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Online Entropy Manipulation: Stochastic
Information Gradient

Deniz Erdogmus, Member, IEEE, Kenneth E. Hild, II, Student Member, IEEE, and Jose C. Principe, Fellow, IEEE

Abstract—Entropy has found significant applications in
numerous signal processing problems including independent
components analysis and blind deconvolution. In general, entropy
estimators require ( 2) operations, being the number
of samples. For practical online entropy manipulation, it is
desirable to determine a stochastic gradient for entropy, which
has ( ) complexity. In this letter, we propose a stochastic
Shannon’s entropy estimator. We determine the corresponding
stochastic gradient and investigate its performance. The proposed
stochastic gradient for Shannon’s entropy can be used in online
adaptation problems where the optimization of an entropy-based
cost function is necessary.

Index Terms—Shannon’s entropy, stochastic gradient for
entropy.

I. INTRODUCTION

FOLLOWING Shannon’s introduction of entropy [1], in-
formation-theoretic approaches experienced an increased

interest among signal processing researchers [2]–[4]. This
interest is mainly due to their intellectual appeal and the
elegant mathematical theory. Alternative definitions such as
Renyi’s, which encompass Shannon’s as a special case, have
also emerged [5]. Independent components analysis (ICA) and
blind deconvolution are two problems where entropy has been
extensively adopted as the optimality criterion [2], [6], [7].
Recently, we have introduced a minimum-error-entropy (MEE)
training method that outperformed mse in supervised training
[8], [9]. In practice, for a real-time solution of these problems,
a stochastic entropy gradient is required.

Information-theoretic approaches are becoming more wide-
spread in the contemporary signal processing literature. How-
ever, in problems that require online adaptation, the stochastic
gradient algorithms have so far been application-specific. For
example, the entropy maximization procedure (InfoMax) pro-
posed by Bell and Sejnowski [10] specifically applies to the
adaptation of a layer of perceptrons coupled through their joint
output entropies. Therefore, researchers who use this approach
have to fit their problem into the structural requirements des-
ignated by the algorithm [11], [12]. Another approach in en-
tropy estimation uses Jaynes’ maximum-entropy principle [13].
Hyvarinen proposes a first-order approximation to Shannon’s
entropy based on probability density function (pdf) estimates
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based on Jaynes’ principle [14]. However, this approach, in gen-
eral, requires solving a set of nonlinear equations to determine
the optimal pdf parameters, which impedes the derivation of
a computationally efficient stochastic gradient. Viola [15] pro-
posed an entropy estimator similar to the one we use. However,
Viola [15] and Torkkola [16] (who uses the entropy estimator we
proposed) take the approach of selecting small random subsets
of the training data when utilizing the stochastic gradient ap-
proach. The computational complexity of these estimators are
all , being the number of samples. In this letter, we
present a stochastic gradient for Shannon’s entropy based on
a nonparametric estimator that utilizes Parzen windowing and
that exhibits complexity.

II. NONPARAMETRICESTIMATION OF SHANNON’S ENTROPY

Shannon’s entropy for a random variablewith pdf
is [1]

(1)

We have recently proposed and successfully applied to prac-
tical problems a nonparametric estimator for Renyi’s entropy
based on Parzen windowing givensamples { } [9],
[17], [18]. Parzen windowing approximates the unknown pdf
underlying the samples by ,
where is the kernel function with size [19]. Returning to
Shannon’s entropy in (1), similar to [9], replacing the expecta-
tion in (1) with the sample mean and substituting the Parzen pdf
estimate, one will obtain a nonparametric estimate of Shannon’s
entropy. It was shown that for even-symmetric, unimodal, and
differentiable kernels the global minima of this entropy esti-
mator and actual entropy coincide [9]. Although our principal
objective is not to accurately estimate entropy, but to determine
the optimal adaptive system weights under the entropy-based
criterion, we refer the interested readers to [20] and [21] for a
treatment of the problem of kernel size estimation in kernel pdf
estimates.

III. STOCHASTICENTROPYESTIMATOR AND ITS GRADIENT

Having introduced the methodology to derive the esti-
mator for Shannon’s entropy, we can derive the stochastic
entropy gradient. Widrow’s stochastic estimator for mse in
the derivation of LMS uses the instantaneous error-square
value by dropping the expectation operator. In stochastically
approximating (1), we will take Widrow’s lead. Dropping
the expectation and evaluating its argument at the most re-
cent sample of the random variable, we obtain
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, denoting the most recent
sample at time . Since, in practice, the pdf of is unknown,
a Parzen window estimate is utilized. In a nonstationary
environment, the online pdf estimate can be obtained using a
sliding window of samples. Assuming a window length of
samples, the stochastic pdf estimate ofevaluated at is

(2)

Thus, the stochastic entropy estimate at timebecomes

(3)

Clearly, the expected value of (3) satisfies
, where is Shannon’s en-

tropy estimated using the Parzen window method. Recall that
the Parzen pdf estimator is biased [19]; therefore, the stochastic
estimator in (3) becomes a biased estimator of the actual entropy
given in (1). It is now trivial to see the stochastic gradient of en-
tropy with respect to the weight vector of the adaptive system
that generated the samples ofaccording to is

(4)

where is the derivative of the kernel function. We call this
expression the stochastic information gradient (SIG). The selec-
tion of is dictated by two factors: the length of the interval in
which the signal of interest remains approximately stationary,
and the computational load limitation on each update. Once the
stochastic gradient in (4) is evaluated, the weights can be up-
dated by , where is the learning rate.
The sign of the update is determined by whether the task is min-
imization or maximization of the entropy of.

An important issue in adaptation is the convergence proper-
ties of the algorithm. Now, we will investigate the convergence
of the proposed entropy adaptation algorithm, whose weight up-
date is given in (4), for the special case of error entropy mini-
mization in supervised training of a linear filter. In this case, the
output of the linear filter is given by , and the error is
defined as . We also assume that the desired signal
is generated by a linear system with weight vectoraccording
to . Consider the stochastic error entropy minimiza-
tion algorithm given below, for this setup.

(5)
Notice that at , the expected value of the update be-
comes zero, i.e., , because all error samples

become zero. Therefore, the true weight vector is a stationary
point of the proposed algorithm. Now consider the propagation
of the weight error vector through the up-
dates. Subtracting both sides of (5) from , we get

. Multiplying both sides of this equation with its
transpose to get the weight error vector norm yields

. In order for the weights to
converge to the true weights, we require ,
which is guaranteed when the step size satisfies the inequality

. Using the identities
, , and the definition of given in (5), the upper

bound on the positive step size becomes

(6)

Notice that if the kernel function is selected to be a uni-
modal pdf with peak at the origin (e.g., symmetric),

. This is true: since the only zero-crossing of
a unimodal kernel with peak at the origin is the origin, we have

and ; therefore,
. In addition, for any error value;

therefore, the upper bound on the step size is positive and valid.
Similar convergence analyses specific to the problem at hand
can be conducted following the approach outlined above. The
convergence analysis for a nonlinear adaptive system, however,
would be more complicated, since the useful identity

would not be valid anymore.

IV. RELATIONSHIP BETWEEN SIG AND LMS

In the extreme case, one might choose to utilize only a single
sample in (4), corresponding to . Then, especially for the
supervised training of ADALINE using the MEE criterion [9],
SIG becomes quite simple. In ADALINE, the output is a linear
combination of the inputs, i.e., , and the error is

, where is the desired output corresponding
to the input vector . Selecting and in (4), SIG
reduces to

(7)

Notice that in this problem, the aim is to minimize the entropy of
the error signal, which is obtained using the output of the adap-
tive system. In (7), . When using Gaussian
kernels with variance , (7) reduces to

(8)
due to the identity for the Gaussian
kernel . Recall that LMS updates use the instantaneous
values of the error and the input vector (i.e., the LMS update is

) and attempts to minimize the correlation betweenand
[3], [4]. The SIG presented in (8) is similar in structure to the
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Fig. 1. Schematic diagram of blind deconvolution. (a) Minimum entropy.
(b) Maximum entropy.

LMS updates, except for the fact that it acts on the instantaneous
increments and trying to decorrelate them when error
entropy is minimized. This is an interesting observation: mini-
mizing (maximizing) entropy is achieved by minimizing (maxi-
mizing) the correlation between sample separations of the input
and the error (output) signals.

V. SIMULATIONS

SIG performance in entropy manipulation will be demon-
strated in two case studies involving sample-by-sample training
of adaptive systems. First, we investigate the performance of
SIG in online blind deconvolution. A schematic diagram of the
blind deconvolution problem is depicted in Fig. 1, where two
alternative approaches are presented. In this problem, it is as-
sumed that the linear channel impulse response and the
specific source signal are unknown. The only knowledge
regarding the source is that it is a sequence of independent and
identically distributed samples (when second- order criteria are
employed, the independence condition is relaxed to uncorrelat-
edness). The minimum-entropy approach is based on the fact
that for constant variance, Gaussian density exhibits maximum
entropy, and convolution forces signal pdfs toward Gaussian due
to central limit theorem. Therefore, minimizing the output en-
tropy achieves deconvolution. The maximum-entropy approach
uses the facts that for fixed range, 1) uniform density exhibits
maximum entropy, 2) the pdf of the equalizer output (before the
nonlinearity) is equal to the derivative of the nonlinearity, which
must be selected to be the source cdf, and 3) the input and the
output of a filter have the same non-Gaussian pdf if and only if
the overall impulse response is. In this scheme, the knowledge
of the source cdf is required.

Based on the minimum-entropy deconvolution principle [6],
we minimize the following modified entropy criterion for blind
deconvolution using the presented stochastic entropy gradient
approach: Std , where Std stands for
the standard deviation. The modification of the entropy criterion
with the standard deviation of the output results in a scale-in-
variant criterion, which is essential for blind deconvolution. For
the maximum-entropy deconvolution, we simply maximize the
entropy of the output of the nonlinearity [10]. Monte Carlo sim-
ulations are performed using randomly selected all-poles infi-
nite impulse response channel filters (this allows us to determine

Fig. 2. Performance of the stochastic entropy and kurtosis algorithms in blind
deconvolution versus the equalizer length. (*) Minimum entropy. (�) Maximum
entropy. (.) Kurtosis.

the length of the ideal equalizer easily for simulation purposes).
For each of the window lengths and ,
we have performed 90 Monte Carlo simulations using 10 000-
sample sets of Laplacian distributed source signals (ten simu-
lations for each of the equalizer lengths from two to ten). The
average signal-to-interference ratio (SIR) (defined as the ratio
of the power of the source signal to that of the convolutive in-
terference from different lags of the source in decibels) turned
out to be 28.7, 28.6, 28.3, 29.9, and 29.0 dB, using the min-
imum-entropy approach, versus 10.7, 14.5, 13.2, 17.0, and 15.7
dB, using the maximum-entropy approach, respectively. The
lower performance of the maximum-entropy approach can be
attributed to the fact that Gaussian kernels are used in Parzen
windowing, which does not provide a sufficiently accurate rep-
resentation of the desired uniform density at the output of the
nonlinearity when the entropy is maximized. For a comparison,
we have performed the same experiments using the normalized
kurtosis criterion [6] with a sliding window of samples to com-
pute its stochastic gradient. The average SIRs came out to be
9.15, 16.9, 11.6, 15.2, and 14.4 dB, respectively, for each of
the window lengths given above. The performance of the kur-
tosis-based algorithm was low, because kurtosis requires a large
number of samples for an accurate estimate [2]. As expected,
the performance of the stochastic gradient algorithms (entropy
and kurtosis) degraded as the length of the weight vector to be
optimized increased. The average SIRs for all three algorithms
as a function of filter length is presented in Fig. 2. Notice that, in
all cases, the SIG-based minimum-entropy blind deconvolution
algorithm outperforms kurtosis.

The second case study is the blind separation of two audio
sources, instantaneously mixed with a 22 matrix whose en-
tries are selected randomly from the interval [1, 1]. In the blind
source separation (BSS) problem, a common assumption that is
exploited about the sources is their independence. In this exper-
iment, one of the source signals is a female voice, and the other
is a male voice sampled at 8 kHz. To separate these sources from
a vector of mixtures of the two, the Mermaid-SIG algorithm
will be used [23]. This algorithm adapts an orthonormal matrix
by minimizing the sum of the marginal output entropies, i.e.,
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Fig. 3. Average SIR (in decibels) versus time (seconds) for Mermaid-SIG and
Infomax algorithms in online two-source two-mixture BSS using 20 Monte
Carlo results with random mixtures.

, where is the separated output signal. A
whitening procedure precedes the orthonormal matrix step, and
any fast, online principal component analysis algorithm can be
used to perform the whitening task. We employ the SIPEX-G al-
gorithm in the simulations [22]. In the following simulations, we
will use and Gaussian kernels in SIG. Details regarding
this topology can be found in [18]. As a comparison, we also
applied the well-known Bell–Sejnowski algorithm (Infomax) to
the same data [10]. For a fair comparison, the same whitening
procedure is used to enhance the convergence speed of Infomax.
Average of the SIR, defined as in [18], versus time is shown in
Fig. 3. The averaging is performed over 20 Monte Carlo runs
with different mixing matrices in order to obtain a better and
fair comparison of the two algorithms. Step sizes of both algo-
rithms are adjusted to yield the same magnitude of oscillations
after convergence, yet Mermaid-SIG converges in about 0.5 s
(after speech starts) whereas Infomax needs 7 s to achieve the
same level of performance.

VI. CONCLUSION

In this letter, a stochastic entropy estimator based on Parzen
window estimates of the underlying pdf is presented. We have
derived the corresponding stochastic gradient and established
that a special case of this gradient is closely related to LMS,
differing in aim by acting on the instantaneous increments of
the input and output signals instead of instantaneous values. For
the special case of supervised training of a linear filter using
the minimum-error entropy criterion, we have derived the upper
bound on the step size to guarantee absolute convergence to the
optimal solution. The performance of the proposedstochastic
information gradientin online entropy manipulation problems
is verified by blind source separation and blind deconvolution
case studies. The kernel function is an important parameter that
might affect the performance of the proposed entropy manipu-
lation algorithm greatly. Although it might be possible to opti-

mize the kernel function for different signals and pdfs, this issue
is not addressed here. In addition, the Parzen window pdf esti-
mator assumes that the samples are independent and also drawn
from the same distribution. In the case of ICA and MEE ap-
plications, no problems associated with this concern were en-
countered. However, in some situations, the dependencies be-
tween (consecutive) samples used in the algorithm might hinder
the performance. This issue must also be investigated in future
work.
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