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Abstract—Recently, we have proposed the minimum error en-
tropy (MEE) criterion as an information theoretic alternative to
the widely used mean square error criterion in supervised adaptive
system training. For this purpose, we have formulated a nonpara-
metric estimator for Renyi’s entropy that employs Parzen win-
dowing. Mathematical investigation of the proposed entropy es-
timator revealed interesting insights about the process of infor-
mation theoretical learning. This new estimator and the associ-
ated criteria have been applied to the supervised and unsuper-
vised training of adaptive systems in a wide range of problems
successfully. In this paper, we analyze the structure of the MEE
performance surface around the optimal solution, and we derive
the upper bound for the step size in adaptive linear neuron (ADA-
LINE) training with the steepest descent algorithm using MEE. In
addition, the effects of the entropy order and the kernel size in
Parzen windowing on theshapeof the performance surface and
the eigenvalues of the Hessian at and around the optimal solution
are investigated. Conclusions from the theoretical analyses are il-
lustrated through numerical examples.

Index Terms—Adaptive systems, convergence of numerical
methods, linear systems, minimum entropy methods.

I. INTRODUCTION

T HE MEAN square error (MSE) has been the workhorse of
function approximation due to our knowledge of the math-

ematical properties of the least square method. Starting with the
pioneering work of Wiener [1], MSE has become the funda-
mental performance criterion in adaptive filtering theory. With
the basic adaptive FIR filter structure, MSE yields a simple opti-
mization problem, whose analytical solution is provided by the
Wiener–Hopf equation [2]. Following this, algorithms for itera-
tively approximating the optimal solution including the steepest
descent approach and the second-order optimization techniques
have been proposed and analyzed [2], [3]. The least square algo-
rithm (LMS) and the recursive least squares (RLS) algorithms
are the most widely recognized variants of these algorithms
[2]–[4]. Issues of stability and convergence speed have been
the main thrusts in these analyses. Due to the quadratic form
of the cost function in terms of the weight vector, the conver-
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gence analysis of the algorithms could be pursued [2], although
some issues still remain unsolved [2], [5].

Recently, we proposed the quadratic Renyi’s entropy of the
error signal as an alternative criterion for supervised adaptive
system training [6] and used a nonparametric estimator based
on Parzen windowing with Gaussian kernels to estimate entropy
directly from the data samples. The motivation for pursuing
the application of Renyi’s entropy was the existence of an
analytically and computationally simple estimator for Renyi’s
quadratic entropy, as well as the fact that the commonly used
Shannon’s entropy is a special case of Renyi’s definition. We
have proved that when utilizing Renyi’s entropy, a system
trained with the minimum error entropy (MEE) criterion mini-
mizes the Renyi’s distance between the conditional probability
density functions (pdf) of the desired and the actual outputs
given the input signal (Kullback–Leibler divergence in the case
of Shannon’s entropy). This theoretical result was also demon-
strated in simulations for chaotic time series prediction and
nonlinear system identification using feedforward neural net-
works [7]. Moreover, we have also extended the nonparametric
entropy estimator to any entropy order and kernel function [8].
Other successful applications of the proposed nonparametric
entropy estimator and MEE include maximally informative
subspace projections, blind source separation [9]–[11], and
blind deconvolution [12]. These applications showed that the
proposed entropy estimator is data efficient, therefore achieving
better performance in these problems using a smaller training
set compared with alternative algorithms [10].

MEE does not yield to a linear optimization problem even
when the finite impulse response (FIR) structure is utilized,
which complicates the theoretical understanding of the method
in two important ways: First, the nonconvex nature of the
performance surface makes the search for the global optimum
nontrivial and, in general, disqualifies local search methods like
the steepest descent to find consistently the optimal solution.
Second, the learning rate, or step size, in steepest descent
cannot be set without knowing the eigenstructure of the MEE in
the neighborhood of the optimal solution, and the fundamental
trade-off between speed of convergence and misadjustment
cannot be found.

In spite of these difficulties, we observed and proved [8] a
very important dilation property of the MEE estimated with
Parzen windows that motivated the convergence analysis of the
steepest descent algorithm to be presented in this paper. In fact,
when the kernel size (the width of the window function used
in the Parzen estimator) tends to infinity, the local minima and
maxima of the MEE disappear, leaving a unique, but biased,
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Fig. 1. Contours of error information potential in supervised ADALINE training for various choices of kernel size� and entropy order�. Kernel size increases
from top to bottom, and entropy order increases from left to right.

global minimum.1 An illustration of this dilation is shown in
Fig. 1. Applied to the linear adaptive structures, namely the
adaptive linear neuron (ADALINE), the dilation property of the
MEE criterion brings about a very useful quality to the perfor-
mance surface of this cost function. In weight space, the volume
of the region where the equilevel contours of the MEE criterion
are perfect ellipsoids centered at the global optimum increases
when the kernel size is increased. Clearly, any continuous and
(twice) differentiable cost function can be represented accu-
rately with a quadratic approximation in some neighborhood of
its global optimum. Then, provided that the kernel size is large
enough during the adaptation process to guarantee that the oper-
ating point lies in the convex hull, one can perform global con-
vergence analyzes of the steepest descent algorithm in the MEE
and determine upper bounds on the step size of gradient-based
optimization techniques to guarantee stability. Note that the an-
nealing of the kernel sizes during adaptation reinforces the need
for the knowledge of the eigenstructure near the optimum solu-
tion and its dependence (if any) on the kernel size.

Hence, practically, convergence to the global solution can be
achieved by starting the algorithm with a large kernel size and
decreasing this parameter slowly2 during the course of adapta-
tion, just like in convolution smoothing and stochastic annealing
[13]. The step size can also be kept at small values during adap-
tation to guarantee convergence, but this sacrifices convergence
speed and does not provide a principled way to know the tradeoff

1The reason for the existence of this bias could be understood in light of the
convolution smoothing theory [13]. Unfortunately, it cannot be practically esti-
mated.

2A general-purpose annealing schedule for the kernel size is not available
at this time. However, in conjunction with other stochastic global optimization
approaches, an exponential decrease in time could be utilized.

with misadjustment. Hence, we seek here a more analytical ap-
proach to study the convergence of the steepest descent algo-
rithm in MEE.

First, we need to make the entropy cost function continuous
and differentiable, but guaranteeing this is a trivial task. One
simply selects a kernel function that is continuous and differen-
tiable (up to the order necessary) [8]. Furthermore, if the kernel
function of choice has its maximum at the origin, the entropy
estimator can be shown to achieve its minimum value when all
the samples are equal (say zero) [8]. This is important for MEE
because it guarantees that if it is possible to achieve zero training
error, the entropy estimator will have its global minimum for the
weights that make all the error samples zero over the training set.

Second, we have to guarantee that the quadratic approx-
imation of the performance surface in the neighborhood of
the global optimum remains valid, even if the current weight
vector is far from the solution. As was mentioned above, this
can be satisfied by starting initially with a large kernel size and
decrease it slowly enough. The question that will be left for
further research relates to how slow the kernel size should be
annealed to guarantee this requirement.

In the literature, it is possible to find other examples of infor-
mation theoretic adaptation rules utilizing similar or different
approaches. Entropic learning rules have found natural appli-
cation in independent components analysis and blind source
separation [14], [15], as well as blind deconvolution [16].
Other fields where similar approaches are widely embraced
include the broad areas of information theoretic pattern analysis
[17]–[19], information content-based signal processing [20],
[21], and model complexity analysis [22], [23]. The utility
of entropy and other information theoretic measures in these
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Fig. 2. Illustration of supervised adaptive system training using MEE criterion.

broadly defined areas are endless; however, our main concern
is using these measures and their nonparametric estimators in
filter and system adaptation.

In the following sections, we will build arguments about the
convergence properties of training linear filters with the MEE
criterion based on these two key points. Recall that once a con-
tinuous and differentiable cost function is approximated by a
quadratic form around the global optimum, the results from the
theory of convergence for MSE criterion applies immediately
in the region of approximation, and therefore, we will simply
borrow from these important results to complete the arguments.

II. M INIMUM ERRORENTROPY CRITERION

Consider the supervised training scheme depicted in Fig. 2.
Since, in practice, the analytical expression for the error entropy
is not available in general, one needs to estimate it nonparamet-
rically from the samples. Renyi’s entropy for a random variable

is given in terms of its pdf as [24]

(1)

where is referred to as the entropy order. Shannon’s entropy
is a special case of Renyi’s entropy corresponding to order 1.
Notice, however, that the parametric entropy family in (1) could
be extended to include Shannon’s entropy for since in the
limit, it is equal to Shannon’s entropy. This can easily be shown
using L’Hopital’s rule

(2)

It was shown that minimizing error entropy (MEE) is equiv-
alent to minimizing Renyi’s divergence between and ,
where , , and are the input, output, and desired output sig-
nals, respectively; therefore, it determines an optimal model of
the unknown system in terms of statistical learning [8]. This

result is also related to the information geometry of statistical
models and Amari’s -divergence [25].3

It is possible to alternatively express Renyi’s entropy given in
(1) using an expectation operator

(3)

where is defined to be the order-infor-
mation potential [8], [9] and could replace entropy in the cost
functions since “log” is a monotonic function. Approximating
the expectation operator with the sample mean (as in [26]) and
estimating the pdf using Parzen windowing with kernel
[27], we obtain the nonparametric estimator for Renyi’s entropy

(4)

where are the samples and is the kernel
size, which is required to satisfy the scaling property

for single dimensional random variables. This re-
quirement is a consequence of the requirement that the kernel
function in Parzen windowing must be a valid pdf [27]. It must
be noted that unlike the MSE criterion, the error entropy cost
function has a nonquadratic, nonconvex performance surface.
However, near the global minimum the cost function can be ac-
curately approximated by a quadratic Taylor series expansion
in the weights, assuming that the selected kernel function sat-
isfies the differentiability conditions we have mentioned above.
Furthermore, as we will demonstrate, by controlling the two de-
sign parameters, namely, the kernel size and the entropy order
of the estimator in (4), it is possible to manipulate the volume
and the eigenstructure of this region in the weight space where
the quadratic approximation is valid. In particular, increasing
the kernel size leads to a stretching effect on the performance
surface in the weight space, which results in increased accuracy
of the quadratic approximation around the optimal point. The
structure of the performance surface far away from the global
minimum is still under investigation. Some important proper-
ties of the estimator in (4) can be listed as follows.

Fact 1: The nonparametric estimator in (4) is mean invariant
as well as the actual entropy in (1).

Proof: Let us define a new random variable ,
where is a real, deterministic constant. By a change of vari-
ables in the integral of (1), the entropy of this new random vari-
able is found as

(5)

3It has been pointed out by an anonymous reviewer that this connection is ob-
vious since Amari’s�-divergence is an alternative parameterization of Renyi’s
divergence. In fact, Amari provides a detailed account on the relationship be-
tween his�-divergence and Renyi’s mutual information [15].
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On the other hand, the samples ofare related to those ofby
. Therefore, the entropy estimate ofis

(6)

Fact 2: The identity holds for a
real scaling factor in the actual entropy. If we apply the same
scaling to the kernel size in the estimator in (4), the same identity
also holds for the entropy estimates of the two random variables

and .
Proof: Let ; thus, the samples are . The

entropy estimate of using a kernel size of can be
written explicitly as

(7)

Fact 3:

a) , where is a random
variable with the pdf . The equality (in the in-
equality) occurs if and only if the kernel size is zero. This
result is also valid in the mean for the finite-sample case.

b) For independent random variablesand , the inequality
holds. The equality oc-

curs if and only if one of the variables is-distributed.

Proof of a): It is well known that the Parzen window es-
timate of the pdf of converges consistently to
under some assumptions to guarantee the existence of the inte-
grals. Therefore, the entropy estimator in (4) converges to the
actual entropy of this pdf. To prove the inequality, consider

(8)

Using Jensen’s inequality for convex and concave cases, we get

(9)

Reorganizing the terms in the last inequality and using the rela-
tionship between entropy and information potential, regardless
of the value of and the direction of the inequality, we arrive at
the conclusion . The fact that these results are
also valid on the average for the finite-sample case comes from
the property of Parzen windowing.

Proof of b)Since for independent variables the pdf of the sum
is the convolution of individual pdfs, the preceding derivation
yields the result immediately.

Fact 4:

a) If the kernel function is symmetric, unimodal, continuous
and differentiable, the -distribution is a smooth global
minimum of (4) in the error space. By a smooth minimum,
we mean its gradient is zero, and its Hessian has finite
non-negative eigenvalues (there is a zero eigenvalue corre-
sponding to the eigenvector along which only the mean of
the error changes). Notice that the differential entropy in
(1) approaches as the pdf approaches a-distribution.

b) Consider an ADALINE (without a bias weight), and assume
that the kernel function satisfies the conditions in part a).
The error signal at the optimal solution (which is denoted
by ) is independent of the input, desired output, and the
weights, and the inputs are independent from each other. In
addition, the inputs and are Gaussian distributed
( is the set of indices of those inputs that are Gaussian
distributed). Then, the Hessian of the MEE evaluated at the
global minimum of error entropy has strictly positive eigen-
values in all directions, except for the one that maintains a
constant . Note that in the presence of a number
of Gaussian inputs, these solutions form a hypersphere in
the weight space on which the error entropy remains con-
stant. In terms of cost, these are all global minima and are
equally good, although they differ from a system identifica-
tion standpoint.

Proof of a): See in [8, Lemma 1, Th. 1].
Proof of b)For the ADALINE, any perturbation from the op-

timal weights will result in the error at the new weights being
equal to . Due to the independence assumption,
and will be independent, which allows Fact 3b to be imme-
diately applicable. The equality is possible if
and only if is -distributed, which allows only the mean of
the error to change as a result of the perturbation. For only the
mean of a linear combination of independent random variables
as described above to change, it is necessary that weights are
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perturbed only for those inputs with Gaussian densities. Fur-
thermore, for the output pdf to remain constant apart from its
mean, the variance of the linear combination of these Gaussian
inputs must have constant variance, which gives us the direc-
tion defined by the hyper sphere ,
where is the optimal weight vector. Perturbations along any
other direction in the weight space will result in the output pdf to
change its moments other than its mean; therefore, the entropy
will increase. Clearly, if less than two of the inputs are Gaussian,
the Hessian matrix is strictly positive definite.

Fact 5: In the limit, as the kernel size tends to infinity, the
entropy estimator in (4) approaches a nonlinearly scaled version
of the sample variance. In particular

(10)

where the over bar indicates the sample mean.
Proof: When the kernel size is very large, the kernel evalu-

ations in (4) can be carried out using the following Taylor series
expansion:

(11)

Substituting this in (4) immediately yields the desired result,
assuming symmetric kernels.

Fact 6: Error entropy criterion is robust to additive
zero-mean noise, regardless of its pdf.

Proof: Consider the learning process depicted in Fig. 2.
Suppose that the desired signal consists of the superposition
of a deterministic part and a zero-mean random part, such that

, where is the unknown function that the adap-
tive system is trying to identify, and is the zero-mean noise
with pdf independent from , , and . Suppose that the
learning system is a parametric family of functions of the form

, where is the vector of parameters, called the weight
vector. Let be (one of possibly many) optimal weight vec-
tors that minimize the error entropy, where the error signal is
defined as . Let be the optimal weight vector that
minimizes the entropy of thecleanerror signal that is defined as

(if there was no additive noise in the desired
signal). Notice that we have the identity . There are
two possible situations: First, the unknown function might
lie in the span of the family of functions , such that there
exits a that makes have a -distribution (possibly centered
at zero). Second, does not lie in this span, and therefore, the
optimal solution yields a non- distribution.

In the first case, we notice that the minimum value that the
entropy of the noisy error signal can achieve is given by
since due to Fact 3b and due to the independence of, we have

. Recall that the equality is
attained if and only if is -distributed (since is not -dis-
tributed). Consequently, the minimization of the noisy error en-
tropy will result in .

In the second case, we cannot prove that the situation will be
exactly as in the first case. However, since

due to Fact 3b, minimization of the noisy error en-
tropy is equivalent to the minimization of an upper bound for the

entropy of thecleanerror signal, which is the ultimate objective
function that needs to be minimized. Under these circumstances

(12)

An alternative proof, which provides better insights about the
application of this fact to ADALINE, is provided in the Ap-
pendix.

Notice that the MSE criterion satisfies the noise rejection
property described in Fact 6 as well. Therefore, the question
becomes, which one of these two criteria approaches to this
asymptotic total noise rejection property faster when a finite
number of samples are used in training for the optimal weights?
This question will be addressed in the numerical studies section
through a set of Monte Carlo simulations.

The facts stated above all contribute to the practicality of the
MEE criterion for information theoretic supervised learning.
They also corroborate the use of the proposed nonparametric
entropy estimator to this purpose as it possesses many of the
properties of the actual entropy and some that are even more
advantageous. Specifically, Fact 1 states that the mean of the
error must be optimized separately using the output bias term of
the adaptive system, if there is one. Fact 4 allows us to utilize
numerical nonlinear optimization techniques based on deriva-
tives of the cost function on the estimated entropy as it shares
the global optimum of the actual entropy function that we seek.
Fact 2 demonstrates how to modify the parameters in the cost
function in the case of a scaling of the training data in order to
obtain the same solution that one would get before the scaling.
Fact 3 basically justifies that the presented entropy estimator
provides an upper bound on the average and asymptotically for
a quantity that we wish to minimize and that this upper bound
is consistent. Fact 5, from a practical point of view, states that
MSE is a special case of the proposed entropy estimator corre-
sponding to a large kernel size, and thus, second-order statistics
can also be exploited if desired by simply modifying the param-
eters of the cost function appropriately. Last but not least, Fact
6 provides an important justification to the use of MEE as the
learning criterion in supervised training by demonstrating the
immunity of the optimal solution to additive noise in the de-
sired signal, which is a common situation in practice.

III. STEEPESTASCENT INFORMATION POTENTIAL

TRAINING FOR ADALINE

Suppose the adaptive system under consideration in Fig. 2
is an ADALINE structure with a weight vector . The error
samples are , where is the input vector,
formed by feeding the input signal to a tapped delay line for
the special case of FIR filter. When the entropy order is speci-
fied, minimizing the error entropy is equivalent to minimizing
or maximizing the information potential for and ,
respectively. In the following, we consider the choice .
Since information potential is the argument of the logarithm in
the entropy definition, its estimator is the argument of the log-
arithm in the entropy estimator given in (4). Then, the gradient
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of the information potential estimator with respect to the weight
vector is simply

(13)

In order to maximize the information potential, we update the
weights along the gradient direction with a certain step size

(14)

where ) denotes the gradient of evaluated at
. This is a nonlinear update rule, however, as mentioned

in the introduction; the selection of a smooth kernel function
with a sufficiently large kernel size to allow a quadratic approx-
imation for the cost function to be valid motivates us to employ
a Taylor series expansion truncated at the linear term for the
gradient, which is evaluated at the optimal weight vector

(15)

Writing the derivative of the kernel for a given size in terms of
the derivative of the unit-size kernel

(16)

and defining

(17)

the gradient can be expressed as

(18)

which leads to the Hessian matrix of for this quadratic sur-
face, where

(19)

Note that under the conditions provided in Fact 4b, the
Hessian of the information potential evaluated at the global
maximum is strictly negative definite (if there is at most one
Gaussian input) for the ADALINE structure.

Now that we have a valid quadratic approximation for the cost
function and a linear approximation for the weight update equa-
tions, we can borrow the well-known convergence analysis re-
sults from the MSE convergence theory, only we need to replace
the eigenvalues of the input covariance matrix (autocorrelation
matrix in the FIR filter case) with the eigenvalues of the Hessian
matrix for the entropy criterion given above.

This leads to the following upper bound on the step size of the
steepest ascent algorithm for stable convergence to the optimum
solution

(20)

Similarly, the approximate time constants of convergence of
each individual mode (along the eigenvectors of the Hessian ma-
trix) are obtained in terms of the step size and the corresponding
eigenvalues as

(21)

We remark at this point that although the analysis presented
in the above depends on the knowledge of the eigenvalues of the
Hessian matrix evaluated at the global maximum of the infor-
mation potential and is valid only in the region where the cost
function is accurately approximated by a quadratic form, using
the results of the next section, we will be able to determine the
upper bound on the step size for stability using the eigenvalues
of the Hessian of the cost function at the current values of the
weights. Furthermore, the dilation property of the performance
surface (which is demonstrated in Fig. 1 and [28]) guarantees
that the approximation will hold.

In addition, within the quadratic region, since the Hessian ma-
trix of the cost function evaluated at any point will be approxi-
mately equal to that at the optimal solution, the required eigen-
values can be readily replaced by estimates of the eigenvalues
at the current position in the weight space. This approach will
render the current estimate of the upper bound on the step size to
guarantee stability. The Hessian matrix evaluated at the current
estimate of the optimal weight vector is easily obtained using
(19); only the evaluation needs to be carried out [not at the op-
timal solution (since that value is not yet available), but at the
current weight values].

IV. EFFECTS OFKERNEL SIZE AND ENTROPY

ORDER ON THEEIGENVALUES

Understanding the relationship between the eigenvalues and
the kernel size and is crucial to maintain the convergence
of the algorithm under changes in these parameters. One prac-
tical case where this relationship becomes important is when
we adapt the kernel size during the training. Motivated by the
link between the entropy estimator in (4) and the convolution
smoothing method of global optimization [8], [25], we sug-
gested starting from a large kernel size and decreasing it to
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a nominal value during adaptation. It is then possible to use
steepest ascent to maximize the information potential but still
guarantee convergence to the global maximum by smoothing of
the cost function by convolution by a suitable functional. Since,
in this approach, the kernel size is decreased, we need to know
how to adapt the step size to achieve faster learning in the ini-
tial phase of adaptation (by using a larger step size) and stable
convergence in the final phase (by using a smaller step size).

For convenience, we repeat here the reasoning that justifies
the dilation in weight space. Consider the information poten-
tial estimator (4). It is clear that the introduction of a kernel
size other then unity causes the error samples to be treated as
if they are divided by . Thus, in the error space, the loca-
tion of the global optimum is scaled along a radial direction
from the origin. The exception is the case of zero error because
then the global optimum is the origin in the error space, and
the optimal solution does not change with kernel size. Since
the adaptive topologies used in practice (feedforward systems)
are mainly contractive or volume-preserving structures, the di-
lation/stretching effect is directly translated to the weight space.
This property will be observed in the behavior of the eigenvalues
under changing kernel size.

As an example, consider the case where we evaluate the
quadratic information potential using Gaussian kernels. In this
case, the Hessian matrix simplifies to

(22)

Observe from (17) that as increases, , and there-
fore, with speed . This is faster than
the reduction rate of the denominator, which is ; hence,
overall, the eigenvalues of approach . This means that the
valley near the global maximum gets wider, and one can use
a larger step size in steepest ascent while still achieving stable
convergence to it. In fact, this result can be generalized to any
kernel function and any. The dilation effect mentioned in [8]
is a direct cause of the increase in eigenvalues toward zero. No-
tice, however, that this qualitative analysis on the effect of kernel
size is valid asymptotically. Yet, it is commonplace to assume
(perhaps hope) that the asymptotic behaviors of many statistical
quantities satisfactorily represent nonasymptotic behavior.

The analysis of the eigenvalues for varyingis more compli-
cated. In fact, a precise analysis cannot be analytically pursued,
but we can still try to predict as to how the eigenvalues of the
Hessian behave as this parameter is modified. In order to esti-
mate the behavior of the eigenvalues under changing, we will
exploit the following well-known result from linear algebra re-
lating the eigenvalues of a matrix to its trace. For any matrix
whose eigenvalues are given by the set , the following iden-
tity holds:

trace (23)

Now, consider the general expression ofgiven in (19). The
trace of is easily computed to be as given below in (24). The
eigenvalues of are negative, and the dominant component,

which introduces this negativity, is the term in the last line of
(24). The negativity arises naturally since we use a differentiable
symmetric kernel, and since at the entropy is small, the error
samples are close to each other and the second derivative eval-
uates as a negative coefficient. Now, let us focus on the term
that involves the -power in the first line of (24). Since
all other terms vary linearly with , this term will dominantly
affect the behavior of the trace whenis varied. Consider the
case where is small enough such that the small entropy causes
the kernel evaluations in the brackets to be close to their max-
imum possible values, and the sum, therefore, exceeds one. In
that case, the power of the quantity in the brackets will increase
exponentially with increasing (for ); thus, regardless
of the terms affected linearly by, the overall trace value will
decrease (increase in absolute value). Consequently, a narrower
valley toward the maximum will appear, and the upper bound
on the step size for stability will be reduced:

trace

(24)

On the other hand, if the kernel size is large so that the sum
in the brackets is less than one, then the -power of this
quantity will decrease, thus resulting in a wider valley toward
the maximum in contrast to the previous case (for ). How-
ever, in practice, we do not want to use a very small or a very
large kernel size as this will increase the variance or increase the
bias of the Parzen estimation, respectively [27].

In fact, there is another approach that directly demonstrates
how the eigenvalues of will decrease with increasing, and
vice versa. Consider (19) or (24) again. Since, at the operating
point, the error entropy is small and the difference between error
samples is close to zero, the sums involving the derivative of the
kernel function are approximately zero. Under the conditions
mentioned in the previous paragraph, all the terms involving

remain as scalar coefficients that multiply a matrix, whose
eigenvalues are negative. With the same arguments on how in-
creasing increases these coefficients, we conclude that the
eigenvalues of the matrix will increase in absolute value for
a small kernel size and decrease for a large kernel size.

In this section, we have investigated the effect of the entropy
order and the kernel size on the eigenvalues of the Hes-
sian matrix of the information potential criterion around the op-
timal solution. We have seen that the entropy order can have
different effects, depending on the specific value of the kernel
size. As for the effect of kernel size, we have observed that as it
increases, the quadratic approximation to the cost function has
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larger eigenvalues. This points out a wider region of validity for
the linear approximation to the gradient in (18). We remark that
our conclusions in this section do not only apply to the eigen-
values of , but they generalize to how these two parameters
affect the volume of the region where our quadratic approxima-
tion is valid. These results are imperative from a practical point
of view because they explain how the structure of the perfor-
mance surface can be manipulated by adjusting these parame-
ters. Besides, they identify the procedures to adjust the step size
for fast and stable convergence.

In order to summarize the findings of this section, we present
the following two facts.

Fact 7: Regardless of entropy order, increasing the kernel
size results in a wider valley around the global maximum by
decreasing the absolute values of the (negative) eigenvalues of
the Hessian matrix of the information potential criterion.

Proof: The proof is in the preceding text.
Fact 8: The effect of entropy order on the eigenvalues of the

Hessian depends on the value of the kernel size. If the kernel
size is small, then increasing the entropy order increases the ab-
solute values of the (negative) eigenvalues of the Hessian of the
information potential function at the global maximum. This re-
sults in a narrower valley. If the kernel size is large, the effect
is the opposite, i.e., increasing the entropy order decreases the
absolute value of the eigenvalues of the Hessian of the informa-
tion potential, resulting in a wider valley.

Proof: The proof is in the preceding text.

V. STOCHASTIC INFORMATION GRADIENT

In practice, online training methods are far more valuable
than batch mode algorithms since they can provide real-time
updates for the weight vector on a sample-by-sample basis as
new data arrives, without needing a batch of samples to be col-
lected and stored in memory. The strength of LMS, for example,
lies in its ability to determine the optimal solution of the MSE
criterion with extremely simple updates on the weight vector,
which it computes using only the most recently acquired input
signal. In this section, we will derive a stochastic gradient for
the MEE criterion, whose batch mode convergence properties
are discussed in detail in the preceding sections. This derivation
will be motivated by Widrow’s approach in deriving the sto-
chastic gradient in LMS, which has proved its merits through
the years that followed [4].

Recall that we have defined the order-information potential
for the error as , and since the logarithm is
a monotonic function, for , minimization of error entropy
is equivalent to maximization of this information potential. Sup-
pose that in an online adaptation scenario, we approximate the
information potentialstochasticallyby the argument of the ex-
pectation operation. This way, dropping and substituting
the required pdf by its Parzen estimate over the most recent
samples, at time, our information potential estimate becomes

(25)

Noticing the relationship between entropy and information po-
tential, for an ADALINE structure, the stochastic gradient of

entropy with respect to the weight vector is easily computed to
be

(26)

For optimizing Renyi’s entropy of order , the information
potential, and, therefore its stochastic gradient given in (26),
can be utilized. For Shannon’s entropy, the following stochastic
gradient exists.

Fact 9: The stochastic information gradient (SIG) of
Shannon’s entropy estimated from the samples using Parzen
windowing is given by

(27)

This is an unbiased estimate of the gradient of Shannon’s en-
tropy estimated using Parzen windowing.

Proof: Consider Shannon’s entropy of the error given by
. Suppose we estimate this quantity

by substituting the pdf with its Parzen window estimate over
the most recent samples at time . Then, this estimate of
Shannon’s entropy at timeis given by

(28)

The gradient of this with respect to the weight vector is easily
determined to be

(29)

which is simply the expected value of the SIG in (27).
There is an interesting special case of SIG that occurs when

the window length and the kernel function is selected to
be a Gaussian function. For Gaussian kernels, the derivative of
the kernel can be written in terms of the kernel function itself
as . When these are substituted in (27),
the SIG simplifies down to

(30)

Notice the structural resemblance between (30) and the LMS
update, which is given by , for ADALINE. The SIG
updates are based on the instantaneous increments of the signal
values in this special case, whereas the LMS updates are based
on the instantaneous signal values. In relation to anti-Hebbian
learning, LMS tries to uncorrelate the error and the input vector,
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but SIG tries to uncorrelate the instantaneous increments of
these signals. As a final remark on SIG, notice that in (30), the
kernel size can be incorporated in the step size of the stochastic
adaptation algorithm.

In this section, we have presented SIG (the stochastic gradient
of entropy), which can be used to train ADALINE structures
online for the minimization of error entropy. SIG is a simple
algorithm that allows manipulation of entropy on a sample-by-
sample basis with relatively low computational requirements,
and specifically, a special case of SIG corresponding to a single-
sample-window and Gaussian kernels shows great resemblance
to the LMS updates, both in terms of structure and computa-
tional complexity.

VI. NUMERICAL CASE STUDIES

In this section, we will present a number of numerical ex-
amples to demonstrate the theoretical conclusions drawn in the
preceding sections. These include the effect of kernel size and
entropy order on the volume of the region of valid quadratic ap-
proximation and on the eigenvalues of the Hessian of the cost
function at the global optimum solution for ADALINE training.
In addition, the results of a series of Monte Carlo simulations
that illustrate the noise rejection and data efficiency of the pro-
posed entropy criterion in supervised training of ADALINE are
presented, in comparison with MSE.

In all of the simulations below, for visualization purposes, we
used a two-tap ADALINE for which the training data is also
generated by a two-tap ADALINE with weight vector

, except for the SIG examples, where the optimal solu-
tion is different. Thus, in the supervised system identification
scheme depicted in Fig. 2, both the unknown system and the
adaptive system have the same ADALINE structure. For infor-
mation potential and Renyi’s entropy, the estimator in (4) is uti-
lized. Evaluation of associated gradients and Hessians are car-
ried out using the formulas presented in the preceding sections.
Note that FIR filters are special cases of the ADALINE struc-
ture; therefore, all the conclusions drawn apply to the training
of adaptive FIR filters as well.

A. Effect of Entropy Order and Kernel Size on the Performance
Surface

This case study aims to illustrate how the performance sur-
face (here represented by its contour plots) of the information
potential criterion for supervised training of an ADALINE are
altered as a consequence of changing entropy order and kernel
size in the estimator. In order to avoid excessive computation
time requirements, we have utilized 20 noiseless training sam-
ples to obtain the contour plots shown in Fig. 1.

Recall that we have concluded that as the kernel size is in-
creased, the valley around the global maximum becomes wider
(allowing larger step size for stable convergence), as well as the
volume of the region of quadratic approximation. This is clearly
observed in the columns of Fig. 1. As we would expect, as a
consequence of Fact 5, the coverage area of the quadratic ap-
proximation expands as the cost function approaches the MSE
when the kernel size is increased. In Fig. 1, each row represents

a constant kernel size , and each column repre-
sents a constant entropy order , respectively.

B. Eigenvalues of the Hessian as a Function of Entropy Order
and Kernel Size

We have concluded through a theoretical analysis of the ana-
lytical expression of the Hessian and its trace that at the optimal
solution, the eigenvalues of the Hessian depend on the kernel size
and the entropy order. Specifically, in Facts 7 and 8, we saw that
as the kernel size is increased, the absolute values of the (nega-
tive) eigenvalues of the information potential decrease, and as the
entropy order is increased, depending on the current value of the
kernelsize, theeigenvalueseither increaseordecrease.Forasetof
20 noiseless training samples, we have evaluated the eigenvalues
of the Hessian of the information potential at the optimal solution
forvariousvalues ofentropyorderandkernel size.Theresultsare
showninFig.3. InthesubplotspresentedinthefirstrowofFig.3, it
isclearlyseenthat thebehaviorof theabsolutevaluesof theeigen-
valuesof the informationpotential isexactlyaswehavepredicted
according to the theoretical analysis. Note however, that the loga-
rithmsof theeigenvaluesarepictured toaccount forawider range
of values, and this is the reason why the values of the two eigen-
values look similar.

In the lower row of Fig. 3, we have also presented the
eigenvalues of the actual entropy evaluated at the optimal
point for the same values of kernel size and entropy order.
Recall that entropy and information potential are related by

; hence, their Hessians are
associated with each other by

(31)

Since error entropy is minimized (as opposed to the maximiza-
tion of information potential for ), its eigenvalues are
already positive.

C. Noise Rejection of MEE and Comparison With MSE

In Fact 6, we mentioned that the error entropy criterion is
(ideally) robust to additive noise in the desired signal. This
means that if we could obtain analytical expressions of the
entropy values for each value of the weight vector and minimize
these values, then the additive noise present in the desired signal
would not be able to deviate the estimated system parameters
from their corresponding actual values. In fact, MSE has the
same noise rejection property asymptotically (which can be
shown easily).

In this section, we aim to compare the finite-sample perfor-
mances of MEE and MSE criteria in ADALINE training in
noisy conditions. For this purpose, an independent zero-mean
Gaussian noise (this specific choice of the noise pdf has no
significance) is introduced to the desired response at various
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Fig. 3. Eigenvalues of the Hessian of the information potential (upper row) and entropy (lower row) evaluated at the optimal solution, presented as a function of
the kernel size (�) and the entropy order (�). There are two eigenvalues since the ADALINE has two weights.

signal-to-noise-ratio (SNR) levels. Then, for each SNR level
(100 Monte Carlo runs using randomly selected training data),
the estimated system parameters are obtained through the use of
gradient ascent procedure for information potential (with
and for all simulations) and using the Wiener–Hopf equa-
tion for MSE (the covariance of the input and the crosscovari-
ance of the desired signal and the input vector are estimated
from the samples). For each run, the distance between the es-
timated weight vector for the model ADALINE and the actual
weight vector of the model is calculated, and then, these are av-
eraged over the 100 runs for each SNR value.

Fig. 4 shows the average deviation of the estimated
weight vectors from the actual weight vectors for MEE
and MSE as a function of SNR, using training set sizes of

. Notice that for small noise power (SNR
greater than approximately 5 dB), MEE outperforms MSE in
noise rejection consistently. In addition, for high SNR values
(greater than 20 dB), MEE is extremely data efficient compared
with MSE because it obtains the same level of performance
achieved by MSE using fewer samples.

These results indicate that MEE is more robust to noise in
the desired signal in a finite-sample case, and furthermore, it
extracts the information in the samples efficiently to obtain a
better solution with fewer samples. This result is also consis-
tent with those we have obtained in the blind source separation
problem using Renyi’s entropy [10].

D. Demonstration of SIG in ADALINE Training

We have presented SIG as an online method to manipulate
entropy and to minimize error entropy in supervised ADALINE
training. Specifically, an oversimplified special case of SIG that
is computationally very simple and that resembles LMS in struc-

ture is expressed. In the following two sample simulations, we
aim to illustrate the performance of SIG in ADALINE training
[29]; once again, for visualization purposes, we have chosen
two-weight situations, where one is the prediction of a time se-
ries from its most recent two samples, where the sequence is
generated by sampled
at 100 Hz. The training set consists of 32 samples, which ap-
proximately corresponds to one period of the signal, and are
used repeatedly for 150 epochs for both SIG (the oversimplified
version) and LMS algorithms. The weight tracks of both algo-
rithms starting from five different initial conditions are shown
in Fig. 5(a), along with the contours for the MEE criterion for
this training set. In Fig. 5(b), we present the weight tracks of
a training scenario for a two-weight frequency-doubler scheme
with 20 samples and 1000 epochs. The FIR filter is adapted to
approximately generate a sinusoid with double the frequency of
the sinusoid at its input. Note that this is just an illustration. In
general, an accurate solution of the frequency-doubling problem
requires FIR filters with many taps.

VII. D ISCUSSIONS

We have recently introduced minimum error entropy (MEE)
as an information theoretic supervised training approach and
demonstrated its superiority over the mean square error (MSE)
criterion in a variety of applications including channel equaliza-
tion, chaotic time-series prediction, and nonlinear system identi-
fication. In this paper, however, we focused on the investigation
of the convergence properties of the steepest descent algorithm
for ADALINE training using the MEE criterion. We have shown
that adjusting the kernel size and entropy order—the two de-
sign parameters in the proposed cost function—can control the
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Fig. 4. Average distance between the estimated and actual weight vectors for MEE and MSE as a function of SNR.

(a) (b)

Fig. 5. Weight tracks for SIG (solid) and LMS (dotted) in online ADALINE training for (a) time-series prediction and (b) frequency doubling.

volume of this neighborhood, where the assumed approxima-
tions are valid. Borrowing results from the analysis of the MSE
criterion in the literature, we have determined the upper bound
for the step size for stability and the corresponding time con-
stant that approximately identifies the convergence speed of the
algorithm in the vicinity of the solution.

The effects of the two characteristic parameters, namely, the
entropy order and the kernel size, on the structure of the per-
formance surface is examined. It was determined theoretically
(using analytical techniques) and illustrated through numerical
examples that as the kernel size is increased, which is consis-
tent with our conjecture on the equivalence with convolution
smoothing, the performance surface smoothens and the eigen-
values of the Hessian of the entropy evaluated at the optimal
point gets closer to zero, resulting in a wider valley, thus al-
lowing for larger step size values for stability. Increasing the
entropy order, however, depending on the value of the kernel

size, may have differing effects on the eigenvalues of the Hes-
sian of entropy. When the kernel size is small, the eigenvalues
decrease (toward zero), and when the kernel size is large, the
eigenvalues increase with increasing entropy order.

Motivated by the asymptotic total noise rejection properties
of MEE and mean square error criteria, we have also com-
pared their robustness in determining the actual parameter
values under noise for various sizes of finite-sample training
sets. Monte Carlo simulations performed over a range of
signal-to-noise ratios revealed that, given a fixed size data set,
MEE is more robust to additive noise in the desired signal than
mean square error in the range of practically encountered noise
levels. In addition, although both criteria are totally robust to
additive noise asymptotically as the number of samples goes
to infinity, the simulations suggested that the entropy criterion
converges faster to this asymptotic result as a function of the
number of samples.
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Finally, we have introduced thestochastic information
gradient for minimization of the error entropy online with
relatively much less computational requirements at each
iteration of the learning algorithm. This stochastic information
theoretic learning algorithm was derived from the error entropy,
following the stochastic approximation guidelines. We have
demonstrated the operation of SIG by portraying its weight
tracks imposed on contour plots of the MEE criterion. These
simulations, for two different training data sets with multiple
initial conditions for each, confirmed that learning with SIG,
linear adaptive systems could learn minimum entropy solutions
on a sample-by-sample basis.

In conclusion, this paper mainly dealt with the batch conver-
gence properties of the MEE criterion in supervised linear adap-
tive system training while proposing a simple stochastic learning
rule for online information-theoretic adaptation purposes, whose
average behavior is also governed by the same dynamics as batch
learning. Future research is in order to extend these results to su-
pervisedandunsupervisedtrainingofnonlinearadaptivesystems
that use the proposed entropy estimator as an integral part of their
learning criteria. In addition, a methodology to determine the an-
nealingscheduleforthekernelsizeforanygivenproblemwillben-
efit the algorithms that utilize MEE.

APPENDIX

Alternative Proof for Fact 6:Assume that a clean desired
signal is generated by ) and that the noisy desired
signal is obtained from this signal with . Let the
adaptive system output be for an arbitrary set of
weights in . In addition, let be the zero-mean noise pdf
for and be the pdf of the input signal. Suppose that
the conditional pdf of given is and that the
noise is independent from the input. Then, the conditional pdf
of noisy desired given the input is

(A.1)

The error is defined as

, . For an ADALINE struc-
ture, the mapping is given by , and there-
fore, . The pdf of becomes

. Using this, we write
the conditional pdf of the error as

(A.2)

The probability of error is then written as the product of this
conditional pdf and the input pdf

(A.3)

Notice that if , the error distribution becomes
, and thus, the error entropy is equal to the

noise entropy. Otherwise, the error probability is a convolution
of the noise pdf with some other pdf that depends on the current
weight vector and the optimal weight vector. In that case, we
know by Fact 4 that the entropy of the error will be greater than
the entropy of noise. Are there any other weight vectors that
may lead to a-distributed error? In the ADALINE case, as long
as the number of training samples is greater than or equal to
the number of weights, the answer is “no” because the weight
vector that yields zero error over all samples is determined as the
solution to a linear system of equations, and these have unique
solutions. This proves that the actual weight vector is the
only global minimum of the MEE criterion, even in the case of
noisy desired signal.
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