-Directed
Equalization

The proposed method has the ability to implement a soft
transition between blind and decision-directed-like equaliza-
tion using (26) and (27) to adaptively control the kernel size.
The compensation factor F'(o) plays an important role in
this strategy because it allows exact gain identification during
the whole process, independent of the current kernel size.
F(o) can be easily precomputed for any modulation. In this
case, it has been evaluated by means of a look-up table. Now,
the performance of the proposed method is compared with
the following methods: CMA, Benveniste-Goursat (labeled
BG), the DM-CMA, which adaptively decides between CMA
and RDE at each iteration, and its Stop-And-Go extension
(SAG-DM-CMA).

To avoid the known sensitivity of the BG method to phase
rotation, in this example, we used channel H»(z), which is a
channel without phase rotation. The following parameters have
been selected: & = 0.995 and step sizes be — 5,2e — 4,2e —
5,6e—>5, and 3e —4 for CMA, BG, DM-CMA, SAG-DM-CMA,
and the proposed method, respectively (the optimal values in
terms of convergence speed and stability obtained by cross-val-
idation). F/; has been initialized to start with a kernel size o1 =
15. In addition, k; = 4 and ks = 1 have been employed for BG
(recommended values in [24] for digital TV channels). Fig. 5
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compares the mean convergence curves in 100 Monte Carlo sim-
ulations for a noiseless case. The SQD is, along with CMA, the
fastest method in the initial blind stage. After the initial con-
vergence, CMA is not able to reduce the residual ISI, unlike the
other methods. At this stage, the proposed method becomes sim-
ilar to DM-CMA and SAG-DM-CMA, whereas the BG method
is clearly the slowest one. On the other hand, all these methods
provide an equivalent final accuracy.

For a noisy environment, the proposed method exhibits
a clearly better behavior. Fig. 6 compares the convergence
in 100 Monte Carlo simulations for a SNR of 30 dB and
channel Hy(z). The optimal step sizes in this case are
S5e — 5,2e — 4,2¢ — 5,1.5e — 5, and le — 4 for CMA,
BG, DM-CMA, SAG-DM-CMA, and the proposed method,
respectively (optimal in terms of convergence speed and sta-
bility). In this case, with respect to the CMA, the proposed
method exhibits a similar rate of convergence in the blind
mode. Again, it obtains a lower residual error. With respect to
the other methods, the SQD converges faster than all of them
obtaining a lower residual error (of course, the other methods
are capable of obtaining this residual ISI level but at the cost of
even slower convergence).

This advantage becomes even more pronounced at
lower SNRs. Fig. 7 shows the convergence curves for
SNR 15 dB. The optimal step sizes in this case are
2.5e — 5,1e — 4,2e — 5,1.5e — 5, and le — 4 for CMA, BG,
DM-CMA, SAG-DM-CMA, and SQD, respectively. The ad-
vantage is more evident in this case, especially when compared
with SAG-DM-CMA; this algorithm showed to be the more
noise sensitive.

Finally, if a phase rotation is included, the performance of the
BG method is clearly slowed down. This does not happen with
the other methods in this comparison (including the proposed
one), which are phase-rotation invariant. To avoid including this
sensitivity in the comparison, the plotted results correspond to a
channel without phase rotation. We want to remark that the im-
proved performance of the proposed method has been observed
in many different channels.
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VI. CONCLUSION

A new method for blind equalization of multilevel modu-
lations has been proposed. This method forces the pdf at the
equalizer output to match that of the known constellation by em-
ploying the Parzen window method to estimate the data pdf. The
kernel size of the Parzen method controls both the convergence
speed and the accuracy of the final solution. To minimize the
computational burden, which facilitates the online implemen-
tation, a stochastic gradient descent algorithm has been devel-
oped.

The proposed method has been compared with CMA,
showing several advantages for multilevel signals. First, it
converges faster than CMA by using a large kernel size until
the eye of the constellation is opened. Second, after the initial
convergence a small kernel size allows the reduction of the
residual error, unlike CMA (this is the main reason to use dual
mode switching techniques). In this case, it also outperforms
decision-directed equalization in noisy environments. Con-
sequently, the proposed method can be used as a dual mode
technique, with the advantage of only requiring a change in the

kernel size instead of a change in the algorithm. This feature
makes the implementation of the dual mode switching much
easier than in conventional CMA-based dual mode switching
methods.

The adaptive kernel size produces a soft transition from blind
to decision-directed equalization. The kernel size is progres-
sively reduced as convergence is achieved, thus combining the
convergence speed and the low residual error properties of the
method. This approach was shown to behave better than the
Benveniste-Goursat, DM-CMA, and SAG-DM-CMA methods.
Moreover, the error measure (26) to control the kernel size en-
dows the proposed method with the ability to recover from a
drastic change in the channel, as compared to the above men-
tioned methods.

In the paper, we focused on L = 1 to work in a one sample
basis. For L > 1, the proposed algorithm has a similar be-
havior but with a higher computational burden. However, the
scaling-down of the constellation for large kernel sizes tends to
disappear (for L > 10 is not further noticeable).
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