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Abstract—This paper presents feature selection algorithms for
multilayer perceptrons (MLPs) and multiclass support vector
machines (SVMs), using mutual information between class labels
and classifier outputs, as an objective function. This objective
function involves inexpensive computation of information mea-
sures only on discrete variables; provides immunity to prior class
probabilities; and brackets the probability of error of the classifier.
The maximum output information (MOI) algorithms employ this
function for feature subset selection by greedy elimination and
directed search. The output of the MOI algorithms is a feature
subset of user-defined size and an associated trained classifier
(MLP/SVM). These algorithms compare favorably with a number
of other methods in terms of performance on various artificial and
real-world data sets.

Index Terms—Feature selection, multilayer perceptrons (MLPs),
mutual information, support vector machines (SVMs).

I. INTRODUCTION

ASUPERVISED learning algorithm attempts to induce a de-
cision rule from which to categorize examples of different

concepts by generalizing from a set of training examples. A crit-
ical ingredient of a successful attempt is to provide the learning
algorithm with an optimal description of the concepts. Since
one does not a priori know what attributes constitute this op-
timal description, a number of irrelevant and redundant features
are recorded. Many learning algorithms suffer from the curse
of dimensionality, i.e., the time and data requirements for suc-
cessful induction may grow very fast as the number of features
increases [5], [12]. Unnecessary features, in such a case, serve
only to increase the learning period. They add undesirable com-
plexity to the underlying probability distribution of the concept
label which the learning algorithm tries to capture.

John, Kohavi, and Pfleger [12] discuss notions of relevance
and irrelevance that partition the set of features into useful
degrees of dispensability. According to their definitions,
irrelevant features do not participate in defining the unknown
concepts, weakly relevant features possess redundant infor-
mation and can be eliminated if other features subsuming
this information are included, and strongly relevant features
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are indispensable. Given the task of selecting out of
features, as is decreased, one expects an ideal selection
algorithm to first discard irrelevant features, then redundant
features and finally start eliminating the strongly relevant
features according to the strength of their relevance. While this
is desired, it usually cannot be directly implemented as these
properties of features are hard to determine a priori. Thus,
the model selection problem (how many features) is usually
driven by external constraints like building compact classifiers,
data availability constraints or need for visualization in lower
dimensions. In this paper, we are concerned with developing
information-theoretic methods to address the optimal feature
subset selection problem given the number of features to select.

Guyon and Elisseeff [9] review several approaches toward
this problem advocated in machine learning literature. In the
filter approach, feature selection is independent of the learning
algorithm. Many filters detect irrelevant features by estimating
the importance of each feature independent of other features
[13], [15]. Other filters perform a more complex search over
multiple features in order to additionally identify and eliminate
redundancy [1]. In the wrapper approach, the objective function
for selection is a measure of classifier performance. Wrappers
typically involve expensive search routines and are considered
superior because they incorporate the inductive bias of the clas-
sifier [12].

Several information-theoretic solutions to this problem have
been proposed and may also be categorized as described above.
Filters like information gain, routinely used on very high-di-
mensional problems like text classification [28], use mutual in-
formation between a single feature and the class
variable , to estimate the relevance of feature . Yang and
Moody [27] select the two features that maximize the joint-mu-
tual information over all possible subsets of two
features and class labels. For optimization over more than two
variables, search heuristics are used. Battiti [1] proposes an al-
gorithm called mutual information feature selection (MIFS) that
greedily constructs the set of features with high-mutual infor-
mation with the class labels while trying to minimize the mu-
tual information among chosen features. Thus, the feature

included in the set maximizes
over all remaining features for some parameter . The max-
imum mutual information projection (MMIP) feature extractor,
developed by Bollacker [2], aims to find a linear transform by
maximizing, at each step, the mutual information between the
class variable and a single direction in the feature subspace or-
thogonal to previously found directions. The separated mutual
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information feature extractor (SMIFE) is a heuristic where a
matrix of joint mutual information between class variables and
each pair of features is constructed. Following an analogy with
principal component analysis (PCA), the eigenvectors of this
matrix are found and the principal components are then used
for feature transformation.

We observe two shortcomings of these methods. First, any
mutual information computation involving continuous fea-
tures demands large amounts of data and high-computational
complexity. Not only are features typically continuous, they
are often highly numerous in problems of interest in feature
selection. Secondly, all these methods are in the vein of the
filter approach. Their objective functions disregard the classi-
fier with which the selected features are to be used. As pointed
out in [1] “ , there is no guarantee that the optimal subset of
features will be processed in the optimal way by the learning
algorithm and by the operating classifier.”

In this paper, we address both these shortcomings simultane-
ously. We formulate an information theoretic objective function
that involves computation of mutual information only between
discrete random variables. This objective function is the mu-
tual information between the class labels and the discrete labels
output by the classifier. Since, in a typical classification task,
the number of classes is much smaller than the number of fea-
tures, this suggests substantial gains in efficiency. We discuss
theoretical justifications for using such an objective function in
terms of upper and lower bounds on the error probability of the
classifier, as well as justifications in terms of its merits as a per-
formance evaluation criterion.

This objective function is used to design wrappers to select
features out of for learning multilayer perceptrons (MLPs)

[18] and multiclass support vector machines (SVMs) [26]. Since
the objective function is the mutual information between class
labels and the output of the classifier, the class of algorithms
we present are called maximum output information (MOI) algo-
rithms. Indirect feature crediting is achieved through an output
side entropy evaluation. The MOI wrapper algorithm, imple-
mented for both SVMs (called MOI-SVM) and MLPs (called
MOI-MLP), then conducts a directed search by iteratively re-
fining the feature subset. It aims to discover a subset with which
the classifier delivers maximum information via its output. The
maximization of output information may be seen as an extension
of Linker’s infomax principle [14]: Each layer of a multilayered
perceptual network should strive to transmit maximum informa-
tion about its input to the next layer. The principle is now being
applied to the classifier as a whole, since we are interested in
evaluating a trained classifier. A key difference is that the infor-
mation measured here is information in the classifier output spe-
cific to a desired task. It may be noted that Linsker’s approach
in [14] was meant for unsupervised learning, where there could
be no task specific measures.

Additionally, we utilize the applicability of SVMs on very
high-dimensional classification problems, to design two vari-
ants of MOI based on greedy elimination. The sparsity of the
SVM solution is exploited in all these schemes.

The results presented in this paper illustrate the performance
of these algorithms on artificial and real-world data sets. Exper-

imental comparisons are made with several other methods for
feature selection.

II. AN INFORMATION THEORETIC OBJECTIVE FUNCTION

We consider the standard setting of the problem of pattern
classification. A pattern drawn from a set ,
constructed from the features , is associated
with a category whose label belongs to the set .
When given a training sample consisting of a finite number
of pairs of patterns and corresponding class labels (drawn ac-
cording to the underlying unknown joint probability distribu-
tion ), the supervised machine learning framework aims
to discover a function , from a hypothesis class of
functions, that exhibits good generalization on unseen patterns.
Let , be the discrete random variables
over describing the unknown true label and the label predicted
by the classifier respectively. (Note that discrete labels are often
obtained from real-valued outputs. We include this operation as
part of the classifier.)

Let be a subset of features, i.e, .
Let denote the restriction of on G, i.e, the class of func-
tions in that map to . The optimization problem we would
ideally like to solve, for selecting features out of , is the fol-
lowing:

(1)

where is the mutual information between and .
Since this is the average rate of information delivered by the
classifier via its output, we refer to this quantity as classifier
output information and sometimes also denote it by , in sub-
sequent discussion.

The inner maximization constitutes the problem of training
a classifier for a given set of input features. This is usually
done such as to minimize a training objective function related
to the error rate of the classifier, while the criterion above calls
for an information maximization. This section deals with the
relation between these two measures (probability of error and
output information) and the rationale for substituting one for the
other. The outer maximization deals with the feature selection
problem, once again with an information theoretic approach.
This will be addressed in the next section. Note that an optimiza-
tion over , the model selection problem, has been omitted as it
is often dependent on external factors like data availability and
resources available for implementing the classifier. We now dis-
cuss the estimation of on a labeled data set and then
argue in favor of such an information theoretic evaluation.

A. Estimation of Output Information

Given a classifier and a labeled data set, we may estimate
the information delivered by the classifier about the unknown
class label as follows. Let be the number of classes, let

be the confusion matrix, where is the number of times
over the labeled data set, an input pattern belonging to class
is classified by as belonging to class . Clearly, the diagonal
elements represent all the correct classifications while the
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off-diagonal terms represent the errors. Note that in what fol-
lows a summation over is a sum over values of , i.e., over
various rows of a given column of the confusion matrix. Simi-
larly, a summation over is a sum over values of , i.e., across
various columns of a given row of the confusion matrix. Both
variables are summed from . is the total
number of input samples. It is possible to estimate all relevant
probabilities using this matrix in order to estimate

as follows:

where is the empirical prior probability of class ;
is the frequency with which the classifier outputs

class , and (more conveniently written as
) is the empirical probability of the true label being class

when the classifier outputs class . The relevant empirical en-
tropies are now given by

and the estimated value of the mutual information between class
labels and classifier output is given in terms of above entropies,
simply by . Note that this mutual
information computation involves only discrete variables that
typically assume a small number of values.

B. Merits as an Evaluation Criterion

We now consider, briefly, the way output information
(or more conveniently ) differs from two widely

used criteria, the root mean square error (RMSE) and classifica-
tion accuracy (CA). The RMSE is very sensitive to the margin
by which a misclassification occurs and is often dominated by
outliers. It also penalizes correct classifications if the output
values do not exactly match the labels. It is this graded nature
of the RMSE that makes it a desirable objective function for
training but a bad choice for classifier performance evaluation.
On the other hand, both and CA are sensitive to the number
of misclassifications irrespective of the margins. This makes
them insensitive to the outlier and the residual error problem,
at the cost of making both nondifferentiable functions of the
classifier (e.g, MLPs or SVMs) parameters.

There are two other significant differences between on one
hand and both RMSE and CA on the other hand. takes into
account the input sampling bias, i.e., the fact that all classes
are not equally likely a priori. In real applications, it is quite

likely that there will be fewer data points for certain classes. For
such problems, classifiers can often reduce their initial RMSE,
or improve their initial CA, by learning to ignore the smaller
classes. , as an evaluation criterion, is immune to biased input
samples (though it does not in any way solve the problem of
training a classifier with such biased data).

The second major difference is the sensitivity of to the
pattern of errors. Neither RMSE nor CA take into account the
distribution of errors across various classes. This is a significant
issue for problems with a large number of classes. Consider the
confusion matrices for three class problems given below.

The classification accuracy for all cases is .
for case (c) is 0.82 bits indicating little prior uncertainty as com-
pared to for cases (a) and (b) where the
three classes have equal prior probability involving 20 exam-
ples in each. The observer can demonstrate good accuracy even
without the classifier in (c) by labeling all instances as class
3. As the confusion matrix shows, even without constructing
good decision boundaries for class 1 and class 2, the classi-
fier achieves a high-classification accuracy. However,

indicating that the underlying classification task has
not been solved by the classifier, whereas and

. The classifier performs better on (a) because
with the information that the classifier has output class 1 or 2,
the observer can be confident about the true class of the input.
In (b), when the classifier outputs class 1 or class 2 it maintains
slightly greater uncertainty than (a) by sometimes also claiming
for patterns of other classes. Notice that even though in (b), the
classifier output 3 is more reliable than that in (a), the classifier
overall performs better in (a) on account of greater reliability of
its class 1 and class 2 outputs. Information measures tend to put
a high premium on certainty. The third example, (c), shows how

takes into account, through the
term, the prior class distribution in determining the performance
of a classifier.

Consider a hypothetical binary classifier that classifies all in-
stance of class 1 as class 2 and vice versa. Such a classifier
has nil accuracy but delivers the very useful information that
its output implies the other class with no uncertainty. This clas-
sifier can be well utilized by a sentient observer who does not
take the output at face value, but rather uses the information
it delivers. The formulated objective function is capable of
taking this into account and is unique in this respect to the best
of our knowledge.

Finally, we compare to another information theoretic ob-
jective function, the output cross entropy [3], [20]. This measure
is actually closer in spirit to the RMSE than . It measures the
extent to which classifier outputs have converged to desired out-
puts, i.e., the residual approximation error. It does not depend
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on classification accuracy or the actual pattern of misclassifi-
cations. Due to its dependence on the approximation error, the
output cross entropy is a differentiable function of the classifier
parameters. In a similar vein, one may look for a differentiable
approximation of . In this paper, a different approach is used.
The nondifferentiable is used for evaluation, a differentiable
approximation (like MSE for MLPs) to classifier error rate is
used for training, and a link is established between the two to
show that minimization of error rate would lead to an approxi-
mate maximization of .

C. Relationship to Error Probability

Information-theoretic inequalities have been derived that es-
tablish a strong connection between the objective function de-
scribed above and the performance of the classifier in terms
of its error rate. Erdogmus and Principe [6] provide a family
of upper and lower bounds on the misclassification probability

of a classifier by applying Jensen’s inequalities in con-
junction with Renyi’s definitions of entropy and mutual infor-
mation [16]. The tightest upper and lower bounds in this family
involve only Shannon’s definitions [21], and are as follows:

(2)

(3)

where is the binary Shannon entropy,1

is the (Shannon) entropy of the distribution over erroneous
classes given that the classifier incorrectly outputs class . Note
that the lower bound is the familiar Fano bound [7], whose ex-
tension to an upper bound is made possible via Renyi’s defi-
nitions. The bounds can be suitably modified to exclude terms
involving and to be applicable to two-class problems [6].
Thus, the information transferred by the classifier ,
brackets its error rate from above and below.

Conversely, the error rate also brackets the quantity
. In particular, (2) may be rearranged as a lower bound

on , other terms remaining constant. The denominator term
prevents (3) from being used as an effective upper bound on .
One may consider the denominator to be highlighting the fact
that it is possible to deliver useful information about the class
labels without being accurate. Thus, a low-error rate guarantees
a high-information rate but a high-error rate does not rule out a
high-information rate.

The extended Fano inequalities (2), (3) theoretically confirm
the intuition that a classifier, optimal in the sense of minimum
error, maximizes the mutual information . Since typ-
ical training objective functions (like MSE in MLPs and margins
in SVMs) attempt to achieve minimal error rates, it is justifiable
(in that sense) to also use the minimization of training objective
functions to maximize .

1h(x) = �x log x � (1� x) log(1� x).

III. FEATURE SELECTION BY MOI

We now describe the components of the MOI algorithms that
heuristically solve the optimization problem (1). First, note that
the inner maximization in (1) requires training classifiers with

as the objective function. Since this function is not dif-
ferentiable with respect to classifier parameters, this problem
cannot be solved without resorting to nondifferentiable opti-
mization techniques like genetic algorithms. Differentiable sub-
stitutes such as cross-entropy [3], [20] may be used instead.
However, in this paper, our approach is to approximate the opti-
mization process rather than approximate the objective function.
This is done by replacing (1) by the following:

(4)

where is a classifier that has been trained using any con-
venient training objective function with the feature set . The
trained classifier is evaluated according to its output informa-
tion. In this paper, we are concerned with MLPs and multi-
class SVMs. The training objective function for MLPs is RMSE
and its minimization is performed using the popular error back-
propagation algorithm [18]. For SVMs, a quadratic optimization
problem is solved in order to maximize the margin of separa-
tion between examples of two classes either in the original input
space or in an implicitly mapped higher dimensional space by
the use of kernel functions [19], [26]. A common strategy to con-
struct multiclass SVMs is the one-against-rest approach where
a binary SVM is trained to separate each class from the other
classes. A test example is labeled according to the maximum
output among the binary SVMs [19].

Since the complexity (e.g., as measured by VC-dimension
[26]) of MLPs is proportional to the number of weights in the
network [5], a large number of irrelevant features construct
complex networks that may overfit the data and also make
the training algorithm more prone to local minima. SVMs,
on the other hand, are claimed to be able to overcome the
curse of dimensionality by maximizing the margin globally.
Additionally, the SVM solution is sparse, involving a small
subset of the training data [19], [26].

Such differences motivate different strategies for feature se-
lection in MLPs and SVMs. Whereas training MLPs in lower
dimensional feature spaces is preferable, intuitively, the capa-
bility to generalize well in very high-dimensional spaces sug-
gests that irrelevant features are implicitly identified in SVMs.
This provides a motivation to use SVMs for feature selection as
well as to apply such selection procedures to improve their own
performance. Also, nonlinear feature selection via different ker-
nels may be attempted. Feature selection may utilize only the
relevant examples as discovered by the SVM training to con-
struct a subset of relevant features. The MOI algorithms de-
scribed below attempt to utilize these facts about the nature of
the classifier.

A. Information Backpropagation

The problem of feature selection as formulated in (4) aims
to select a feature subset of required size from a full set of

features. Starting from a -sized feature subset , in (4)
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is obtained by training the classifier using the features in . We
use error backpropagation in MLPs and margin maximization in
SVMs, briefly mentioned before. These trained classifiers are
evaluated by their output information. In order to perform the
maximization of output information in (4), over all possible sub-
sets of size , we need to formulate a directed search algorithm
that iteratively refines . For this purpose, we need a reason-
able heuristic to assign, to each feature in , suitable credits for
the information delivered by the classifier trained on . This is
done by the information backpropagation heuristic described in
this section.

We visualize a trained classifier as transmitting information
across multiple layers of components; starting from the input
layer containing features to the output layer containing class in-
dicators, one of which fires when the classifier is shown a pat-
tern. The class indicators may be output neurons in an MLP or
individual binary SVMs in a multiclass SVM. We measure the
information transmitted by the trained classifier by evaluating
it on a test set and computing from the confusion matrix as
described in Section II-B. We then backpropagate this informa-
tion measure across the layers of components of the classifier
using a heuristic to measure how each component contributes
to the information flow. At the end of this credit distribution we
obtain an estimate of the contribution made by each feature.

Credit Assignment for Class Indicators: it is desirable that
the information credited to each class indicator be such that:
1) it reflect the difference in a priori uncertainty (prior to ob-
serving the output of the class indicator) and a-posteriori uncer-
tainty (after observing the output of the class indicator);. 2) it
reflect the frequency of firing of the indicator; and 3) the sum of
credits across the indicators should add up to . The first con-
dition ensures that class indicators that fire only for patterns of
a particular class are given more credit. Class indicators firing
for patterns of multiple classes cause observer uncertainty. The
second condition ensures that rarely firing class indicators get
less credit. Such indicators might be either specializing in rare
classes or failing to fire even when the input pattern is from their
class. The third condition is a normalization constraint.

The usefulness of the knowledge of the firing of a partic-
ular indicator can be measured relative to a hypothetical worst
case indicator whose firing only maintains maximum uncer-
tainty about the actual class. The uncertainty associated with
such an indicator is . The uncertainty about the class of a
pattern given that class indicator has fired is .
Thus, the usefulness of this indicator measured relative to the
worst case indicator can be written as

(5)

Each of the quantities involved can be easily estimated from the
confusion matrix. Note that we have dealt with the issue of a
priori uncertainty of a class indicator, which is not well defined,
by taking it to mean uncertainty prior to training. Intuitively,
this would imply the worst case class indicator as used in the
crediting above. This also ensures nonnegative credits and zero
credits for worst-case performance. Thus, the individual binary
SVMs in a multiclass SVM or the output neurons in an MLP are

credited for their contribution to information flow according to
(5).

Credit Assignment for Features: Backpropagating informa-
tion further, we need to distribute credits across the next layer
of components of the classifier. For SVMs we regard this layer
to be the features themselves; for MLPs, this layer is the outer
hidden layer. We are again guided by two considerations: 1)
credit assigned to a component must be proportional to the de-
gree of influence it has on the components it connects to; 2)
credits must be normalized to add up to .

This is implemented differently for SVMs and MLPs. Since
the generalization performance of an SVM is deeply related to
its margin [26], we compute the degree of influence of a feature
on an SVM by the sensitivity of the margin of the SVM to the
feature. The squared reciprocal of the margin of an SVM is given
by

where is the Lagrange multiplier and is the label corre-
sponding to the support vector ; and is the kernel func-
tion used [19], [26]. We compute the derivative based sensitivity
to feature in the following manner:

(6)

where is the feature in . We may now perform the
normalization step. Feature can be credited for the overall in-
formation flow according to

(7)

where indexes the SVMs and indexes the features; is
computed from (6) for feature and SVM ; and the information
credit of the SVM is calculated from (5). Recall that
in (5) is the output information of the multiclass SVM.

For MLPs, information backpropagation is performed across
the multiple hidden layers. Consider the neuron in the layer
indexed by and let the layer being fed by this layer be indexed
by . Denoting the output of a neuron in layer as and the
weight of the interconnection between neurons and as ,
we define the credit for neuron as

(8)

where we use the covariance as the
sensitivity measure. After using (5) to determine the credit for
each output layer neuron, one can use (8) to recursively compute
the credit for neurons in the nonoutput layers. In the end, the
layer containing the features is credited.

Note that we have assumed that components in a layer are
delivering mutually independent information so that feature
crediting involves simple additive arithmetic. To capture
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dependence between connected components, it would be
appropriate to compute their mutual information, given that we
have committed to use information measures. Instead, we have
used simple derivative and covariance based sensitivity so as
to be consistent with the objective of avoiding discretization of
continuous variables; and also to utilize the sparsity of the SVM
solution (which makes (6) involve very few training patterns
i.e only the support vectors). The error incurred in ignoring the
correlation between intralayer components is corrected to first
order by the requirement of normalization in each layer.

B. Algorithms

The information backpropagation heuristic described above
guides the directed search required to perform the maximization
in (4) by projecting the output information onto the
individual features in . We now describe the algorithms that
perform this directed search, in increasing order of their com-
plexity. Let denote the full set of
features, denote the training data set, denote a est
data set, , and denote the training and test
data sets restricted to the features in the subset .

Algorithm 1 MOI Pseudowrapper for SVMs

Require: 0 < K � N; D ; D

1: Train multiclass SVM on D . {Train using

all N

features. This identifies the support vectors and

corre-

sponding Lagrange multipliers for each binary

SVM.}

2: Estimate its I on D .

3: Assign Credits to each binary SVM by (5).

4: Assign Credits to each feature by (7).

5: Return best K features according to these

credits.

Algorithm 2 MOI Backward Elimination Wrapper for

SVMs

Require: 0 < K � N; D ; D

1: INITIALIZE: G = X {G is initialized as the

set of all N

features}

2: while jGj > K do

3: Train multiclass SVM on D (G).

4: Estimate its I on D (G).

5: Assign Credits to each binary SVM by (5).

6: Assign Credits to each feature by (7).

7: Eliminate worst feature according to these

credits, i.e,

G = G � fXg where X receives least credits in step

6.

8: end while

9: Return the multiclass SVM trained on the cur-

rent feature

subset.

Algorithm 3 The MOI Wrapper for SVMs and MLPs

Require: 0 < K � N; D ; D

1: INITIALIZE: G {A randomly selected subset of

size K.

For SVMs we use the MOI-P for initialization.}

2: INITIALIZE: RESET = 0

3: Train the classifier (MLP or SVM) on D (G).

4: Estimate its I on D (G).

5: If performance is satisfactory go to EXIT.

6: Obtain credits for each feature by information

backprop-

agation.

7: If G gives the best performance so far, set

Ĝ = G and

RESET = 0.

8: If there are untested features Replace the

least informative

current feature (according to the current

credits) by the

next untested feature.

9: If all features have been tried once—Determine

(a) the

best feature not currently being used and (b) the

worst

feature currently being used.

1) If Credit(a) > Credit(b): replace feature

(b) by (a)

in G and go to Step 2.

2) If Credit(a) < Credit(b) and Ĝ = G go to

EXIT.

3) If Credit(a) < Credit(b) and Ĝ 6= G�set G = Ĝ

and RESET = RESET + 1.

10: If RESET = 2 go to EXIT else Go to Step 3.

11: EXIT: Return the multiclass SVM trained on

the current

subset.

The MOI-pseudowrapper (MOI-P) algorithm (Algorithm 1)
relies on the ability of SVMs to generalize well in high-dimen-
sional spaces. The multiclass SVM is trained on the full set of
features. The amount of information it delivers about the class
labels using the full feature set, is estimated over a test set. Fea-
ture credits are obtained by information backpropagation. These
credits are used as relevance estimates similar to a filter. Thus,
no search routine is employed and the complexity of this algo-
rithm is roughly the complexity of training a single SVM on the
full feature set. In our experiments, we have used this scheme
as a filter for SVMs themselves.

The MOI-backward elimination (MOI-BE) algorithm (Algo-
rithm 2) implements the pseudowrapper approach recursively.
At each step, the worst feature is eliminated and an SVM with
one less feature is trained. Since, the algorithm uses better es-
timates at each step, we expect it to out-perform the filter ap-
proach. On the other hand, since features are greedily elimi-
nated with no backtracking, an incorrect elimination can be im-
mensely harmful down the recursion. Neither of these two wrap-
pers are feasible for MLPs since they rely on the performance on
the full feature set. This algorithm involves training
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multiclass SVMs with decreasing dimensionality. It may be de-
sirable to eliminate more than one feature at each step of the
recursion when dealing with very large data sets.

The MOI algorithm (Algorithm 3) trains classifiers with
features. Thus, it is suitable for feature selection in MLPs also
when is small enough. This algorithm has a backtracking
component and specializes in searching the space of subsets of
size , guided by information backpropagation. It is therefore
expected to outperform both the previous approaches. The key
steps of this directed search are Steps 3, 4, and 9 (1). The rest are
initialization and exception handling activities. For SVMs, the
initial -feature subset is constructed by the pseudowrapper,
whereas for MLPs we initiate randomly. Untested features are
given preference initially so that all features can be credited. The
directed search makes sense only after this has been achieved.
The search may terminate prematurely only if a satisfactory
classifier gets trained even before all features have been tried. At
each iteration only features have their credits updated. This
means that the feature credits are updated asynchronously (with
respect to each other). The credit associated with a feature de-
pends on the choice of other features used when it was last
selected. The choice of a new subset , based on these current
feature credits, is thus, only a good guess. The performance of
the classifier trained on is not guaranteed to be better than the
previous. Therefore, the is required to give MOI the ability to
backtrack if stuck in a inferior to some previous subset . The
RESET counter ensures that the algorithm terminates with that
best set if it is stuck in a limit cycle. The MOI algorithm needs
to train atmost -feature classifiers in order to
converge. In the worst case there will be iterations
to test every feature once, another iterations after the
first reset in which a new is found and itera-
tions to exit after being reset twice to this new . In most cases,
it requires far fewer iterations, usually less than .
Each iteration requires the classifier to be trained on the current
feature set. As stated before, the selection of the training objec-
tive function and training algorithm is made extraneous to MOI
by the approximation (4) and outside the scope of this paper.

The computation of , being based on only
numbers, is inexpensive. The information backpropagation
step needs to run once per iteration, on the trained classifier
only. The computation of all the covariances for MLPs can
be achieved in a single pass through the test data set, whereas
computation of the derivative based sensitivity for SVMs
requires a pass over the small set of support vectors. Thus,
the computation cost per iteration is dominated by the cost of
training a -feature classifier. In [10], the cost of training a

-feature MLP was (empirically) found to vary as . This
cubic dependence on input dimensionality makes MOI-MLP
computationally attractive vis-a-vis wrappers that require
training of networks with features before pruning down
to [11]. The cost of training an SVM is linear in
dimensionality [19]. Thus, the complexity of MOI-SVM and
MOI-BE are comparable.

IV. EXPERIMENTS

The MOI algorithms were tested on several standard data sets.
Detailed results on two artificial datasets are presented to illus-

trate the behavior, strengths, and weaknesses. Specific aspects
are analyzed and comparisons are made against several other
methods on real-world data sets.

A. Artificial Data Sets

1) Corral: The corral problem is an artificially constructed
problem created to test decision trees [12] and other feature se-
lectors. [4] discusses the relative merits of several feature selec-
tion algorithms on this insightful problem. There are six features
(all binary) and one binary class variable. The class is defined in
terms of the first four features as a Boolean function. The fifth
feature is irrelevant. The sixth feature is correlated to the target,
matching it in 75% of the data points.

For (all features), information backpropagation is
performed once. The point of interest is to see the credit as-
signed to the six features. The average information credited to
the six inputs by MOI-MLP over four random initializations are
0.217, 0.204, 0.222, 0.177, 0.083, and 0.086. The credits as-
signed by MOI-SVM (Gaussian Kernel, width parameter )
are 0.184, 0.175, 0.176, 0.190, 0.146, and 0.118. The four rele-
vant features are clearly credited more than the last two. Thus,
given all the features, MOI-MLP and MOI-SVM are able to rank
the highly correlated sixth feature and the irrelevant fifth feature
as lower than the first four (relevant) features.

For (reject one), the point of interest is to see which
input is rejected. The relevant features are always selected for
both MOI-MLP and MOI-SVM. Of the six possible initializa-
tions for MOI-MLP, feature 5 is rejected five times (leading to
95.3% performance on the validation set) and feature 6 once
(100%). For MOI-SVM, the initialization by MOI-P causes it
to reject feature 6 with 100% performance on the validation set.

For , we find MOI-MLP and MOI-SVM to always
converge to the set of relevant features (irrespective of the ini-
tialization for MOI-MLP). The credits assigned to features 5 and
6 by information backpropagation are more distinctively lower
than those assigned to the relevant features.

For , the optimal selection should be {1,2}, {3,4} or
{X,6}. It can be shown that in each case a 75% performance
should be achievable. However, due to bias in the output, it is
actually possible to achieve higher than 75% accuracy based
on {1,2} or {3,4}. The results for MOI-MLP with all possible
random initializations of 2-feature sets is as follows. The sets
{1,2} or {3,4} are picked 9 times, {X,6} is picked in 4 cases
and {1,4} is picked in two cases. The accuracies achieved are
81.3%, 78.1% and 68.8% on the validation set. On the other
hand, MOI-SVM as initialized by MOI-P, again converges to a
best set {3,4}.

For , both MOI-MLP and MOI-SVM converge on the
sixth input achieving a 75% accuracy. For the case,
this is in fact the (unique) optimal choice. In isolation, none
of the four relevant features can predict the output better than
chance. The information credits assigned to the six features, for
both MOI-MLP and MOI-SVM, are 0.105, 0.105, 0.105, 0.105,
0.000, 0.180. All four relevant features are equivalent, the irrel-
evant feature is useless and the correlated feature is the best.

The corral problem illustrates the ability of MOI to pick good
subsets for various . The process of elimination begins
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with the irrelevant and redundant features, but it can continue
beyond that if required. The second key point illustrated is that
the context dependency of the credits associated with the fea-
tures is desirable. The difference in credits for , 4, 1
reflects the utility of each feature in the context of obtaining
an optimal classifier with 6, 4, 1 features. The correlated fea-
ture (feature 6) is useless but benign for , its inclusion is
harmful for and it is the best input for . Another
interesting observation is that MOI-SVM is always well initial-
ized by MOI-P on this problem.

We now compare the behavior of MOI-P, MOI-BE, and
MOI-SVM. We find that for , for all these algorithms
return 100% performance on training and validation sets,
identifying the best feature subsets. For , MOI-P returns
the suboptimal set {1,4} and the performance on the validation
set is 68.75%, whereas MOI-BE and SVM-MOI are equal and
optimal. For , MOI-BE, having discarded feature 6 early
in the recursion, returns suboptimal performance relative to
MOI-SVM. Thus, our intuition is confirmed: In general, the
ability to backtrack makes MOI-SVM superior to MOI-BE,
which in turn improves upon MOI-P.

2) Parity: The parity problem studied here is a 15 feature
version, with five irrelevant features, five relevant features and
five redundant features. Each redundant feature is a duplicate
of a relevant feature. This problem has been examined to
show situations where MOI algorithms fail. We report only for
MOI-MLP, but the conclusions generalize to other algorithms.
When tested with , 7, 5, it is found that there is a
very large variance in the final performance. For certain initial
sets, MOI-MLP happens to pick up a set with five independent
relevant features and the classifier performs close to 100%. For
other initial sets, it fails to find such a set and the performance
of the final classifier is close to 50%. The failure of MOI
can be understood as follows. For the parity problem, the fall
in classifier performance for incorrect features is total. At a
performance close to random guesswork, . Thus,
as soon as such a set is picked during the iterative process,
all the current features receive 0.0 credits. In the absence
of graded credits, the directed search cannot function. The
algorithm iterates blindly and sometimes chances upon a good
set. (Thus, the “success” of MOI for the parity problem is due
to the density of good subsets among the total set of size
subsets rather than a successful directed search.) This situation
arises because the lack of a single feature can totally degrade
classifier performance for parity. For real problems, the absence
of a single feature seldom reduces the performance of a trained
classifier to chance level.

B. Real-World Data Sets

We have performed experiments on real world data sets drawn
from the UCI machine learning repository and subsets of the
Reuters-21 578 text collection [17]. Twelve data sets, six each
for MLPs and SVMs were selected and their particulars (number
of classes, features, training/test/validation splits, and the clas-
sifier parameters used) are listed in Table I and Table II. The
choice was made so as to facilitate comparisons with results
reported elsewhere. Separate sets were used for training the

TABLE III
COMPARATIVE PERFORMANCE OF MOI-MLP ON BREAST CANCER

(K : N denotes ratio of MLP accuracy with the selected K and all N

features.)

TABLE I
DATA SETS USED FOR MLPs

(xN denotesN random splits;K�X�Y denotes an architecture withK

features, X hidden layer neurons and Y output neurons)

TABLE II
DATA SETS USED FOR SVMs

(xN denotes N random splits)

TABLE IV
COMPARATIVE PERFORMANCE OF MOI-MLP ON VOTE

(K : N denotes ratio of accuracies with K and N features.)

classifier and for computing . The performance of the
final classifier was tested on an unseen validation data set. Sep-
arate validation sets were not used if three splittings caused
under-representation of any class. In some cases, results were
averaged over multiple random splits so as to match experi-
mental protocols used elsewhere. Due to the difference between
software packages used for training and unreported parameters,
the performance of the classifiers on the full set of features for a
data set often did not match across published results and our ex-
periments. In such cases, in order to focus on feature selection,
we report relative performance in terms of the ratio of accura-
cies obtained with the selected features and the full feature set.

C. Feature Selection in MLPs

1) Breast Cancer and Vote: Table III and IV compare the
performance of MOI-MLP with the NNFS [20] and the AN-
NIGMA [11] wrappers. These wrappers are reported to be the
best performing methods on these data sets, among a variety
of feature selection methods for MLPs explored in [11]. NNFS
uses a training objective function consisting of two terms, the
output cross-entropy and a penalty on the number of weights
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TABLE V
COMPARATIVE PERFORMANCE OF MOI-MLP ON DNA

Fig. 1. Comparative performance of MOI-MLP on vehicle.

in the network. The basis of feature selection in MLPs using
NNFS is therefore, network pruning. ANNIGMA implements
a directed search strategy based on crediting features according
to the weights associated with them. NNFS and ANNIGMA are
designed to also find an optimal ; we make a comparison with
the best two values of for MOI-MLP. The relative improve-
ment in MLP performance with feature selection is best using
MOI-MLP, on the breast cancer data set.

2) DNA: The DNA data set was used to compare the perfor-
mance of MOI-MLP with popular filters like information gain
(IG) [15] and -statistic (Chi) [25]. Another well known filter
relieff assigns a relevance weight to each feature based on its
capability to distinguish between nearest examples of the same
class and opposite classes [13]. Table V reports the performance
of an MLP trained with the filtered features using these methods
versus MOI-MLP. We find that MOI-MLP outperforms the fil-
ters for , 30, 11, and 3.

3) Vehicle: Fig. 1 plots the performance of MOI-MLP for
the entire range of feature selections and compares it with the
performance of an MLP trained on features provided by MIFS
(described in Section I) and a variety of feature transformation
methods, PCA, LDA [5], MMIP, and SMIFE (described in Sec-
tion I). MOI-MLP outperforms all other methods especially for
smaller values of K. For comparison, we have also plotted the
performance of MOI-P for an SVM. It can be seen that the SVM
performance is relatively unaffected by the presence of unneces-
sary features ( to ). A feature selection performed
by MOI-P indeed improves its performance (e.g, for ).

4) Landsat: Table VI compares the performance of
MOI-MLP with a number of other methods. Most methods are
able to improve upon the performance of the MLP with respect

TABLE VI
COMPARATIVE PERFORMANCE OF MOI-MLP ON LANDSAT

(First row reports performance on N features. Other rows report the ratio

of accuracies with K and with N features.)

TABLE VII
COMPARATIVE PERFORMANCE OF MOI-MLP ON SONAR

TABLE VIII
COMPARATIVE PERFORMANCE ON YEAST

(First row reports performance on N features. Other rows report the ratio

of accuracies with K and with N features.)

to its performance on the full feature set for moderate values of
. For , we find only SMIFE and MOI-MLP to maintain

improvements in performance.
5) Sonar: The results of MOI-MLP for this data set are pre-

sented in Table VII. For comparison, results reported in Battiti
[1] are also listed for MIFS, PCA, and random selection. The
last column confirms that the average number of iterations re-
quired for convergence scales linearly with .

D. Feature Selection in SVMs

1) Yeast: Table VIII lists the performance of MOI-P,
MOI-BE, and MOI-SVM and compares them with results using
the approximation of zero norm minimization(AROM) [24]
and the recursive feature elimination (RFE) methods reported
in [24]. AROM sets up linear programs to approximately
minimize the number of nonzero components of the SVM
weight vector under suitable constraints. RFE is very similar
to MOI-BE and performs margin based backward elimination.
MOI-SVM is the only algorithm that demonstrates relative
improvement for all selections attempted and outperforms
MOI-P and MOI-BE as expected. The comparison is not
rigorous since we train the multiclass SVM on lesser data using
gaussian kernels, and report the results averaged over eight
random data splits. In [24], eight-fold cross validation results
are reported on experiments using a linear kernel.

2) Vehicle: Fig. 2 compares the performance of the SVM
wrappers with classical feature transformation methods like
PCA and LDA and several popular filters. The shared variance
(SV) and gain ratio (GR) are normalized versions of the

-statistic and IG, respectively [25]. We find the multiclass
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Fig. 2. Comparative performance of SVM on VEHICLE.

Fig. 3. Comparative performance of SVM on LANDSAT.

SVM with LDA features to excel for , but LDA cannot
produce more than three features for this four-class problem.
For moderate feature selection ( to ) MOI-P,
MOI-BE, and MOI-SVM return identical performance. In this
domain, MOI-P is the best strategy since it is inexpensive and
performs just as well. For smaller values of , MOI-SVM is
able to select better features and the performance of MOI-BE
is bracketed between MOI-P and MOI-SVM. Observe that for

and , MOI-BE is actually worse than MOI-P.
This reiterates the harmful effect of relying on the performance
of SVMs successively trained with features that are greedily
eliminated.

3) Landsat: The Landsat data set is considered difficult for
greedy feature selection algorithms [23]. The objective here is
to compare MOI-P with statistical and information theoretic fil-
ters. We find, as shown in Fig. 3, MOI-P to compare favorably
for low to moderate feature selection ( to ),
but is outperformed for smaller values of . In this domain,
MOI-SVM is able to improve upon all the filters.

TABLE IX
PERFORMANCE ON THE REUTERS DATASET

(Classification Accuracy (CA) and Relative Output Information (R.O.I)

I(Y ;Y )=H(Y ))

4) Text Classification: We constructed three subsets of the
Reuters collection involving a very large number of features.
The first subset Reuters-1 comprises of articles on the topics
coffee, iron-steel and livestock. These topics are not likely to
have many meaningful overlapping words. The second subset
Reuters-2 contains articles on reserves, gold and gross national
product, likely to have similar words used in different contexts
across these topics. Reuters-3 was constructed to examine the
performance of MOI-P on even larger dimensionality. It con-
tains articles on the five most frequent Reuters categories: earn,
acq, money-fx, grain and crude. Each article was binary-en-
coded where each feature denoted whether a particular word oc-
curred in the article or not. As a preprocessing step, all articles
with more than 30% content numeric were excluded from the
dataset and words occurring less than three times in each dataset
were eliminated to remove extremely rare words. We compare
MOI-P against Information gain for drastic feature selection se-
lecting top 20% features [22].

As Table IX shows, with both IG and MOI-P, the classifier
maintains acceptable levels of performance on drastic feature
reduction. Recall that IG involves direct computation of mu-
tual information (MI) between the continuous inputs and desired
outputs. MOI-P involves i) an approximate optimization using
SVM training and ii) MI computation only at the output and in-
direct labeling of inputs. The results in Table IX validates the
appropriateness of both these approximations. As for resource
consumption, the major component of MOI-P runtime is the
training time of the binary SVMs with all the features. For the
largest dataset, Reuters-3, the training time had an average of
11 min per SVM. The feature crediting module is very quick
since it processes only the support vectors, which in Reuters-3,
average 475 per class. It is reasonable to hope to improve upon
these results using MOI-BE, eliminating multiple features per
step or by using MOI-SVM for more exhaustive selection.

V. CONCLUSION

We have proposed output information as a new in-
formation theoretic objective function for evaluating classifiers;
and demonstrated its utility for the task of feature selection in
MLPs and SVMs. This objective function is computationally in-
expensive and scalable, immune to bias in input distribution and
theoretically well founded. The MOI algorithms attempt to opti-
mize it by greedy feature elimination and directed search in the
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feature subset space. These algorithms incorporate useful prop-
erties of the classifiers and compare favorably with a number of
statistical and information-theoretic methods on several artifi-
cial and real world problems.
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