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Abstract

We consider the commonly used ‘‘Sum-of-Squares’’ (SoS) reconstruction method for phased-array magnetic resonance imaging

with unknown coil sensitivities. We show that the signal-to-noise ratio (SNR) in the image produced by SoS is asymptotically (as the

input SNR ! 1) equal to that of maximum-ratio combining, which is the best unbiased reconstruction method when the coil

sensitivities are known. Finally, we discuss the implications of this result.
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1. Introduction

Magnetic resonance imaging (MRI) has become an

extremely important instrument for the diagnosis of a

number of important and serious diseases. The devel-

opment of MRI was sparked in the early 1950s when

Bloch and Purcell were awarded the Nobel Prize for

their discovery of nuclear magnetic resonance. Since

then, the MRI technology has undergone significant
development, and several researchers have suggested to

use systems with multiple receiver coils to improve the

imaging speed and quality. The first implementation of

such a so-called phased-array system is probably due to

Roemer et al. [1], but the ideas of using multiple detec-

tors for MRI can be traced back to the late 1980s. A

good summary of the early phased-array MRI technol-

ogy is provided in the review paper [2]. More recently, a
substantial body of research has focussed on sophisti-

cated techniques for phase encoding together with the
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use of gradient coils with the primary aim of increasing
the imaging speed. This work includes the sensitivity

encoding for fast MRI (SENSE) technique [3] and

simultaneous acquisition of spatial harmonics (SMASH)

imaging [4]. Owing to the last decade�s intensive re-

search on the topic, phased-array MR imaging is now

becoming a mature field and arrays with up to 16

elements have been designed and used for imaging

experiments [5].
In principle, with phased-array technology, an in-

crease in imaging speed equal to the number of parallel

coils can be achieved. However, the use of large coil

arrays imposes a number of difficulties, in particular for

high field strengths. Most importantly, since the coil

sensitivities are typically unknown variables (which are

very difficult to model for high magnetic fields), optimal

and artifact-free image reconstruction is a challenge.
The most commonly used method for image recon-

struction is the so-called ‘‘sum-of-squares’’ (SoS)

method, which effectively computes the root-mean-

square average of the images associated with the dif-

ferent coils.

The SoS method does not utilize any knowledge of

the coil sensitivities, or otherwise use any a priori

information about the system. In addition to SoS,
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a number of alternative techniques for image recon-
struction with phased-array coils have appeared during

the last decade. For example, a clever method by

Debbins et al. [6] adds the images coherently, after their

relative phase was properly adjusted (for instance, by

using a hardware phase shifter—in which case a stan-

dard single-channel receiver can be used). Bydder et al.

[7] proposed a method that attempts to estimate the

coil sensitivities from the image, and report that the
resulting images have somewhat less variance than the

SoS reconstruction. Walsh et al. [8] used adaptive filters

to improve the SNR in the reconstructed image. Fi-

nally, we should note Kellman and McVeigh [9] pro-

posed a method to use the phased array for ghost

artifact cancellation, which is an important related

problem.

In this short paper, we study the SoS method and
show that it gives asymptotically the same SNR1 as

maximum ratio combining (which is also referred to as

optimal linear combining), which can only be used when

the coil sensitivities are perfectly known. Therefore,

from a pure SNR point of view, SoS is optimal in the

asymptotic regime and knowledge of the coil sensitivities

cannot improve the SNR in the reconstructed image. We

therefore believe that work on signal processing meth-
ods for phased-array image reconstruction should to a

larger extent focus on bias2 reduction, rather than SNR

improvement.
2. Data model

Consider a phased-array MRI system with N coils
and let sk be the observed pixel value from coil k

sk ¼ qck þ ek; k ¼ 1; 2; . . . ;N ; ð1Þ

where q is the (real-valued) object density (viz. the MR
contrast), ck is the (in general complex-valued) sensi-

tivity associated with coil k for the image voxel under

consideration, and ek is zero-mean noise with variance

r2. We assume in this paper that all signals have been

prewhitened to account for the noise correlation; as is

well known, such prewhitening is easily accomplished

by premultiplying the received data with the inverse of

the Hermitian square root of the noise covariance
matrix.
1 SNR refers to the ratio between the signal power and the noise

power; if a reconstructed pixel is given by ŝs ¼ asþ e, where a is a

scaling factor, s is the true pixel value, and e is noise with zero mean

and variance r2, then the SNR is equal to jasj2=r2.
2 Bias refers to the difference between the true image, and the

average (over the noise) of the reconstructed image, i.e., using the

notation of footnote 1, the bias in the reconstructed pixel ŝs is given by

E½ŝs� s� ¼ ða � 1Þs where E½	� stands for statistical expectation.
3. Analysis of reconstruction methods

3.1. Maximum-ratio combining

If the coil sensitivities ck are known, the optimal es-

timate of q can be shown to be

~qq ¼ R

PN
k¼1 c

�
kskPN

k¼1 jckj
2

 !
¼ q þ R

PN
k¼1 c

�
kekPN

k¼1 jckj
2
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where ð	Þ� stands for the complex conjugate and Rð	Þ
denotes the real part. A neat and self-contained deri-

vation of this result can be found in, for example, [1,2],

although it also follows directly by using some standard

results on minimum variance estimation theory [10]. We

can easily establish that ~qq is unbiased, i.e., E½~qq� ¼ q,
where E½	� stands for statistical expectation. Then the

SNR in ~qq is equal to [1,2,10]
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assuming the real and imaginary parts of the noise are
uncorrelated and have the same variance.

3.2. Sum-of-squares reconstruction

The SoS method is applicable when fckg are un-

known. The reconstructed pixel is obtained via

q̂q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

jskj2
vuut : ð4Þ

(This SoS estimate can be interpreted as an optimal

linear combination according to Eq. (2) but with ck
replaced by sk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 jskj

2
q

[7].) Clearly, if the noise

level goes to zero the SoS estimate converges to

q̂q ! q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1 jckj
2

q
which is in general not equal to q.

Therefore, SoS reconstruction typically yields severely
biased images, even in the noise-free case. Unless ck is

constant for all coils (which is certainly not the case

in practice), this bias depends on the coil number k
and hence it cannot be corrected for if ck is un-

known. Also, fckg are typically not constant over an

entire image, and therefore the bias will be location-

dependent, which may imply serious artifacts in the

image.
We next analyze the statistical properties of the SoS

method. For a high input SNR, the expression for q̂q in

Eq. (4) can be written as
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In the first approximation, the higher-order term is

discarded, while a first-order Taylor series expansion is

used in the second approximation. Clearly, E½q̂q� 6¼ q in

general and thus we see again that SoS gives biased
images. The SNR in q̂q is obtained as

SNRSoS ¼
q
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which is equal to the SNR for optimal combining with

known coil sensitivities (see Eq. (3)). Therefore, from a

pure SNR point of view, SoS is optimal for high input

SNR.

We stress that our comparison contrasts SoS with

maximum-ratio-combining, assuming in both cases that
the measured data have been prewhitened to account

for noise correlation (cf. the remark at the end of Sec-

tion 2). Our result should not be confused by compari-

sons between prewhitened and non-prewhitened image

combination (such as the calculation by Roemer et al. [1,

pp. 209–210], which showed that combination without

taking the noise correlation into account achieves 90%

of the SNR corresponding to prewhitened combination;
assuming a 41% noise correlation).
4. Concluding remarks

The analysis in this paper shows that for high input

SNR, the simple and commonly used SoS method clo-
sely approximates the theoretical upper bound (i.e., the
SNR given by maximum-ratio-combining using perfect

knowledge of the coil sensitivities). This result explains

why it is often difficult to enhance the SNR in recon-

structed phased-array images by using signal processing

methods, and it raises the question as to whether SoS is

the ‘‘best possible’’ reconstruction method. As SoS gives

biased results in general—and as the SNR generally

correlates only weakly with image quality as perceived
by the human eye—we would argue that it may not be

the best possible method; yet the results in this paper

suggest that the difference, at least in terms of SNR,

between an ‘‘optimally’’ reconstructed image and the

SoS image may be small in many cases. In summary, we

believe that image improvement via signal processing

may also focus on quantities other than the SNR—such

as bias or information theoretic measures, and that
work on optimal image reconstruction for phased-array

MRI is a ripe ground for research. Our results in this

area will be presented elsewhere.
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