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Abstract

The validity of the signal-to-noise ratio (SNR) as an objective quality measure for biomedical images has been the subject
of a long-standing debate. Nevertheless, the SNR is the most popularly used measure both for assessing the quality of images
and for evaluating the e/ectiveness of image enhancement and signal processing techniques. In this correspondence, we
illustrate that under certain conditions the SNR can be changed by a nonlinear transformation, and also that it is often hard
to measure objectively. Therefore, the issue is not only how well the SNR correlates with image quality as perceived by a
human observer (which has been the primary subject of earlier debate), but also that SNR is questionable from a quantitative
measurement point of view.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetic resonance imaging (MRI) is a notable
medical imaging technique that has proven to be par-
ticularly valuable for examination of the soft tissues
in the body (such as the brain), and it has become
an instrumental tool for the diagnosis of stroke and
other signi?cant diseases as well as for pinpointing
the focus of diseases such as epilepsy [6]. It is also
considered to be an extremely important instrument
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for the study of other parts of the nervous system
(such as the spinal cord), as well as various joints,
the thorax, the pelvis and the abdomen. Because of
the recent interest in signal processing for improving
the image quality, which is often quanti?ed by the
estimated signal-to-noise ratio (SNR), it is imperative
to understand how this measure can be a/ected by
nonlinear signal processing operations. 1

Most MR imaging scenarios are limited by the SNR
in the reconstructed image. In particular, although it is

1 Although the physical ratio-of-amplitudes is commonly used
to quantify SNR in the MRI literature, in this paper, we will
assume the engineering convention of ratio-of-powers. There is a
square-relationship between the former and the latter.
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sometimes argued that improving SNR beyond 20 dB
is diagnostically not signi?cant for static imaging (see,
e.g., [3,7,15]), an improvement in SNR can always be
translated into an increase in acquisition speed and
therefore be used to reduce the imaging cost and mo-
tion artifacts. Therefore, improving the SNR in MR
images has become extremely critical for reducingmo-
tion artifacts and in applications where imaging speed
is a major concern. Such applications include imaging
of dynamic processes, such as the heart [13]. Also,
since an improvement in SNR can signi?cantly cut
imaging times, it can increase the cost-e/ectiveness of
MRI equipment in a hospital environment as well as
decrease breath-holding durations and other discom-
forts for patients.
Evaluation of the quality of a real-world image is

often a subjective task, and perhaps due to the absence
of more sophisticated indicators, the SNR appears to
be one of the most popularly used measures of the
quality of an MR image. In general the SNR does
not measure bias errors (which are often signi?cant),
and furthermore there is not always a clear correlation
between the SNR and the image quality as visually
perceived by a human observer, which is more related
to the contrast in a broad sense (see, e.g., [14, Chapter
7] for a discussion of visual image quality).
In this communication we illustrate how SNR can

be manipulated by nonlinear operations on the signals,
and that it is sometimes also diGcult to measure ob-
jectively. The goal of this paper is, therefore, to em-
phasize the fact that caution should be exercised when
the SNR measured from an MR image is used as a
quality measure, or as an indicator for the improve-
ment o/ered by a signal processing algorithm that
possibly employs a nonlinear operation at some stage
of processing. Examples of such algorithms include
image enhancement procedures using median ?lters
or nonlinear anisotropic ?ltering techniques (see, e.g.,
[4,16]).
In this study, we assume that a real-valued MR im-

age is already obtained from the raw k-space data and
that necessary corrections to reduce phase distortions
may have been applied as discussed in [8,9,12]. How-
ever, since the results on the distortion of SNR under
nonlinear operations are true in general, similar ef-
fects are expected to occur if nonlinear techniques are
employed when reconstructing images from the raw
k-space data.

2. The SNR

As we illustrate in this section, the major drawback
of the SNR as a quality measure is that it is not in-
variant to nonlinear transformations. Consider an ob-
servation model of the form

x = s+ e; (1)

where s is a signal of interest, and e is noise. We
assume that both s and e are random variables. Also,
throughout this paper we assume for simplicity that all
signals and noise are real valued, 2 and that the noise
is zero mean. 3 The SNR in x is given by

SNRx =
E{s2}
E{e2} ; (2)

where E{·} stands for statistical expectation.
Let us consider the following nonlinear transforma-

tion of x:

y = f(x) = f(s+ e) = f(s) +
∞∑
k=1

f(k)(s)ek

k!
; (3)

where k! is the factorial of k and f(k)(x) is the kth
derivative of f(x), assuming that all derivatives of
f(x) are well de?ned. The SNR in y is equal to

SNRy =
E{f2(s)}

E{(∑∞
k=1 f

(k)(s)ek=k!)2}

≈ E{f2(s)}
E{f′2(s)}E{e2} ; (4)

where by convention f′(s) = f(1)(s) and f′2(s) =
(f′(s))2, and where the approximation is valid when
SNRx�1. We conclude that SNRy ¿SNRx exactly
when

E{f2(s)}
E{f′2(s)} ¿E{s2} (5)

and therefore nonlinear transformations can improve
the SNR in a signal, provided that the function f(x)
and the statistical distribution of s are such that (5)
holds.

2 All results extend to the complex case as well.
3 Note that if magnitude images are considered, the noise is

not zero mean, but the analysis here could be extended to such
cases. See, e.g., [2,5,12] for more discussion on the statistics of
the noise in MR images.
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In general, the conditions on f(x), under which (5)
holds, depend on the distribution of s. However, we
can easily study a few special cases. If, for example,
f(x) = x2, then f′(x) = 2x and hence

SNRy
SNRx

=
E{f(s)2}

E{f′2(s)}E{e2}
E{e2}
E{s2} =

E{s4}
4(E{s2})2 : (6)

We conclude that SNRy ¿SNRx if and only if

E{s4}¿ 4(E{s2})2: (7)

For zero-mean random signals s, (7) holds exactly
when

�(s) =
E{s4} − 3(E{s2})2

(E{s2})2 ¿ 1; (8)

where �(s) is the Kurtosis of s. (For a Gaussian dis-
tribution, �(s) = 0; distributions for which �(s)¿ 0
are called super-Gaussian, and distributions for which
�(s)¡ 0 are called sub-Gaussian.) This means that
if the probability distribution of the image is highly
super-Gaussian (most natural images are in this class),
i.e., denser around the mean and heavier at the tails
(e.g., Laplacian) then the square-operation (such as
the one used in creating magnitude images) could de-
ceivingly demonstrate an improvement in SNR.
An interesting question is whether it is possible to

?nd a function f(x) such that SNRy ¿SNRx regard-
less of the distribution of s. Without loss of generality,
consider a unit-power signal s (i.e., E{s2}=1). Then
from (5) SNRy ¿SNRx if f2(s)¿f′2(s) for all s.
This can be achieved if we choose f(s) = as where a
satis?es 1=e¡ |a|¡e, because in that case |ln |a‖¡ 1
which implies that f2(s)=a2s ¿ (ln |a|)2a2s=f′2(s).
Hence, a nonlinearity in the form of an exponential
function with exponent a in the range 1=e¡ |a|¡e
will improve the SNR for any s with unit power. An
interesting consequence of this result concerns log–
magnitude images. In some cases, to improve the con-
trast and the dynamic range, a logarithmic nonlinearity
might be applied to the constructed image. According
to the above analysis, we conclude that the original
image (in linear scale) will have a higher SNR than
the log-scale image, although the contrast of the latter
is signi?cantly better especially for low-signal power
regions. This demonstrates how insuGcient SNR is in
representing the visual clues that human perception
looks for when assessing image quality.

3. Measuring the SNR

In the previous section we have seen that for signals
with certain properties, a nonlinear transformation can
change the SNR. Next, we discuss the diGculties as-
sociated with measuring the SNR (see also [10]). Let
us, for simplicity consider a signal consisting of two
regions, one area �s with Ns samples of a signal {sn}
of interest, and one region �n consisting of Nn sam-
ples {en} that are known to be pure zero-mean noise,
and which are independent of the signal. Hence, the
signal observed at a pixel n can be written as

xn =

{
sn + en; n∈�s;
en; n∈�n:

(9)

The SNR in {xn} is SNRx = E{s2n}=E{e2n}.
For a given image, the SNR is usually estimated by

using a moment-based estimator of the form

ŜNRx =
(1=Ns)

∑
n∈�s x

2
n

(1=Nn)
∑

n∈�n x
2
n
; (10)

whereNs andNn are the numbers of pixels in the signal
and the noise region, respectively. For a reasonably
high SNRx and for a large number of measured pixels,
we have that

ŜNRx =
(1=Ns)

∑
n∈�s x

2
n

(1=Nn)
∑

n∈�n x
2
n

≈ E{(sn + en)2}
E{e2n}

=
E{s2n} + E{e2n}

E{e2n}
= SNRx + 1 ≈ SNRx; (11)

where we used the assumption that the noise en has
zero mean and is independent of sn (this equation was
discussed in more detail by Henkelman [8]). Note
from (11) that the measured SNR is always larger than
the true SNR. However, when SNRx is high, estimat-
ing it via (10) in general gives reliable results.
We next discuss how the measured SNR can change

when the signal {xn} is transformed via a quadratic
nonlinear function. 4 For illustration purposes, we as-
sume that s is constant (i.e., sn = s is a deterministic

4 The square-nonlinearity is assumed due to its simplicity and its
common occurence in signal processing techniques and magnitude
operations. However, similar analyses could be carried out for
other possible types of nonlinear operations encountered in the
processing.
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quantity) throughout�s, and that we form a new signal
{yn} according to

yn = x2n: (12)

From the analysis in Section 2 we know that for a
constant signal, SNRy ≈ SNRx=4 and hence the SNR
in {yn} is less than that in {xn}. (This is natural since
the sign, or the phase for complex data, is lost when
the transformation (12) is applied.) Nevertheless, the
SNR in {yn}, asmeasured via (10) can be much larger
than the SNR measured from the original image {xn}.
To understand why this is so, consider the measured
SNR in {yn}, assuming that SNRx�1:

ŜNRy =
(1=Ns)

∑
n∈�s y

2
n

(1=Nn)
∑

n∈�n y
2
n

=
(1=Ns)

∑
n∈�s [s

2 + 2sen + e2n]
2

(1=Nn)
∑

n∈�n e
4
n

≈ (1=Ns)
∑

n∈�s s
4

(1=Nn)
∑

n∈�n e
4
n
: (13)

This expression essentially behaves as (ŜNRx)2.
Therefore, we expect the measured SNR in {yn} to
be much larger than it actually is; i.e., the squaring in
(12) makes the signal appear to an observer as if it
were much less noisy.

4. Illustration

We provide two examples to illustrate the phenom-
ena discussed in the previous sections. In the ?rst ex-
ample, we consider a simulated constant signal em-
bedded in zero-mean Gaussian noise. In the second
example, we use real MRI data from a cat spinal cord.

Example 1 (Step function in noise): We consider a
signal consisting of two segments �s and �n, during
which the signal level is equal to 10 and 0, respec-
tively, embedded in white Gaussian noise with vari-
ance �2. The signal along with its noisy version are
shown in Fig. 1(a) for �2=1. In Fig. 1(b) we show the
signal after the nonlinear transformation (12). Finally,
in Fig. 1(c) we show the true SNR for the original
signal, the measured SNR for the original signal (as
de?ned via (10)), the true SNR for the transformed

signal, and the measured SNR in the transformed sig-
nal (as de?ned via (13)), for some di/erent values of
1=�2. The true SNR in the transformed signal yn is
approximately 6 dB lower than the SNR in the origi-
nal signal xn, when 1=�2 is high. (We can see that the
measured SNR of xn converges to the true SNR in this
case; cf. (11).) This 6 dB di/erence in SNR between
y2n and x

2
n corresponds to the theoretical value of

1
4 de-

scribed in Section 2. On the other hand, the measured
SNR in {yn} appears much larger than the true SNR,
which corroborates the ?ndings of Section 3.

Example 2 (Cat spinal cord): We analyze data from
a cat spinal cord using a 4:7 T MRI scanner (ob-
tained with TR=1000 ms; TE=15 ms, FOV=10×
5 cm; matrix = 120 × 120, slice thickness = 2 mm,
sweep width = 26 khz, 1 average) [1]. The data col-
lected from a phased array of four coils is combined
using the sum-of-squares (SoS) technique to yield a
reconstructed image. 5 Let yk be the observed pixel
value from coil k:

yk = �ck + nk ; k = 1; 2; 3; 4; (14)

where � is the (real-valued) object density (viz. the
MR contrast), ck is the (complex-valued) sensitivity
associated with coil k for the image voxel under con-
sideration, and nk is zero-mean complex-valued noise.
The SoS reconstruction for this voxel is obtained via 6

�̂=

√√√√ 4∑
k=1

|yk |2: (15)

We consider two di/erent nonlinear operations on
the SoS reconstruction: natural logarithm and me-
dian ?ltering (MF). The former nonlinear operation
simply generates a new image by modifying the
pixel-by-pixel values by applying the log function.
The latter one is a standard nonlinear image process-
ing technique that is robust to outliers, which is often
used to improve SNR. In median ?ltering, each pixel
value is simply replaced by the median of the values
of its neighboring pixels (here we use a 5 × 5 region
centered at the pixel of interest).

5 It is known that the SNR of the SoS reconstructed image
asymptotically approaches that of the best linear unbiased recon-
struction image [11].

6 The image voxel value estimate �̂ corresponds to the signal
x in the arguments presented in the previous sections.
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Fig. 1. Synthetic data example. (a) Original noisy step function signal xn, (b) transformed (squared) signal yn, and (c) the true and the
measured SNR levels.

In Fig. 2 we present the images provided by SoS,
log-SoS, and MF-SoS as well as their corresponding
local SNR estimates using the reference noise region
shown in the upper-right corner. Observe that although
the MF-SoS image exhibits an improved SNR com-
pared to the original SoS, the image actually looks
worse. On the other hand, the SNR of the log-SoS im-
age decreased, yet the dynamic range and the signal
contrast in low-power regions are improved.

5. Concluding remarks

SNR is a popular measure of quality in phased-array
MRI reconstruction. Nevertheless, it is hard to mea-
sure objectively in a practical set-up. It is also easy
to manipulate, because nonlinear transformations can

make the SNR appear higher or lower in a manner
that is uncorrelated with the perceived image quality.
Therefore the SNR must be used with careful judge-
ment as a quality measure when evaluating images
processed by certain signal processing procedures. In
this communication we have illustrated how general
nonlinear operations on the (magnitude) images could
alter the experimentally measured SNR. An especially
alarming observation is that for certain nonlinear op-
erations the true SNR increases, whereas the experi-
mentally measured SNR decreases (and vice versa).
Another problem that observed is that the SNR may
be improved at the cost of a decrease in perceived
quality.
Our observations call for an extended debate on

objective quality measures that are invariant (at least
to some extent) to nonlinear operations on the signals.
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Fig. 2. Reconstruction images and their SNR performance. (a)
SoS, (b) SNR of SoS, (c) logarithm of SoS, (d) SNR of logarithm
of SoS, (e) median ?ltered SoS, (f) SNR of median ?ltered SoS.

Although we do not propose such a new quality mea-
sure here, we should note that one possible class of
such measures here, we should note that one possi-
ble class of such measures includes quantities derived
from information theory (see, e.g., [17] for ideas along
these lines).
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