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Abstract—Blind deconvolution of linear channels is a funda-
mental signal processing problem that has immediate extensions
to multiple-channel applications. In this paper, we investigate the
suitability of a class of Parzen-window-based entropy estimates,
namely Renyi’s entropy, as a criterion for blind deconvolution of
linear channels. Comparisons between maximum and minimum
entropy approaches, as well as the effect of entropy order, equal-
izer length, sample size, and measurement noise on performance,
will be investigated through Monte Carlo simulations. The results
indicate that this nonparametric entropy estimation approach
outperforms the standard Bell–Sejnowski and normalized kur-
tosis algorithms in blind deconvolution. In addition, the solutions
using Shannon’s entropy were not optimal either for super- or
sub-Gaussian source densities.

Index Terms—Blind deconvolution, Parzen windowing, Renyi’s
entropy.

I. INTRODUCTION

B LIND signal processing has become an important contem-
porary research topic due to the wide range of engineering

applications that could benefit from such techniques. Online
principal components analysis (PCA) is probably the first
blind technique based on the second-order statistics of the
data [1]. An immediate extension of PCA is independent
component analysis (ICA) [2], [3], which seeks independence
between the separated components. An important class of
blind adaptation problems that predated ICA is single linear
channel deconvolution (or equalization) [4]–[7]. In a classic
paper, Donoho presented an overview of the initial approaches
taken to solve the blind deconvolution (BD) problem [6].
These methods were broadly identified as minimum entropy
deconvolution algorithms, in spite of the fact that none of the
approaches presented utilized an explicit estimate of entropy
from the samples. Instead, the algorithms concentrated on
higher order normalized cumulants of the signals, which
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mimicked the behavior of entropy when operated on by a linear
filter. Bussgang methods are an alternative classical way of
achieving BD through the use of nonlinearities [8].

A generalized class of blind signal processing problems that
encompasses both ICA and single-channel linear BD is linear
blind source separation (BSS). This general framework deals
with separating source signals that are filtered and mixed with
each other with an unknown mixing process. Since BSS might
involve convolutive mixtures, it is also sometimes referred
to as multichannel blind deconvolution [9]–[11], for which
closed-form solutions can be obtained using frequency-domain
methods [12]–[14]. The blind signal processing research on
multi-input multi-output channels finds applications in many
practical problems, multiple access communication systems
being the major target application [15]–[17].

The popular contemporary approach of tackling BD relies on
the higher order cumulants or spectra of the signals to achieve
the separation/deconvolution task [8], [18]–[20]. The main ex-
ception is the Bell–Sejnowski algorithm, which uses the maxi-
mization of Shannon’s entropy of the deconvolved outputs fol-
lowing a nonlinearity that is tuned to the cumulative density
function (cdf) of the source signal [21]. The utility of entropy-
based criteria is well known and studied in the BD literature
[4], [6], [8], [19], [21]–[25]. The main remaining problem is to
obtain robust and data-efficient estimates of this quantity. This
drawback is usually the reason for resorting to higher order cu-
mulants when approaching the BD problem. Although the non-
parametric estimation of Shannon’s entropy is a well-studied
area for which there exists abundant literature (see [26] for a
review), many of these methods are not suitable for adaptive
filtering. Since gradient-based methods form the backbone of
adaptation methods, a continuous and differentiable entropy es-
timator is useful for this purpose. This is why Parzen density
estimation [27] appears to be suitable for the task of entropy es-
timation in the context of adaptive filtering. Since Parzen win-
dowing is a consistent estimator, by simply plugging in the cor-
responding density estimate in the entropy definition, it is pos-
sible to directly obtain a plug-in entropy estimator, as termed
by Beirlant et al. [26]. In fact, such an estimator was employed
by Viola in the context of mutual-information manipulation of
images [28].

The combination of the Parzen density estimator (using
Gaussian kernels) with Renyi’s quadratic entropy has been
extensively studied by Principe and co-workers in the context
of blind source separation and information theoretic feature
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Fig. 1. Schematic diagram of (a) maximum (b) minimum entropy
deconvolution.

extraction.1 We are specifically interested in this entropy
estimator because recent studies showed that in instantaneous
BSS and feature extraction, it resulted in improved performance
and data efficiency [31]–[33]. These good results motivated the
investigation of the performance of this nonparametric Renyi’s
entropy estimator in adaptive BD.

Blind deconvolution of a linear channel can be achieved
both by maximizing and minimizing the output entropy of an
adaptive equalizer. The schematic diagrams of these approaches
are shown in Fig. 1. Here, denotes the unknown channel
impulse response, and denotes the finite impulse response
(FIR) equalizer impulse response. Besides the channel, the
actual source waveform is also unknown, except for its sta-
tistics. The task is to determine the inverse of the channel by
adapting the equalizer coefficients . This paper investigates
the performance of the Parzen-window-based nonparametric
estimator for Renyi’s entropy in solving the BD problem.
Since Renyi’s entropy includes Shannon’s as a special case, the
analysis will also provide a comparison of these two types of
entropy when estimated using the same plug-in methodology.2

Theoretical results that support the application of Renyi’s
entropy to BD, as well as simulations results that indicate the
effect of entropy order, adaptive filter length, sample size, and
measurement noise, will be presented in Sections II–V.

II. PARZEN-WINDOW-BASED NONPARAMETRIC RENYI’S

ENTROPY ESTIMATOR

A simple and useful plug-in estimator for Renyi’s entropy can
be obtained by substituting the Parzen window probability den-
sity function (pdf) estimate in the entropy definition. Suppose
that we are given the independent and identically distributed
(iid) samples of a random variable with the pdf

. The Parzen window estimate of this pdf, using the kernel
function , is given by

(1)

1It should be noted that the idea of combining Gaussian kernels with Renyi’s
quadratic entropy could be traced back to the early work of Frideman and Tukey
in projection pursuit [29], as well as in nonlinear dynamics [30].

2Various other entropy definitions are available. These are generally struc-
turally very similar to Renyi’s definition or are generalizations of Renyi’s en-
tropy [34]–[38]. In this paper, we specifically focus on Renyi’s entropy, as it is
the first generalization stemming from Shannon’s definition. However, future
work will be conducted on investigating the possible benefits that might be ob-
tained from utilizing alternative entropy definitions that are generalizations of
Renyi’s definition in blind deconvolution and other blind signal processing set-
tings.

where is the kernel size, which controls the tradeoff between
estimation bias and estimation variance [27]. Typically, the
kernel function is selected to be a zero-mean, symmetric, and
differentiable pdf. Renyi’s entropy of order for the random
variable , on the other hand, is defined as [39]

(2)

This is a parametric family of entropy measures that include
Shannon’s entropy definition as a limiting special case for

, which is observed easily by applying L’Hopital’s
rule (for other characteristic properties of Renyi’s entropy see
Appendix A). Shannon’s entropy for is defined as

(3)
When estimating these entropy measures from a finite number
of samples, where the source pdf is unknown, nonparametric
density estimates can be used. Specifically, approximating the
expectation operator with the sample mean and substituting the
Parzen window estimate in (2) and (3) for the pdf, nonpara-
metric Renyi’s entropy estimator becomes3

(4)
Similarly, the Parzen window estimator for Shannon’s entropy,
which is also the limit of (4) as , is

(5)

In adaptation scenarios where maximization or minimization
of Renyi’s entropy is required, the gradient of (4) or (5) with
respect to the weights of the adaptive system that generated the
samples of can be employed in a steepest ascent or descent
algorithm. These gradients, which are evaluated over a window
of samples, are given by (6), shown at the bottom of the next
page.

In offline adaptation (batch training), the complete training
set can be used in calculating every gradient update, whereas in
online adaptation, the gradients in (6) can be used with a sliding
window of samples over the signal. The computational com-
plexity (6) increases as , where is the number of sam-
ples in the window. Incidentally, a simpler update rule known as
the stochastic gradient approach, can be applied to the entropy
definition to obtain a stochastic information gradient (SIG) [40],
which has complexity. These stochastic gradient algo-
rithms, however, will increase the misadjustment of the weights
in an online setting.

3Since this estimator is based on the substitution of the consistent Parzen
window density estimate in Renyi’s entropy, the resulting nonparametric en-
tropy estimate is a plug-in type. Therefore, all mathematical properties of such
estimators pointed out in [13], and the references therein, apply.
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III. MAXIMUM ENTROPY DECONVOLUTION

USING RENYI’S ENTROPY

While the vast majority of the BD algorithms proposed uti-
lize cumulants and related statistical quantities, information the-
oretic approaches have been recently popular in the literature
[21], [41], [42]. Bell and Sejnowski described how Shannon’s
entropy could be used in conjunction with a nonlinearity tuned
to the cdf of the source signal in order to solve the ICA and BD
problems. The schematic diagram of this BD approach is shown
in Fig. 1(a).

It is well known that when the pdf of the range limited [in
Fig. 1(a)] is forced to uniform by maximizing its entropy, the pdf
of matches the pdf that is the derivative of the nonlinearity. In
the BD context, the nonlinearity is selected to be the cdf of the
source signal . According to the Benveniste–Goursat theorem,
under some restrictions, the pdf of can match that of if and
only if the impulse response is a -function [5]. Therefore,
under the assumptions that the equalizer is of sufficient length
to invert the channel and that the nonlinearity matches the
cdf of the source signal, it is possible to determine the optimal
equalizer weights by maximizing the entropy at the output of the
nonlinearity. In order to estimate the entropy of , we can use
either (4) or (5); thus, the gradients in (6) are directly applicable
to this situation.

IV. MINIMUM ENTROPY DECONVOLUTION

USING RENYI’S ENTROPY

The schematic diagram of the minimum entropy deconvolu-
tion approach is shown in Fig. 1(b). Donoho discusses the prin-
ciple behind this architecture in detail [6]. Bercher and Vignat
recently proposed an estimator for Shannon’s entropy and, in-
spired by Donoho, suggested its minimization for BD, although
they did not treat this problem in detail [22]. Here, our aim is to
demonstrate the applicability of Renyi’s entropy in this setup.
Consider the following theorem on the entropy of linear combi-
nations of random variables [23], [24].

Theorem 1: Let be independent identi-
cally distributed random variables with pdf . Let
denote the order- Renyi’s entropy for a continuous random
variable. If are nonzero real coefficients
in , then for , we have

, where we have (6), shown at the
bottom of the page, where equality of the two entropies occurs

if and only if , where denotes the Kronecker-delta
function. The inequality is reversed for .

Proof: A simple proof is provided in Appendix B. See [24]
for an alternative (more complicated) proof.4

Notice that the BD problem is structurally identical to the
linear combination of iid random variables described in The-
orem 1. The coefficients are replaced by the impulse response
coefficients of the overall filter . This theorem, therefore,
shows that the minimization of Renyi’s entropy at the output of
the equalizer can achieve BD. An important issue in designing
cost functions for minimum entropy BD is that of scale invari-
ance. Since the differential entropy of a continuous random vari-
able depends on its standard deviation, the global minimum
of a minimum entropy BD criterion occurs for zero equalizer
weights (corresponding to a zero equalizer output and dif-
ferential entropy). This unwanted situation could be prevented
by modifying the cost function with the equalizer output vari-
ance. It is easy to show that the following modified cost function
is scale-invariant and that the zero-weight situation is not a min-
imum.

Var (7)

In practice, the output variance needs to be estimated from the
data. This can be effectively achieved making use of the fact that

Var (8)

where is random vector representing the input vector of the
equalizer, and is the corresponding covariance
matrix (assuming that the input is zero mean). If the source
is wide sense stationary and the channel is time-invariant, this
input-covariance-based output variance estimate can provide a
very accurate correction term. Alternative to the output variance
correction term, Bercher and Vignat suggest the normalization
of the maximum-tap-weight to unity after every update [24]. At
the true solution, these two methods become identical.

Lemma 1: Assume that the distribution of the output signal
is not . Provided that the entropy estimate asymptotically

converges as goes to infinity (or roughly, on the average), the
entropy estimate in (4) provides an upper bound to the actual
entropy of , i.e., for and a lower

4The authors of [23] and [24] have independently arrived at the same theorem
and utilized it for blind deconvolution, and interestingly, both results were pre-
sented at the same conference

(6)
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bound for . Equality is possible if and
only if the kernel size is set to zero.

Proof: The proof is found in Appendix B.
Lemma 1 allows the substitution of the entropy estimator in

place of the actual entropy since the estimated cost function
asymptotically (as the number of samples approach ) provides
an upper bound for the true cost, which needs to be minimized.
Another advantage of the Parzen-window estimator for Renyi’s
entropy is that the kernel size can be reduced asymptotically to
zero (e.g., inversely proportional to the number of samples) such
that the upper bound provided by the nonparametric estimator
asymptotically approaches the true value of the entropy (i.e., the
bound becomes tighter).

The kernel function in the Parzen estimator plays another cru-
cial role in Renyi’s entropy-based BD. It is well known that
the motivation behind using the minimum entropy criterion for
BD is the central limit theorem. Due to the addition of many
random variables, the signal pdf at the output of the channel
approaches a Gaussian (especially for long channel impulse re-
sponses). Shannon’s entropy, attaining its maximum value for
a Gaussian density under the fixed variance constraint, is there-
fore the ideal Gaussanity measure for this situation. Minimizing
Shannon’s entropy, which is the special case of Renyi’s en-
tropy for , while keeping the output variance constant,
guarantees the maximization of non-Gaussianity at the equal-
izer output. However, when using Renyi’s entropy orders other
than 1, an inconvenience arises: These definitions of entropy do
not have their maximum for a Gaussian density under the same
circumstances.

For example, consider the generalized Gaussian family of
densities, which are given by . This family encom-
passes the Laplacian , Gaussian , and uniform

densities as special cases. When we evaluate Renyi’s
entropies (for various values of ) for unit-variance pdfs se-
lected from the generalized Gaussian family, we observe that
Renyi’s entropy has a peak at for and
for . Some of these entropy curves are shown in Fig. 2 to
demonstrate this fact.

Observing the plots shown in Fig. 2, we can arrive at a number
of conclusions. These curves demonstrate the theoretical result
in Lemma 1. In addition, they verify the need to use different
entropy orders for the BD of sub- and super-Gaussian sources.
Assuming the channel output is very close to Gaussian, BD of a
super-Gaussian source can be achieved by minimizing
the Renyi’s entropy estimate of order . On the other hand,
BD of a sub-Gaussian source can be achieved by min-
imizing the Renyi’s entropy estimate of order . Based
on the curves in Fig. 2(c) and our previous experience with this
entropy estimator [32] (which disclosed links with convolution
smoothing [43]), we suggest using a reasonably large kernel size
to produce a cost surface with fewer local minima. A demonstra-
tion of how the cost surface becomes smoother with increasing
kernel size is presented for a small sample case in [23].

V. SIMULATIONS

In this section, we present results from Monte Carlo simula-
tions that demonstrate the performance of the Parzen-window-

Fig. 2. Renyi’s entropy for the generalized Gaussian family. (a) Theoretical. (b)
EstimatedwithsmallGaussiankernels. (c)Estimatedwith largeGaussiankernels.

based Renyi’s entropy approaches for BD. Both minimum and
maximum entropy approaches are discussed, and the effect of
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various parameters such as entropy order, filter length, sample
size, and measurement signal-to-noise-ratio (SNR) is studied.
We will evaluate the performance of three classes of algorithms
under the various settings using Monte Carlo simulations:

• maximum entropy with Renyi’s entropy using Parzen win-
dowing (RMAX);

• minimum entropy with Renyi’s entropy using Parzen win-
dowing (RMIN);

• maximum entropy with Bell-Sejnowski’s [21] approach
(INFOMAX).

We originally planned to include the normalized kur-
tosis method, where the cost function is given by

[6], as a benchmark for the min-
imum entropy method; however, results obtained with this
approach under identical conditions were much worse than
the performance demonstrated by the three approaches listed
above. Therefore, we do not include detailed results for the
normalized kurtosis measure here.

In this section, the performances of the algorithms are mea-
sured in terms of the signal-to-interference-ratio (SIR), which is
defined as

SIR dB (9)

where are the tap weights of the overall filter from the source
to the equalizer output, i.e., .5

A. Effect of Entropy Order

In this set of Monte Carlo simulations, our aim is to inves-
tigate the effect of entropy order on the performance of the
minimum and maximum entropy deconvolution algorithms de-
scribed above. For this purpose, a fixed third-order all-poles
channel with poles at 0.1, 0.5, and 0.9 is utilized on one Lapla-
cian and one uniformly distributed source. A four-tap FIR equal-
izer is trained using 3000 randomly generated samples from
both source distributions, which are mixed through the specified
channel. The gradients in (6) are used with a sliding window
of samples and a step size of 10 for minimum
entropy and 10 for maximum entropy methods. The size of
the Gaussian kernels in Parzen windowing is set to 10 and 0.1
for minimum and maximum entropy methods, respectively. In
the minimum entropy case, kernel size adjustment based on the
variance of the samples was employed (i.e., the base kernel
size given above was multiplied by the norm of the equalizer
tap-weight vector). For ten randomly generated training data
sets of both sources, the equalizers were trained, updating once
per sample (i.e., 3000 updates), using the entropy orders

, where corresponds
to Shannon’s definition. The average of the final SIR values ob-
tained for both approaches are presented in Fig. 3. In all cases,
the standard deviation associated with the mean values was less
than 1 dB. Interestingly, the performance of the minimum en-
tropy approach does not significantly depend on the entropy
order for both Laplacian (super-Gaussian) and uniform (sub-

5Note that in cases where measurement noise is present, SIR does not reflect
the distortions caused by the noise.

Fig. 3. Average SIR of minimum and maximum Renyi’s entropy algorithms
versus entropy order for Laplacian and uniform sources. Shannon’s entropy
corresponds to � = 1.

Gaussian) source densities. On the other hand, the performance
of the maximum entropy approach is affected by the entropy
order. Specifically, if we could generalize from the presented
results, the minimum entropy approach is better than the max-
imum entropy approach, even though the maximum entropy al-
gorithms used additional information in the form of the optimal
nonlinearity that is matched to the cdf of the source. Second,
if maximum entropy is used, then higher entropy orders should
be preferred for sub-Gaussian sources, and lower entropy orders
should be preferred for super-Gaussian sources.

B. Effect of Equalizer Length

In these simulations, we evaluate the effect of the equalizer
length on the final performance of the algorithms RMax, RMin,
and Infomax. Recall that Bell–Sejnowski’s Infomax is basically
a maximum entropy approach that optimizes Shannon’s entropy
after the nonlinearity using an update rule based on the Jaco-
bian of the criterion with respect to the weights [21]. In the
RMax and RMin approaches, we will consider two entropy or-
ders that are of interest to us: Shannon’s entropy (SMax and
SMin), which corresponds to , is appealing because of its
historical significance, as well as the additivity properties that it
satisfies, whereas quadratic entropy (QMax and QMin), which
corresponds to , is appealing because it provides the sim-
plest functional form in the estimator and the gradient updates,
thus minimizing computational complexity of algorithms. For
these experiments, five different allpole channels are utilized.
The poles of these channels were located at , ,

, , and .
The number of FIR taps required to equalize these channels
range from 2 to 6. However, for each of these channels, we have
trained five FIR equalizers with lengths changing from 2 to 6.
If the equalizer is shorter than required, we expect the perfor-
mance to be low due to insufficient equalization capability. If
the equalizer is longer than necessary, we expect the perfor-
mance to slowly drop due to the misadjustment of the unnec-
essary weights (in the stochastic update framework). For each
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Fig. 4. Average SIR of QMax (dotted o), QMin (dotted x), SMax (solid o), SMin (solid x), and Infomax (solid �) versus equalizer length for various
required/sufficient (r/s) equalizer lengths. (a) Two-tap FIR (r/s). (b) Three-tap FIR (r/s). (c) Four-tap FIR (r/s). (d) Five-tap FIR (r/s). (e) Six-tap FIR (r/s).

channel-equalizer combination, we have performed ten Monte
Carlo runs. For each run, 5000 samples were generated by a
Laplacian source, which were then passed through the desig-
nated channel. In addition, each equalizer is trained with the five
algorithms (Infomax, SMin, SMax, QMin, and QMax) using
updates computed over a sliding window of sam-
ples. The kernel sizes and the step sizes for RMin and RMax
algorithms are set to the same values as in the previous set of
simulations. The step size for Infomax was set to 10 , and its
nonlinearity was set to the optimal cdf, as before. For this set
of experiments, although we do not present detailed results as-
sociated with the standard normalized kurtosis algorithm, it is
important to note that the performance of this approach never
exceeded an SIR of 10 dB when using semi-stochastic updates
computed using the 100-sample sliding windows. However, the
use of batch training with normalized kurtosis (i.e., every update
uses all training samples), using an equalizer of correct length
and 10 000 samples, resulted in an SIR around 25 dB on average.

The results in Fig. 4 indicate that when the equalizer is suf-
ficiently long [except for the case in Fig. 4(a), where a two-tap
equalizer is required], minimum entropy methods using Parzen
window estimates outperform Infomax, which outperforms the
maximum entropy methods that use Parzen windows. It is inter-
esting to note that when the equalizer length is slightly smaller
than required, Infomax achieves better deconvolution than all
Parzen-window-based Renyi’s entropy methods [especially ob-
served in Fig. 4(d) and (e)], which indicates some form of ro-
bustness to insufficient model order. This robustness is likely
to be a consequence of the close relationship between Infomax

and maximum-likelihood solutions [3]. An additional observa-
tion is that the maximum entropy methods SMax and QMax
perform particularly well for the short-equalizer situations in
Fig. 4(a) and (b), in contrast to their relatively poor perfor-
mances in training long-equalizers.

C. Effect of Sample Size and Measurement SNR

In the previous case studies, the effect of sample/window size
and measurement noise on the performance of the algorithm is
not addressed. In this section, we analyze the effect of these
parameters on the performance of Renyi’s entropy-based algo-
rithms in a single set of Monte Carlo simulations. The Qmin,
QMax, SMin, and SMax approaches are considered for the de-
convolution of a unit-power Laplacian source from measure-
ments through a unit-gain channel with two complex-conjugate
poles located at via a three-tap FIR adaptive filter.
Since the effect of sample size on the performance is sought, the
experiments here are performed on smaller training sets using
batch-updates for 5000 iterations (we observed that in general,
this was sufficient to achieve convergence with all algorithms).
For Qmin and SMin, the step size was 10 and the kernel size
was 2, and for QMax and SMax, the step size was 10 and the
kernel size was 0.1. By eliminating stochastic update misadjust-
ment, batch training adds the advantage that the SIR loss (from
the perfect solution) is attributed only to the finite number of
samples and measurement noise. For sample sizes of 150,
350, 500, and 1000 and measurement noise levels of SNR 10
and 30 dB, we performed ten Monte Carlo simulations, whose
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Fig. 5. Average SIR of Qmin, QMax, SMax, and SMin versus training set
sample size for measurement SNR levels of 10 dB (o) and 30 dB ( ).

average SIR results are presented in Fig. 5.6 Recall that SIR
does not include noise corruption on the deconvolved signals.7

We observe that all algorithms show improvement in perfor-
mance as measurement SNR increases from 10 to 30 dB. The
average performance also tends to increase as the sample size in-
creases. According to Fig. 5, minimum Shannon’s entropy is the
algorithm that is most affected by a small sample size and mea-
surement noise. Although the maximum Shannon’s entropy ap-
proach performed better than the latter, both minimum and max-
imum Renyi’s quadratic entropy algorithms outperformed their
Shannon counterparts with a large margin in terms of their data
efficiency and robustness to measurement noise. Finally, notice
that since the total number of samples seen by the deconvolu-
tion algorithms in these experiments 1000 is smaller than the
total number of samples seen in the previous case studies (3000
and 5000 for entropy order and equalizer length examples), the
average performances of the algorithms decreased (even in the
30-dB SNR case, which is virtually noiseless). With the gradient
in (6), updates using more than samples become com-
putationally cumbersome due to the complexity. These
results indicate that in practice, training of an equalizer with
these criteria for large data sets should be performed using a
small sliding window (e.g., 100). This approach will take
full advantage of the available training data with a reasonable
computational requirements. Results indicate that the perfor-
mance gain from the utilization of additional data outweighs
the additional misadjustment caused by the semi-batch updates
from a sliding window.

6The curves for Infomax are not presented to avoid crowding the figure fur-
ther; however, it suffices to say that the performance of this algorithm was sim-
ilar to that of SMax.

7Nevertheless, if SIR+ SNR at the equalizer output is the main consideration
and if various accurate (SIR > 20 dB) algorithms are considered, the SNR
of the equalizer outputs for these different solutions will be similar, since the
weight vectors are close to the optimal zero-forcing equalizer. Therefore, it is
reasonable to assume that the SIR levels reflect the relative overall quality of the
deconvolved output including both convolutive interference and measurement
noise.

VI. CONCLUSIONS

Blind deconvolution is a basic problem in signal processing,
which has applications extending to numerous areas of commu-
nications, speech processing, and image processing, to list a few.
Although contemporary research focuses on multi-input multi-
output blind deconvolution scenarios (mostly encouraged by the
increased interest in blind source separation and multiple-access
communication applications), most solutions under investiga-
tion are still inspired by the early algorithms and criteria orig-
inally proposed for the single-input single-output (SISO) blind
deconvolution scenario. Therefore, the SISO case still attracts
much attention from many researchers.

In this paper, we have investigated the performance of a
data efficient, robust, and computationally simple estimator
for Renyi’s entropy in solving the SISO blind linear channel
deconvolution problem. In previous work, we have shown that
algorithms designed using this Parzen-window-based Renyi’s
entropy estimator were able to solve the ICA (or instanta-
neous-mixture BSS) problem, having superior performance to
their counterparts, both in terms of convergence speed, which is
useful in tracking nonstationary mixtures, and data efficiency,
which is important in situations where collecting additional
data for more accuracy is expensive. Motivated by those results,
in this paper, we have investigated the performance of the
Parzen window entropy estimator in the blind deconvolution
context.

Using the Renyi family of entropy measures, we have studied
the two well-known approaches to blind deconvolution: max-
imum entropy after a suitably selected nonlinearity and min-
imum entropy. As the benchmark for these approaches, we have
considered the classical normalized kurtosis and Infomax algo-
rithms. In Monte Carlo simulations designed to evaluate the ef-
fect of the entropy order on performance, we have determined
that for minimum entropy algorithms, there was insignificant
dependency, whereas for maximum entropy algorithms, the per-
formance greatly depended on the selected entropy measure. In-
terestingly, Shannon’s entropy did not turn out to be optimal for
either super-Gaussian or sub-Gaussian sources. We have also in-
vestigated the performance degradation due to insufficient or ex-
cessive equalizer length. The former case results in incomplete
equalization, whereas the latter results in unnecessary misad-
justment in the equalizer weights. Experiments performed over
various equalizer lengths demonstrated that the minimum en-
tropy approach is superior to maximum entropy, as well as the
Infomax and normalized kurtosis. Finally, results from Monte
Carlo simulations designed to analyze the effect of sample size
and measurement noise on the performance of these algorithms
demonstrated that, as expected, as the number of samples seen
by the training algorithm and the measurement signal-to-noise
ratio increased, the performance of the algorithms (in deter-
mining the zero-forcing equalizer for the unknown channels)
increased.

APPENDIX A

In this Appendix, we provide a brief discussion of charac-
teristic properties that the Renyi parametric family of entropies
exhibit.
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• is a decreasing function of the entropy order .
• .
• vol support , where

vol support of a pdf denotes the volume of the support
of the density.

These last two properties might be useful in understanding the
behavior of RMax versus entropy order in Fig. 3. Generalizing
from the presented results, for super-Gaussian sources (e.g.,
Laplacian), as kurtosis increases, the main support of the den-
sity becomes the discriminating factor. Hence, for smaller ,
better performance is obtained. On the sub-Gaussian side (e.g.,
uniform), the maximum value of the source becomes the deter-
mining factor, and a larger provides better performance.

Shannon’s entropy satisfies a condition called subset inde-
pendence [44], which is stated as follows for continuous random
variables:

• Let sets be a partitioning of the support
of a random variable , i.e., the support of is given by
the following union: . If are the proba-
bilities of their respective partitions, i.e.,

and are random variables de-
fined on each with pdf , where and zero
everywhere else, then .

Although Renyi’s entropy (for ) does not satisfy this arith-
metic mean property, it does satisfy an exponential mean [39]

• , where
.

This exponential weighting of the individual partitions of the sup-
portmightberelatedto theobserveddataefficiencyofRenyi’sen-
tropy estimators (compared to Shannon). Specifically,depending
on the selected entropy order, the estimator can be forced to em-
phasize the lobes or tails of the distribution under consideration.
For example, it can be deduced from this property that as
(for ), Renyi’s entropy increasingly relies on the low-den-
sity regions (partitions), whereas as for (for ), it
depends more on the high-density regions. A discussion of how
the emphasis on each training sample is distributed in the gradi-
ents of the Parzen window-based nonparametric Renyi estimator
is presented in [32].

APPENDIX B

A. Proof of Theorem 1

Let and be independent, and let .
The pdf of is

(B.1)

Recall the definition of Renyi’s entropy for given in (2). No-
tice that we can write

(B.2)

Using Jensen’s inequality for convex and concave cases, we
get the inequalities shown in (B.4), where is called the
order- information potential. For a random variable with
pdf , the information potential is given by [32], [45]

(B.3)

Notice that the information potential is the argument of the
log in the entropy definition and is named after its resemblance
to potentials of physical particles [31].

(B.4)

Reorganizing the terms in the last inequality and using the
relationship between entropy and information potential, regard-
less of the value of and the direction of the inequality, we
arrive at the conclusion , .

Now, consider the case where is the linear combination of
iid random variables. We get inequalities corresponding to

the nonzero coefficients

...

(B.5)

Adding these inequalities, we get the desired result. The nec-
essary and sufficient condition for the equality of entropies is
obvious from the formulation. If , then , and
therefore, the entropies are equal. If , then due to The-
orem 1, the entropy of is greater than the entropy of .

B. Proof of Lemma 1

Recall that the expected value of the Parzen window pdf es-
timate given in (1) is the convolution of the actual pdf under-
lying the samples and the kernel function (as goes to in-
finity, the pdf estimate converges to this value since Parzen win-
dowing is consistent). We can consider the average pdf as the
pdf of a random variable, which is the sum of two independent
random variables: one with the same pdf as the data samples
and the second with pdf equal to the kernel function. If we de-
fine , where and correspond to the indepen-
dent random variables mentioned in the previous sentence, we
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can apply Theorem 1 to conclude that the entropy of is larger
than either of the entropies of and .
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