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Image Construction Methods for Phased Array
Magnetic Resonance Imaging
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Purpose: To study image construction in phased array
magnetic resonance imaging (MRI) systems from a statis-
tical signal processing point of view.

Materials and Methods: Three new approaches for image
combination with multiple coils are proposed: 1) one based
on the singular value decomposition of the measurement
matrix, which is asymptotically optimal in the signal-to-
noise ratio sense; 2) one based on a maximum-likelihood
formulation, incorporating a priori information on the coil
sensitivities in a Bayesian manner; and 3) one based on a
least-squares formulation, which incorporates a smooth-
ness constraint on the coil sensitivities.

Results: Numerical examples using synthetic and real data
are presented to illustrate the performance of these new
approaches. Results on the synthetic data show improve-
ment in signal-to-error ratio, while results on the real data
(a 4.7 T four-coil image of a cat spinal cord) show that the
proposed methods can improve the SNR in the final image
by up to 3 dB in the regions of interest compared to con-
ventional sum-of-squares processing.

Conclusion: It is demonstrated that phased array MRI re-
construction performance can be improved by the use of
more elaborate statistical signal processing algorithms.
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age reconstruction; phased-array MRI; singular value de-
composition, MR image reconstruction; least-squares, MR
image reconstruction
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MAGNETIC RESONANCE IMAGING (MRI) as a nonin-
vasive diagnostic tool is one of the most significant
breakthroughs experienced by the medical community
during the past century. Conventionally, MRI has pri-

marily been used for imaging of static scenarios, but
recently it has also been used with great success for
imaging time-varying processes. An important applica-
tion of dynamic MRI is imaging of the heart and moni-
toring of cardiac diseases (1). Another example of dy-
namic imaging is functional MRI (fMRI), where the time-
variability of certain chemical compositions—for
example, in the brain—is investigated when the patient
is subjected to an external stimulus. For these applica-
tions, the image acquisition speed is a critical limiting
factor.

While MRI originally involved a strong magnet and a
radio antenna (referred to as a coil), recent advances
introduced multiple coils, called phased array coils. The
phased array coils bring at least two benefits: first, by
appropriately combining the signals from different
coils, the signal-to-noise ratio (SNR) and the image
quality can be improved; second, by using proper
phased array imaging techniques, imaging times can be
reduced significantly, therefore increasing cost-effec-
tiveness, reducing motion artifacts, and decreasing the
discomfort for patients. In addition, it is usually possi-
ble to trade image quality against acquisition speed.
One of the first phased-array MRI systems was imple-
mented and studied by Roemer et al (2), but the idea of
using multiple coils can be traced further back (3). A
complete treatment of the history of phased array im-
aging is outside the scope of this discussion, but rep-
resentative examples of early work include can be found
in the literature (4–8); a good summary of this litera-
ture is provided by Wright and Wald (9). More recently,
a substantial body of research has focused on sophis-
ticated techniques for phase encoding together with the
use of gradient coils (with the primary aim of increasing
the imaging speed). This work includes the sensitivity
encoding for fast MRI (SENSE) technique (10) and its
extensions (11), along with the related simultaneous
acquisition of spatial harmonics (SMASH) method (12–
15), as well as the partially parallel imaging with local-
ized sensitivities (PILS) technique (16).

The literature on phased array MRI thus far does not
approach the problem of image reconstruction using
measurements from multiple coils from a statistical
signal processing standpoint. The main objective of this
study was to study the phased-array imaging problem
in a statistical signal processing framework, and to
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discuss some difficulties associated with this approach.
In conjunction with this goal, three image combination
methods that are optimal in either the least-squares
sense or the maximum-likelihood sense are presented.
These proposed methods exploit the observed (or
known) statistical and structural properties of the spa-
tial coil sensitivity profiles. Our goal is to identify alter-
native image reconstruction algorithms that can im-
prove SNR in the reconstructed images; thus, this
paper does not deal with the imaging speed issues.

MATERIALS AND METHODS

Phased Array Signal Model

The physics underlying MRI is described by a vector
differential equation called the Bloch equation (17). Af-
ter appropriate sampling and transformation proce-
dures, it can be shown that, for the kth coil, the com-
plex-valued received signal sk(i,j) at spatial coordinates
(i,j) is given by (18–20):

sk�i,j� � ��i,j�ck�i,j� � nk�i,j� (1)

where �(i,j) is the desired image intensity, ck(i,j) is the
complex-valued coil sensitivity, and nk(i,j) is complex-
valued (Gaussian), wide sense stationary (WSS), zero-
mean, spatially white noise, which is possibly corre-
lated across coils with covariance matrix Q
(spatiotemporally constant due to the WSS assump-
tion) (2,21,22). Note that the noise correlation, if prop-
erly compensated for, does not pose a limitation to the
achievable image quality (23). In this signal model, the
specific values of the coil sensitivities are, in general,
not known. However, some a priori knowledge in the
form of statistical distributions or structural con-
straints (such as spatial smoothness) may be available.

Known Coil Sensitivities

It is well-known in the statistical signal processing lit-
erature that for complex-valued received signals, as-
suming that the coil sensitivities are known, the SNR-
optimal linear combination of the measurements for
estimating �(i,j) is given by:

�̂�i,j� �
cH�i,j�Q�1s�i,j�
cH�i,j�Q�1c�i,j�

(2)

where H denotes the conjugate-transpose (Hermitian)
operation, c(i,j) is the vector of coil sensitivities, and
s(i,j) is the vector of measurements for pixel (i,j). The
SNR-optimality of this reconstruction method among
all linear combiners can be proved, for example, by
applying the Cauchy-Schwartz inequality (24), and the
SNR for this reconstruction method can be determined
to be ���2�c�2/�2, where �2 is the noise power (of both real
and imaginary parts).

Unknown Coil Sensitivities

In practice, the coil sensitivities c(i,j) are unknown. Fur-
thermore, they depend on the coupling between the
receiver and the sample; therefore, they are often hard

to determine accurately via electromagnetic theory or
calibration, in particular for high field strengths.

In the case of unknown coil sensitivities, perhaps the
most commonly used reconstruction technique is sum-
of-squares (SoS). With this method, the data is first
pre-whitened with Q-1/2 to eliminate the noise covari-
ance. For SoS, the reconstructed pixel value is therefore
given by:

�̂�i,j� � �sH�i,j�s�i,j��1/2 (3)

Clearly, as the noise power approaches to zero, the SoS
estimate approaches �̂�i, j� � � ��i, j���cH�i, j�c�i, j��1/ 2, and
hence it yields, in general, a biased estimate. Although
this bias is clearly spatially varying, because the mag-
nitude of the complex valued coil sensitivity is spatially
varying, in general, the asymptotic SNR for SoS can be
found to be identical to that of the optimal linear com-
biner (25), which is an appealing property.

A number of techniques for phased array image con-
struction have appeared during the last decade. For
example, as an alternative to SoS, Debbins et al (26)
suggested adding the images coherently after their rel-
ative phases are properly adjusted. Bydder et al (27)
proposed a method that attempts to estimate the coil
sensitivities from the image; although the resulting im-
age has somewhat less variance than SoS, it still suffers
from bias. Kellman and McVeigh (28) proposed a
method that can use the degrees of freedom inherent to
the phased array for ghost artifact cancellation. Walsh
et al (29) proposed an algorithm to improve SNR using
an adaptive filtering framework. However, despite the
innovative techniques presented in these papers, a fully
optimal image recombination method for unknown coil
sensitivities appears yet to be discovered.

Reconstruction Methods Using Prior Information
on Coil Sensitivities

In this section, we present three image reconstruction
methods for phased array MRI that are optimal in the
least-squares or maximum-likelihood sense. To this
end, one of the following two assumptions will be made:

A1. The coil sensitivities remain approximately con-
stant over a small region � consisting of N pixels,
i.e., c(i,j) � c for (i,j) ��.

A2. The coil sensitivity profiles vary smoothly with the
spatial location, within the regions of interest.

In order to justify these assumptions, consider the
images of a cat spinal cord shown in Fig. 1a–d taken
using the four-coil phased array shown in Fig. 1e (4.7 T,
TR � 1000 msec, TE � 15 msec, field of view [FOV] �
10 � 5 cm, matrix � 256 � 128, slice thickness � 2
mm, sweep width � 26 kHz, one average). Regarding
SoS as a linear combination methodology, the equiva-
lent coil sensitivity estimates produced by this algo-
rithm are found to be:

ĉ�i,j� � s�i,j��sH�i,j�s�i,j���1/2 (4)

These estimated coil sensitivity profiles generated by
SoS are also shown in Fig. 1f–i, as well as the recon-
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structed image estimate (Fig. 1j). Notice in Fig. 1f–i that
the four spatial coil sensitivity profiles exhibit a quite
smooth behavior as a function of the spatial coordi-
nates.

A similar structural behavior of the coil sensitivity
profiles has also been observed in images of various
other objects, including phantoms and human tissues.
This observation is the main motivation behind the two
assumptions stated above. The three reconstruction
methods that are proposed below take advantage of this
structural quality of the coil sensitivities over space to
generate optimal results in a statistical array signal
processing framework under the assumptions stated.

Singular Value Decomposition (SVD)

For a phased array imaging system consisting of nc

coils, under assumption A1 the data model for some
small region � simplifies to the following vector-matrix
equation:

S � �cT � N (5)

where � is the vector of pixel values in the region, S
� 	s1 . . . snc
 is the measurement matrix of size Nxnc,
and N is the noise matrix (of the same size as S) con-
sisting of independent samples across pixels, but pos-
sibly correlated across coils.

In the ideal noise-free case, S has rank one, and the
left and right singular vectors of S are � and c, respec-
tively. However, the presence of noise increases the
rank of S; hence, the left singular vector and the right
singular vector corresponding to the maximum singu-

lar value will yield the least squares estimates of � and
c (24). Specifically, if

S � 	u1 . . . unc
� �1 0 0
0 ··· 0
0 0 �nc

�� v1
T

···
vnc

T � � U ¥ VT (6)

is the SVD of S, then u1 and v1 minimize �S � u1�1v1
T�2 (in

Eq. [6], U and V are orthonormal singular vector matri-
ces and � is a diagonal matrix that contains the singu-
lar values in descending order). The unit-power esti-
mate of the image in region � is therefore �̂�u1 and the
corresponding coil sensitivity vector estimate for this
region is ĉ � ¥ 1/2v1. Obviously, the scale factor con-
tained in the first singular value could be distributed
between � and c in infinitely many ways, resulting in a
scale ambiguity for the image in this region. This prob-
lem could be solved, for example, by using the scale
factor obtained via the SoS solution for this region, or
by using techniques borrowed from Murakami et al
(30). The procedure must be repeated for all regions in
the whole image. Using eigenvalue perturbation theory,
the asymptotic SNR of this method can be found to be
identical to that of optimal linear combining. The sec-
ond assumption used in this approach (besides A1) is
A3: The measurement matrix has an effective rank of
one. Effectively, this is equivalent to assuming that the
coil measurement SNR levels are sufficiently high. In
the noise-free measurement case, A1 implies A3.

In order to demonstrate the validity of this assump-
tion, we resort to the same cat spinal cord image exam-
ple shown in Fig. 1. Figure 2a shows the histogram of

Figure 1. The image obtained from coil 1 (a), coil 2 (b), coil 3 (c), and coil 4 (d), where the measurements are obtained using the
phased array shown in e. The coil sensitivity estimates for coil 1 (f), coil 2 (g), coil 3 (h), and coil 4 (i), and the reconstructed image
obtained using the SoS reconstruction method (j).
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the ratio between the largest singular value of the local
measurement matrix to the mean of the other three
singular values (there are four singular values because
there are four coils). Because there are very few small
singular value ratios, we conclude that in most local
regions the rank-one measurement matrix assumption
accurately holds. In fact, the noise-only regions domi-
nantly contribute to the small singular-value-ratios. To
illustrate this fact, in Fig. 2b we also present the sin-
gular-value-ratio as a function of spatial coordinate for
the cat-spine image, using 5 � 5 square local regions.

Bayesian Maximum-Likelihood (ML)
Reconstruction

The Bayesian ML reconstruction approach also relies
on assumption A1; therefore, it operates on a set of
small regions that constitute a partitioning for the
whole image. In addition, any available statistical infor-
mation about the coil sensitivities and noise in the form
of probability distribution functions (pdf) are incorpo-
rated in the formulation. This is stated formally in the
following assumption. A4: Sufficiently accurate a priori
information regarding the probability distribution func-
tion of the coil sensitivities and the additive measure-
ment noise is available.

The principle behind ML reconstruction is to maxi-
mize the a posteriori probability of the observed data
given the image pixel values, and is formulated in the
following optimization problem:

�̂ � arg max
�

p�S��� ��p�S,c���dc ��p�S�c,��p�c�dc (7)

Here, p�S��) is the conditional pdf of the measurement
matrix given the image, p�S,c��) is the joint pdf of the
measurement matrix and the coil sensitivity vector con-
ditioned on the image, p�S�c,�� is the conditional pdf of
the measurement matrix given the coil sensitivity vector
and the image, and finally, p(c) is the pdf of the coil

sensitivity vector.1 Assuming that the noise in the mea-
surements is jointly Gaussian, we have:

p�S�c,�� � 
�Nnc�Q��nc exp(���S � �cT�Q�1/2�2) (8)

A Gaussian noise distribution can often be justified by
invoking the central limit theorem (31). In addition, ML
formulations with Gaussian disturbance terms tend to
give rise to mathematically convenient expressions, of-
ten in a least-squares form, which are often intuitively
appealing. (For instance, it is not hard to show that the
max-SNR reconstruction of Eq. [2] is equivalent to ML if
the noise is Gaussian.) If we further assume that the
density of c is also Gaussian with mean � and covari-
ance �, the conditional pdf of the observed data be-
comes:2

p�S��� � �
��N�1�nc�Q��nc����1)�exp(��(S � �cT�Q�1/2�2

� ���1/2�c � ���2) (9)

The incorporation of a priori knowledge about model
parameters via Bayesian statistics has the advantage
that the uncertainty in the value can be controlled by
adjusting the covariance matrix �. For example, a sit-
uation with little initial knowledge about the value of c
can be represented by a matrix � with large eigenval-
ues. On the other hand, setting � � 0 results in a
least-square optimal estimation of � corresponding to
c � �. A fixed-point algorithm for maximizing the quan-
tity in Eq. [9] is described in Appendix A.

1Note that if a priori information about � is available (which is however
unlikely) in the form of a pdf, p(�), it can be incorporated in the optimi-
zation problem in EQ. [7] by multiplying it with p(S��) to result in a
reconstruction that is optimal in the maximum a posteriori (MAP)
sense.
2The randomness assumption for c emanates from the fact that it is a
spatially varying unknown parameter. In Bayesian estimation theory,
unknown deterministic parameters are typically treated as random
variables.

Figure 2. The ratio of the
maximum singular value to
the average of the smaller
three singular values of the
measurement matrices for
5 � 5 non-overlapping re-
gions summarized in a histo-
gram (a) and depicted as a
spatial distribution over the
image (b) with grayscale val-
ues assigned in log10 scale,
with brighter values repre-
senting higher ratios.

Statistical Signal Processing for MRI 309



In an MRI application, we may obtain � and c either
via analytical modeling of the electromagnetic fields as-
sociated with the coils, or via calibration scans of a
phantom with known contrasts; by modulating the pa-
rameter �, we can directly influence the accuracy of the
prior knowledge of c. Such efforts to compute the coil
sensitivity patterns must use the “finite-difference
time-domain” (FDTD) method, which is a computa-
tional method to solve Maxwell’s equations. FDTD di-
vides the problem space into rectangular cells, called
Yee-cells, and uses discrete time-steps (32,33). This
approach has been successfully employed to compute
the sensitivity patterns of transmit and receive coils for
MRI (34). The noise covariance, on the other hand, can
be estimated from the coil images using portions of the
frame that do not have any signal.

Because a closed-form expression for the solution of
this reconstruction algorithm is not available, it is dif-
ficult to obtain an asymptotic SNR expression. Never-
theless, because the solution is the fixed-point of the
iterations given in Appendix A, perturbation methods
could be used to obtain an SNR expression, possibly
after tedious calculations:

J��,c1,. . .,cnc� � �1 � �1 � �2 � �3�J0��,c1,. . .,cnc�

� �1J1�c1,. . .,cnc� � �2J2�c1,. . .,cnc� � �3J3���

J0��,c1,. . .,cnc� � �
k�1

nc �
i�1

M1 �
j�1

M2

	sk�i,j� � ��i,j�ck�i,j�
2

� �
k�1

nc

�sk � � o ck�2

J1�c1,. . .,cnc� � �
k�1

nc �
i�2

M1 �
j�1

M2

	ck�i,j� � ck�i � 1,j�
2

� �
k�1

nc �
i�1

M1 �
j�2

M2

	ck�i,j� � ck�i,j � 1�
2

� �
k�1

nc

��A1ck�2 � �A2ck
T�2�

J2�c1,. . .,cnc� � �
k�1

nc �
i�3

M1 �
j�1

M2 � ck�i,j� � 2ck�i � 1,j�
� ck�i � 2,j� �2

� �
k�1

nc �
i�1

M1 �
j�3

M2 � ck�i,j� � 2ck�i,j � 1�
� ck�i,j � 2� �2

� �
k�1

nc

��B1ck�2 � �B2ck
T�2�

J3��� � �
i�1

M1 �
j�1

M2

	��i,j�
2 � ���2 (10)

Least Squares (LS) with Smoothness Penalty

Given the measurement model in Eq. [1] and assump-
tion A2, a simple and intuitive approach is to solve a
penalized LS problem to reconstruct the image from the
coil measurements. Recall that LS methods coincide

with ML if the error is Gaussian. A natural smoothness
penalty function is one that attempts to minimize the
first and second order spatial derivatives of the coil
sensitivities. However, such an approach alone does
not solve the problem, because the optimal solution of a
penalized LS criterion tends to yield images with large
intensity. This is so because decreasing the amplitude
of the coil sensitivity profile decreases its derivatives as
well, causing the reconstructed image to be scaled up
by the same amount. Therefore, it appears necessary to
also impose a penalty on the total energy of the image.
The resulting penalized least squares criterion, which
has to be minimized to obtain the optimal recon-
structed image, is given in Eq. [10], where � now de-
notes the vector of pixel values for the whole image;
hence, no partitioning is required here. Note that the
penalty term in this LS formulation can be interpreted
as a Bayesian prior on the smoothness in conjunction
with the form in Eq. [A.1]) (35).3 In general, LS criteria
can be shown to be equivalent to the maximum likeli-
hood principle if the probability distributions under
consideration are Gaussian, or perhaps other symmet-
ric unimodal functions where the peak of the distribu-
tion corresponds to its mean value as well (36).

RESULTS

The performances of the proposed algorithms were first
evaluated using synthetic data. The data model for this
data is as follows. A random image consisting of nine
pixels whose jth pixel value is drawn from Uniform [j,j �
1] and then normalized such that the norm of the in-
tensity vector is unity, �T� � 1. The measurement vector
in each coil is obtained by sk � (� � � �ek)ck, where c �
[c1,. . .,c4]

T is the coil sensitivity vector (with each entry
selected from Uniform [0,1]), ek is zero-mean, unit-co-
variance Gaussian noise (also independent across
coils), and � is the SD of the additive noise determined
by the specific measurement SNR that is being simu-
lated.4 All four algorithms (SVD, ML, LS, and SoS) are
applied to this synthetic data in 20,000 Monte-Carlo
simulations for each measurement SNR level, where all
parameters are randomized as described above in every
trial.

The image intensity estimate vectors of all four algo-
rithms are normalized to unity such that in the com-
parison with the “ground truth” (which is available in
this setup) using signal-to-error ratio (SER) scaling er-
rors are not a factor. The SER is defined as SER (dB) �
101 log10(���2/�� � �̂�2), where �̂ is the normalized esti-
mate obtained using the corresponding algorithm. The
results of this Monte-Carlo experiment on the described

3More details on the relation between smoothness constraints and a
priori information via Bayesian statistics can be found in the literature
(34).
4Note that this is not a very realistic situation, because in actual MRI
the measurement SNR in a coil is also determined by its sensitivity
coefficient. In this example, however, the noise is added to the image
before coil sensitivity scaling is applied merely for convenience in rep-
resenting results (such that a single SNR value describes the data
quality). In fact, it will become evident in the application to real data
that statistical signal processing approaches benefit more from this
variability in measurement SNR of coils.
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synthetic data are presented in Fig. 3 in terms of aver-
age reconstruction SER vs. measurement SNR for all
algorithms. These experiments show that all four algo-
rithms asymptotically (as the SNR approaches infinity)
achieve equivalent reconstruction SER levels. For low
SNR, however, although SVD and SoS yield the same
level of SER performance, the ML and LS algorithms
provide a slight (about 0.6 dB) gain in SER.

As a second case study, all four algorithms are ap-
plied to the multiple coil images presented in Fig. 1a–d,
which are collected by the coil array shown in Fig. 1e
(with the previously specified measurement parame-
ters). For the two iterative methods (ML and LS), the
SoS estimate of the coil sensitivity profiles and image
intensities are utilized as initial conditions. In addition,
for both SVD and ML algorithms, 5 � 5 non-overlapping
regions in which the coil sensitivity is assumed to be
constant are used, and the scale ambiguity for the so-
lution of each region is resolved by normalizing the
power of the reconstructed signal for that region to that
of the SoS reconstruction. The ML algorithm uses a
noise covariance estimate Q obtained from a purely
noise region of the coil images, and in an ad-hoc man-
ner, the covariance of the coil sensitivity distribution is

assumed to be � � I. Also quite heuristically, in the LS
algorithm, all three weight parameters are set to �i �
0.1.5 In phased array MRI, the quality of reconstructed
images is often quantified by SNR, as the “true” image is
usually unknown.6 The reconstructed images obtained
by these four methods, as well as the estimated local
SNR levels of these reconstructed images are presented
in Fig. 4. By comparing the SNR estimates in Fig. 4e–h,
we observe that the SVD and SoS methods, in general,
produce images with equal SNR levels (although SVD is
observed to be more sensitive to noise and measure-
ment artifacts as discussed below), whereas the ML
approach improves the SNR by up to 2 dB and the LS
approach improves the SNR by up to 3 dB over the
performance of SoS.

At first look, a clear artifact in the SVD reconstructed
image shown in Fig. 4a is visible. Although this artifact
is not as visible in the other three reconstructed images
(Fig. 4b–d) due to the small size of the figures, on closer
look, we see that this horizontal artifact also exist in
these images. The reason for this artifact is identified as
a horizontal measurement artifact that exists in all four
coil measurements at that location (most strongly seen
in the first coil). This artifact, along with measurement
noise, is amplified in the SVD reconstruction method to
the highly visible level in Fig. 4a. The reason for this
amplification of noise and outliers can be understood
by investigating Fig. 2b. The ratios of the maximum
singular values to minimum ones are not as large in the
top half of the coil measurement image as the same
ratios in the bottom half of the image. Consequently, A3
is not as strongly satisfied in the top half as the bottom
half. This causes the SVD algorithm to pass the existing
measurement noise to the reconstructed image with
some amplification. The artifact in the measurements is
also amplified in the process.

DISCUSSION

Phased-array MRI research has experienced an in-
creased interest in the last decade due to the potential
gains in both imaging quality and acquisition speed.
Although many algorithms have been proposed for
phased-array MR image reconstruction, in addition to
the perhaps most commonly used sum-of-squares al-

5Experiments performed to establish an understanding of how these
parameters affect the reconstruction performance demonstrated that
extreme values (both in smaller and larger directions) degrade the
quality of the image. In general, the authors observed that for all three
coefficients values in the interval (0.05,0.1) are reasonable. Values
greater than 0.1 tend to overemphasize the penalty functions, while
values smaller than 0.05 do not provide sufficient smoothing.
6The SNR calculated here (given in dB scale) is the ratio of the power of
the reconstructed image intensity in the region of interest to the power
of the reconstructed image intensity in a reference region, which pre-
sumably consists only of noise. Under the spatially WSS noise assump-
tion, the SNR calculated using this method is on average equal to the
SNR�1 (in linear scale), where the latter is the conventional definition
common in the signal processing literature. In the examples shown in
Fig. 4, a rectangular region at the top left corner, which consists of pure
noise, is selected as the reference noise power region. The SNR in the
other rectangular regions, as shown in Fig. 4, are calculated by dividing
the signal power in the selected region by the noise power estimated
from the reference region. The values are then converted to decibels
using the 10log10(.) formula.

Figure 3. Performance of the four algorithms, SVD (circle), ML
(square), LS (star), and SoS (triangle), shown in terms of image
reconstruction SER (dB) vs. measurement SNR (dB). Clearly,
ML and LS perform almost identically outperforming SVD and
SoS, which also perform identically.
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gorithm, these approaches are not based on a statisti-
cal or optimal signal processing framework.

In this paper, the problem of combining images ob-
tained from multiple MRI coils is studied from a statis-
tical signal processing point of view with the goal of
improving SNR in the reconstructed images. In order to
pursue this approach, certain model assumptions
must be made. We developed a set of assumptions that
were observed to hold on data collected from real mea-
surements, and three alternative algorithms, stemming
from well-established statistical signal processing tech-
niques, and founded on these assumptions were pro-
posed.

Our new proposed methods, namely singular value de-
composition, maximum-likelihood, and least-squares
with smoothness penalty, were evaluated on synthetic
and real data collected from a four-coil phased array us-
ing a 4.7-T scanner for small animals. A quantitative
analysis of the reconstructed images obtained using mea-
surements of a cat spinal cord revealed that it is possible
to improve the quality of the final images (in terms of local
SNR) by up to 2 dB using the maximum-likelihood ap-
proach and up to 3 dB using the LS approach.

There are still unsolved issues, however. For exam-
ple, if the original measurements already have high
SNR, then the reconstructed image using SoS performs

Figure 4. The reconstructed im-
ages using SVD (a), ML (b), LS
(c), and SoS (d) approaches and
their estimated local SNR levels
SVD (e), ML (f), LS (g), and SoS
(h), where the top left region is
the noise reference. Notice that
in e–h, the SNR levels are over-
laid on the reconstructed image
of the corresponding method. To
prevent the numbers from
squeezing, these images are
stretched horizontally. The top
left corner of each image is used
as the noise power reference.
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close to maximum ratio combining (25); therefore a few
dB of gain in reconstruction SNR may not be visible to
the human eye. With the maximum-likelihood ap-
proach, we used the standard circular-Gaussian noise
model; yet, we ended up with a relatively complicated
expression that needs to be maximized. More accurate
statistical signal models might improve the perfor-
mance of our approach; nevertheless, computational
complexity is always a concern for MRI.

The SNR is a convenient and widely used quality
assessment instrument for MR images. The use of the
singular value decomposition and least-squares meth-
ods statistically make sense when this second order
quantity is utilized for quality assessment. On the other
hand, other quantitative measures such as signal-to-
contrast ratio might be more representative of image
quality as perceived by a human observer. In that case,
alternative optimization criteria for optimal reconstruc-
tion of the coil measurements must be derived. These
alternative criteria must be consistent with the desired
quality measure, as well as being sufficiently simple for
low-complexity optimization procedures to be practical.
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APPENDIX A

Maximizing the expression in Eq. [9] is difficult, or at
least computationally burdensome. Although it is pos-
sible to determine a closed-form expression for the gra-
dient with respect to �, we have used the argument of
the integral as an approximation to the whole expres-
sion:

F�c,�� � ��S � �cT�Q�1/2�2 � ���1/2�c � ���2 (A.1)

To maximize the term in Eq. [A1], we propose the fol-
lowing cyclic optimization algorithm, which minimizes
the criterion by alternately updating � and c:

1. Initialize � to 0, and � to �0. Select T and set i � 0.
Alternatively, � could be set to the SoS estimate of
c. Also, �0 can be set to the SoS reconstruction
result.

2. Compute c0 � arg minc F�c,�0�.
3. Let � � ci. Compute �i�1 � arg min� F�ci,�� and

ci�1 � arg minc F�c,�i�1�
4. If F�ci�1,�i�1� � F�ci,�i� � T go to 6.
5. Increment i and go to 3.
6. Assign �̂ � �i�1 and ĉ � ci�1.

Because Eq. [A1] is a quadratic function in both � and c,
we easily find that:

ci�1 � 	Tj
HTi � ��H/2��1/2]�1[Ti

HS̃ � ��H/2�̃

(A.2)

�i�1 � 	Bi
HBi


�1Bi
HS̃

where Ti � Q�T/2 ��i, Bi � �Q�T/2ci� � I, �̃ � ��1/2�, Ti

� Q�T/2 ��i, Bi � �Q�T/2ci� � I, �̃���1/2�, and S̃
� �Q�T/2 � I�	s1

T. . .snc

T 
T are defined using the Kronecker
product V.

APPENDIX B

The criterion in Eq. [10] can be minimized using stan-
dard optimization techniques (37). However, the func-
tion may have several local minima that can render the
reconstruction sub-optimal. One possible optimization
algorithm is the conjugate gradient (CG) method. The
gradient G of the cost function in Eq. [10] with respect
to the optimization variables W � 	�T,c1

T,. . .,cnc

T 
T is
given in Eq. [B1] where E denotes element-wise vector
product. In Eq. [B1], Ai and Bi are non-symmetric
sparse Toeplitz matrices that arise from the matrix for-
mulation of the first and second order differences. In
particular, A1 and A2 are (M1–1) � M1 and (M2–1) � M2

matrices with 1s on the main diagonal and –1s in the
first upper diagonal, and B1 and B2 are (M1–2) � M1 and
(M2–2) � M2 matrices with 1s on the main diagonal, –2s
in the first upper diagonal, and 1s in the second upper
diagonal. All other entries of these matrices are zeros.
Similar to the case of the Bayesian reconstruction al-
gorithm, obtaining an asymptotic SNR expression for
this algorithm should be possible although it is alge-
braically complicated:

G � �
�J/��
�J/�c1···
�J/�cnc

� � �1 � �1 � �2 � �3�G0

� �1G1 � �2G2 � �3G3

G0 � � �J0/��
�J0/�c1···
�J0/�cnc

� � � 2�
k�1

nc

	� o ck o ck � sk o ck


	c1 o � o � � s1 o �

···

	cnc o � o � � snc o �


�
G1 � �

�J1/��
�J1/�c1···
�J1/�cnc

� � �
0

2�A1
TA1c1 � c1A2

TA2�···
2�A1

TA1cnc � cncA2
TA2�

�
G2 � �

�J2/��
�J2/�c1···
�J2/�cnc

� � �
0

2�B1
TB1c1 � c1B2

TB2�···
2�B1

TB1cnc � cncB2
TB2�

�
G3 � �

�J3/��
�J3/�c1···
�J3/�cnc

� � �
2�
0
···
0

� (B.1)
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