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Abstract

We have recently suggested the minimization of a nonparametric estimator of Renyi’s mutual
information as a criterion for blind source separation. Using a two-stage topology, consisting
of spatial whitening and a series of Givens rotations, the cost function reduces to the sum of
marginal entropies, just like in the Shannon’s entropy case. Since we use a Parzen window
density estimator and eliminate the joint entropy by employing an orthonormal demixing matrix,
the problems of probability density function inaccuracy due to truncation of series expansion
and the estimation of joint pdfs in high-dimensional spaces (given the typical paucity of data)
are avoided, respectively. In our previous formulation, the algorithm was restricted to Renyi’s
second-order entropy and Gaussian kernels for the Parzen window estimator. The present work
extends the previous results by formulating a new estimation methodology for Renyi’s entropy,
which allows the designer to choose any order of entropy and any suitable kernel function.
Simulations illustrate that the proposed method compares favorably to Hyvarinen’s FastICA,
Bell and Sejnowski’s Infomax and Common’s minimum of mutual information. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

A typical blind source separation (BSS) system operates on observations that are
obtained by passing unknown independent signals through an unknown mixing matrix.
The block diagram of the BSS scheme we assume is given in Fig. 1. An observation
vector z = HTs is obtained from the sources. First, a spatial whitening is applied to
the observed data, x =WTz, where the whitening transform W is evaluated from the
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Fig. 1. System block diagram for two-source=two-measurement scheme.

autocorrelation matrix of z in the usual manner, namely, W=��−1=2, where � is the
matrix of eigenvectors of the autocorrelation matrix of z, and � is the corresponding
eigenvalue matrix. The adaptive part of the topology is the rotation matrix which
produces an output y = R(�)x.
In the BSS literature, the minimization of the mutual information (MMI) between

outputs is considered to be the natural information theoretic criterion [3,4,8]. How-
ever, two of the most well-known methods for BSS [2] and [9] use, respectively, the
maximization of output entropy and fourth-order cumulants. Shannon’s mutual infor-
mation can be written as the sum of Shannon’s marginal entropies minus the joint
entropy. One diIculty in using Shannon’s MMI is the estimation of the marginal en-
tropies. In order to estimate the marginal entropy, Comon and others approximate the
output marginal probability density functions (pdf) with truncated polynomial expan-
sions [4,5,8], which naturally introduces error in the estimation procedure. There are
also parametric approaches to BSS, where the designer assumes a speciJc parametric
model for the source distributions based on previous knowledge in the problem [4].
A well-known result from statistical signal processing theory is that if the designer
chooses an accurate parametric model for the problem, it will outperform any nonpara-
metric approach, as the ones proposed in this paper. However, it is also well known
that the penalty for model mismatch is also high, so there is an intrinsic compro-
mise on the use of parametric modeling. An algorithm proposed by Xu et al. [14]
avoids the polynomial expansion by employing the nonparametric Parzen windowing
to estimate directly Renyi’s joint entropy at the output of the mapper [10]. Unfortu-
nately, Xu’s method requires estimation of the n-dimensional joint entropy (n number
of sources), and nonparametric pdf estimation using Parzen windows is ill posed in
high-dimensional spaces [14]. Our recently proposed algorithm avoids this shortcoming
and has proved to be superior to many commonly accepted methods because it requires
much less data to achieve the same performance level as shown in [7]. The algorithm
in [7] was restricted to Renyi’s quadratic mutual information and Gaussian kernels in
Parzen windowing because the analytic formulation in [10] only applies to Gaussian
kernels and quadratic mutual information. Recently, we overcame these limitations by
introducing a new estimator for Renyi’s entropy, which again utilizes Parzen window-
ing in the pdf estimation phase [6]. In this paper we combine these advances for blind
source separation yielding the minimization of Renyi’s mutual information (MRMI)
algorithm.
The organization of this paper is as follows. First, we derive the cost function for

BSS starting from Renyi’s mutual information. In Section 3, we demonstrate how
to estimate Renyi’s entropy nonparametrically, i.e. directly from the samples, and in
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Section 4, we deJne the information potential Jeld and the information force and
we demonstrate their role in adaptation. Section 5 is devoted to the derivation of
the gradient of the cost function with respect to the rotation angles for use in the
steepest descent algorithm. Finally, in Sections 6 and 7, we present separation results
and conclude with a discussion of these results.

2. Derivation of the cost function

Recall the following equality for Shannon’s deJnitions of mutual information, marginal
and joint entropies for two random variables x and y:

IS(x; y) = HS(x) + HS(y)− HS(x; y): (1)

The same equality is not valid for Renyi’s deJnitions of these quantities because
Renyi’s entropy lacks the recursivity property of Shannon’s entropy. Nevertheless, we
will show that we can slightly modify Renyi’s mutual information expression such that
it preserves the global minimum of the mutual information. Renyi’s mutual information
for an n-dimensional random variable y is deJned as [12]

IR�(y) =
1

�− 1
log

∫ ∞

−∞

fY (y)�∏n
o=1 fo(y

o)�−1
dy: (2)

However, the sum of Renyi’s marginal entropies minus the joint entropy is

n∑
o=1

HR�(y
o)− HR�(y) =

1
�− 1

log

∫∞
−∞ fY (y)� dy∫∞

−∞
∏n
o=1 fo(y

o)� dy
: (3)

Although this is not identical to (2), it is very similar in structure. In addition, (2)
and (3) are both nonnegative and they both evaluate to zero if and only if the joint pdf
can be written as the product of the marginal densities, i.e. when the output signals are
statistically independent. This can be seen easily by letting the joint density, which is
the integrand in the numerator, to be equal to the product of marginal densities, which
is the integrand in the denominator. In that case, the argument of the logarithm in (3)
becomes unity, hence the minimum value of zero is achieved, and thus the sources are
separated. On the other hand, if the right-hand side in (3) becomes zero, the argument
of the logarithm becomes unity, thus the numerator is equal to the denominator. For
this to occur between a joint distribution and its marginals, it is necessary for the
marginal random variables to be independent. Having proved that the expression in
(3) is a valid criterion for measuring independence, we adopt it as the cost function
instead of the actual mutual information, given in (2).
We now assume the two-stage demixing process proposed in [5], which consists

of spatial whitening (sphering) and then rotation in n-dimensions. Only the rotation
matrix is adapted to minimize the quantity in (3). Now, using the fact that Renyi’s
joint entropy is invariant to rotations [7], we can remove this term and reduce the cost
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function to

J =
n∑
o=1

HR�(y
o); (4)

which mimics the cost function of [5,15] with Renyi’s entropy substituted for
Shannon’s.
The observations are Jrst whitened to eliminate correlation, and then rotated to a

proper angle to restore independence, as shown in Fig. 1. The parameter vector � of the
rotation matrix is adapted to minimize the cost function in (4). This vector consists of
n(n−1)=2 parameters �ij; j¿ i, where each parameter represents the amount of Givens
rotation in the i–j plane. The overall rotation matrix is the product of the individual
in-plane rotation matrices:

R(�) =
n−1∏
i=1

n∏
j=i+1

Rij(�ij): (5)

In (5), all products are performed sequentially from the right (or left). The important
point is to perform these operations in the same order and from the same side when
evaluating the gradient expression. The Givens rotation in the i–j plane is deJned as
an identity matrix whose (i; i)th, (i; j)th, (j; i)th, and (j; j)th entries are modiJed to
read cos �ij;−sin �ij; sin �ij, and cos �ij, respectively.

3. Estimating Renyi’s entropy

Renyi’s entropy with parameter � for a random variable yo with pdf fo(:) is deJned
as (we will drop the ±∞ limits from the equations from now on)

H�(yo) =
1

1− � log
∫ ∞

−∞
f�o(y

o) dyo =
1

1− � logE[f
�−1
o (yo)]: (6)

The Parzen window pdf estimate of a random variable yo for which only the samples
{yo1 ; : : : ; yoN} are given, is deJned by

f̂o(y
o) =

1
N

N∑
i=1

��(yo − yoi ); (7)

where the kernel function is ��(:), whose size is speciJed by the parameter �, as
deJned in the following section [10].
When we substitute the sample mean for the expected value operator in (6), and

then replace the actual pdf with its Parzen window estimate in (7) evaluated at the
corresponding sample, we obtain our new estimator for Renyi’s entropy of order �.
Notice that in (8), the index j runs for the sample mean, and the index i runs for
Parzen windowing.

Ĥ �(yo) =
1

1− � log

 1
N�
∑
j

(∑
i

��(yoj − yoi )
)�−1 : (8)
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The argument of the log in (6) is called the information potential [11], and will
be denoted by V�(yo). Hence, a nonparametric, biased estimator for the information
potential is given by

V̂ �(yo) =
1
N�
∑
j

(∑
i

��(yoj − yoi )
)�−1

: (9)

The information potential will be used later in the gradient computation. We have
shown in [6] that, a symmetric diOerentiable kernel with a negative-deJnite Hessian at
the origin guarantees that the minimization of the nonparametrically estimated entropy
and the actual entropy occurs at the same point; hence, this should be the necessary
guideline to choose a valid kernel function. In that work, we also proved that there is a
correspondence with the kernel function in this estimator for information potential and
the smoothing function in the global optimization method of convolution smoothing
[6,13]. The same relationship is valid in this case, and it is trivial to modify that proof
to the cost function we use here.
The following question comes into one’s mind immediately. How good is the sample

mean approximation of the expected value in the deJnition of the information potential?
From the central limit theorem, we know that the distribution of the sample mean is
asymptotically Gaussian. It is also known that the sample mean is an unbiased and
asymptotically consistent estimator for the expected value operator. For these reasons,
the sample mean is widely used and we also use it here. Moreover, the combination of
the sample mean with the Parzen window estimator of Renyi’s entropy possesses a very
special property that was noted upon careful investigation of the relationship between
this new estimator and the previously deJned quadratic entropy estimator [11]. The
previous quadratic information potential estimator using Gaussian kernels was deJned
as

V2(yo) =
∫ ∞

−∞
f2o(y

o) dyo ∼=
∫ ∞

−∞

(
1
N

∑
i

G�(yo − yoi )
)2

dyo

=
∫ ∞

−∞

(
1
N 2

∑
i

∑
j

G�(yo − yoi )G�(yo − yoj )
)
dyo

=
1
N 2

∑
i

∑
j

∫ ∞

−∞
G�(yo − yoi )G�(yo − yoj ) dyo

=
1
N 2

∑
i

∑
j

G�
√
2(y

o
j − yoi ): (10)

This derivation makes use of the fact that the integral of the product of two Gaussian
functions is another Gaussian function with twice the variance. Notice that there is no
approximation in (10) apart from the implicit Parzen window pdf estimation. Now let
us look at what our new estimator with the sample mean gives for quadratic entropy
with the same choice of kernel function. We get the results by direct substitution of
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�= 2 and � = G� in (9):

V̂ 2(yo) =
1
N 2

∑
i

∑
j

G�(yoj − yoi ): (11)

We conclude that the estimator in (11) has exactly the same form but a larger vari-
ance than (10) since it eOectively uses a smaller kernel size in the Parzen window
estimation. Remarkably, the sample mean approximation followed by Parzen window
estimation with Gaussian kernels can be compensated by simply choosing a larger ker-
nel size in (11) (speciJcally

√
2 times the original kernel size). For quadratic entropy

calculations with Parzen estimation, any choice of kernel in (10) can be mimicked by
letting the kernel in (9) equal

�new(xj − xi) =
∫ ∞

−∞
�old(x − xi)�old(x − xj) dx: (12)

Gaussian kernels, however, are very special because by simply rescaling the kernel
function to the appropriate size we can achieve this equality between the new and old
estimators. This analysis shows that the sample mean estimation of the �-information
potential is eOectively a productive approach.

4. Information potential &eld and information forces

These quantities were Jrst deJned in [11] and analyzed in the context of BSS. At
that time, only an estimator for Renyi’s quadratic entropy (�=2) was available. Since
we can now estimate any order of entropy with (8), we can extend the deJnition of
information potential and information force, and furthermore, explore their relationships
with their quadratic counterparts. One of the appeals of the information potential is its
analogy to physics, where the samples become information particles and the kernels
deJne the interaction laws. Thus, in an information potential Jeld, it becomes possible
to discuss information forces that these particles exert on each other. From (9), we
have the following information potential (energy) estimator:

V̂ �;�(yo) =
1
N�
∑
j

(∑
i

��(yoj − yoi )
)�−1

; (13)

where the one-dimensional size-� kernel can be written in terms of the unit-size kernel
according to

��(x) =
1
�
�(x=�): (14)

Notice that in this one-dimensional case, the standard deviation acts as a natural scaling
factor for the Gaussian kernel.
Since potential energy of a set of particles is the sum of the individual potential

energies, we can instantly write the potential energy of an information particle (sample)
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yoj from the above expression as

V̂ �;�(yoj ) =
1
N�

(∑
i

��(yoj − yoi )
)�−1

: (15)

Now, we can deJne and compute the information force acting on this particle as

F�(yoj ) =
@V̂ �(yoj )

@yoj
=
(�− 1)
N�

(∑
i

��(yoj − yoi )
)�−2∑

i �=j
�′�(y

o
j − yoi )


 : (16)

In this form, the information force expression is not very informative. We can under-
stand the nature of the order-� force better when we write it as a function of the force
created by the information potential for �= 2:

F�(yoj ) = (�− 1)f̂
�−2
o (yoj )F2(y

o
j ); (17)

where the pdf estimation is performed by Parzen windowing as in (7) and the quadratic
force is deJned as

F2(yoj ) =
1
N 2


∑

i �=j
�′�(y

o
j − yoi )


 : (18)

This quadratic force expression reduces to the exact same deJnition in [11] when
Gaussian kernels are assumed. With this formulation, it also becomes possible to deJne
the force exerted on a particular sample by another sample. The force on yoj due to
yoi is given by

F�(yoj ;y
o
i ) = (�− 1)f̂

�−2
o (yoj )F2(y

o
j ;y

o
i );

F2(yoj ;y
o
i ) =

1
N 2 �

′
�(y

o
j − yoi ): (19)

We have now completed the formulation of information forces and set up the link
between the order-� force and the quadratic force. Basically, the quadratic force can
be regarded as the foundation of information forces of all orders. Forces of any order
can be written as a scaled version of the quadratic force, where the scaling factor is
a power of the probability density of the particle that the force acts on. We see that
the order-� information force is scaled from the quadratic force by a power of the
probability density for that speciJc particle. For �¿ 2, this scale factor is larger for
particles with greater probability densities, and for �¡ 2, it is larger for particles with
smaller probability densities. Thus, for �¿ 2, larger forces will act on the concentrated
regions of the data to spread them apart.
Since the relation between entropy and information potential is the logarithm, the

information force at the output of the mapper is all what matters to train an adap-
tive system with a gradient-based method to maximize or minimize entropy. The
gradient of the cost function we have introduced in (4) with respect to the param-
eters of the rotation matrix can be written in terms of the information forces in the
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following manner:

@J
@�

=
∑
o

@Ĥ �(yo)
@�

=
∑
o

∑
j

1
1− �

@V̂ �(yoj )=@y
o
j

V̂ �(yo)

@yoj
@�

=
∑
o

∑
j

1
1− �

F�(yoj )

V̂ �(yo)
S�(yoj ); (20)

where o is the index running over the output channels, and j the index running over
the samples. The derivative of an output sample with respect to the weights is termed
the sensitivity; hence, the overall gradient is a function of the information forces, the
information potentials, and the sensitivities of the information particles.
In order to understand the role of the information forces in the adaptation process,

it is helpful to study (20) in detail. Observe that the gradient of the cost function with
respect to the weights consists of a sum of gradients generated by each information
particle yoj . Each of these components is directly proportional to the information force
on the corresponding particle and inversely proportional to the potential of that output
channel.

5. The gradient vector

Recall the gradient expression given in (20). The forces and information potentials
can be evaluated exactly as shown in Section 4. The sensitivity is simply the gradient
of the corresponding output with respect to the parameters. It can be calculated using
the Givens rotation matrices as follows:

yoj = R
oxj;

S�ij (y
o
j ) =

@yoj
@�ij

=
@Ro

@�ij
xj =

(
@R
@�ij

)o
xj; (21)

where Ro is the oth row of R, and xj the jth whitened sample vector. The partial
derivative of the overall rotation matrix R with respect to the parameter �ij can be
evaluated easily from

@R
@�ij

=


 i−1∏
p=1

n∏
q=p+1

Rpq


(j−1∏

q=i

Riq

)
R′ij


 n∏
q=j+1

Riq




 n∏
p=i+1

n∏
q=p+1

Rpq


 : (22)

The derivative of Rij is simply a sparse matrix with the obvious entries being the
derivatives of the corresponding sin and cos functions of �ij. The rotation angles then
can be updated using a steepest descent algorithm with the use of this gradient.

6. Simulations

The whitening-rotation scheme has a very signiJcant advantage. When this topology
is used with a large number of samples, oftentimes, there are no local minima in
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the cost function. Consider the two-source separation problem. The rotation matrix
consists of a single parameter, which can assume values in the interval [0; 2�). As far
as separation is concerned, there are four equivalent solutions, which correspond to
two permutations of each source and the two possible signs for each source. The value
of the cost function is periodic with �=2 over the rotation angle �, and most often is
a very smooth function (sinusoidal like), which is easy to search.
Numerous simulations were performed with this new BSS algorithm using diOerent �

and kernels on synthetic data and audio instantaneous mixtures. In order to compare the
results from diOerent algorithms, we used a signal-to-distortion ratio, which is deJned
as

SDR=
1
n

n∑
i=1

10 log10

(
(max qi)2

qiqTi − (max qi)2

)
; (23)

where q=RWTHT, and qi is the ith row of q. This criterion eOectively measures the
distance of q from an identity matrix and is invariant to permutations and scaling.
We Jrst start with an investigation of the eOect of � on the separation of

instantaneous mixtures, when the source kurtosis spans reasonable values (the so-called
super- and sub-Gaussian signals). Although our nonparametric method in principle can
separate signals independent of its kurtosis (since the pdf is estimated at the output
directly), a question of paramount importance is ‘what value of entropy order should
one use for diOerent source densities in order to achieve optimal performance?’ In
search of the answer to this question, a series of Monte Carlo simulations are per-
formed, using source distributions of diOerent kurtosis values. In all these simulations,
the two sources are assumed to have the same generalized Gaussian density, which
is given by G!(x) = C exp(−|x|!=(!E[|x|!]). The parameter ! controls the kurtosis of
the density and this family includes distributions ranging from Laplacian (! = 1) to
uniform (!→ ∞). Gaussian distribution is a special case corresponding to (! = 2),
which leads to the classiJcation of densities as super- and sub-Gaussian for (!¡ 2)
and (!¿2), respectively. For a given kurtosis value, the training data set is generated
from the corresponding generalized Gaussian density and a random mixing matrix is
selected. Then the separation is performed using various entropy orders (tracing the
interval from 1.2 to 8 in steps of 0.4) and Gaussian kernels. The Gaussian kernel size
was set at 0.25, and the adaptation using MRMI was run to achieve a convergence
of the SDR within 0:1 dB (although in practice this cannot be used as the stopping
criterion), which usually occurred in ¡ 50 iterations with a step size of 0.2.
According to these simulations, the optimal entropy orders for the corresponding

kurtosis value of the source densities are presented in Table 1. These results indicate
that, for super-Gaussian sources, entropy orders ¿2 should be preferred, whereas for
sub-Gaussian sources, entropy orders smaller than 2, perhaps closer to 1 or even smaller
than 1, should be preferred. These results are in conformity with our expectations from
the analysis of the information forces in Section 4. As we have seen in that analysis,
entropy orders larger than 2 emphasize samples in concentrated regions of data, whereas
smaller orders emphasize the samples in sparse regions of data. If the mixtures belong
to diOerent kurtosis classes, then the quadratic entropy can be employed as it puts
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Table 1
Optimal entropy order versus source density kurtosis

Kurtosis of sources Optimal entropy order

Super-Gaussian sources 0:8 (! = 1) 6.4
0:5 (! = 1:2) 5.2
0:2 (! = 1:5) 2

Sub-Gaussian sources −0:8 (! = 4) 1.2
−0:9 (! = 5) 1.6
−1:0 (! = 6) 1.2
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Fig. 2. Evolution of the signal-to-distortion ratio during iterations for two sources.

equal emphasis on all data points regardless of their probability density. This eOect is
very diOerent from some of the available algorithms where the BSS algorithms diverge
if the kurtosis of the sources are misestimated [8,9]. Another interesting aspect of this
simulation is that it seems to imply that Shannon information deJnition (�→ 1) is not
particularly appropriate to separate super-Gaussian sources, although it may be useful
for sub-Gaussian sources.
The next question addresses the performance of the MRMI algorithm for a realistic

source such as speech. Fig. 2 shows the evolution of the SDR values as a function of
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Fig. 3. SDR versus iterations for MRMI, Infomax, and FICA using the designated number of samples.

number of iterations in a two-audio source problem for diOerent choices of the kernel
function and the parameter �. These plots clearly demonstrate that for both kernels, a
better separation is achieved when �=5 is utilized. Also, we observe that the solutions
generated using the Gaussian kernel are better than those generated with the Cauchy
kernel, which hints at the possibility of determining an optimal kernel choice for a
given data set. How to do this, however, is still an open question, but we know that
the optimal kernel will be a function of the source distributions. There is no impressive
deterioration of performance when � changes from 5 to 2, since both provide SDRs
larger than 30 dBs (20 dB is considered an acceptable separation performance). We
also see that for very large � values performance deteriorates as we can expect due to
the smoothing eOect in the kernel.
For a Jnal comparison, we show SDR plots in Fig. 3 for our MRMI method with

�=2 and Gaussian kernels, the FastICA (FICA) [9] with the symmetric approach and
the cubic nonlinearity, Infomax [2] with Amari’s natural gradient [1], and Comon’s
MMI using an instantaneous mixture of 10 audio sources. The sources consist of one
music source, four female and Jve male speakers. Spatial prewhitening is used for
each method, and the mixing matrix entries were chosen from a uniform density on
[−1; 1]. The numbers in parentheses are the number of data samples used to train each
algorithm. It is clearly seen from the Jgure that the MRMI method achieves better
performance, although it uses a smaller data set. The improved data eIciency of the
MRMI method is discussed in greater detail in [7], but we attribute it to the fact that we
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are directly estimating entropy at the output, and our method seems to capture better the
information contained in the samples. Although the MRMI method converges in fewer
iterations than the others, keep in mind that it has O(N 2) computational complexity
per update as compared to O(N ) for the other two methods. Yang and Amari’s MMI
algorithm was also applied to this problem, however, we were never able to achieve an
acceptable separation level; therefore, the corresponding results are not included here.

7. Conclusions

We have extended our previous work on BSS with Renyi’s entropy by removing the
limitations on the choice of entropy order and kernel function. The proposed method,
MRMI, employs Renyi’s mutual information to arrive at a simple and performance-wise
advantageous BSS algorithm, when compared to many well-known algorithms such as
Bell and Sejnowski’s Infomax, Comon’s MMI and Hyvarinen’s FastICA. We have
shown that this new algorithm uses the data eIciently and is therefore able to achieve
a better performance for a given small set of samples, or in other words, it requires
less data to achieve the same performance as the other competing algorithms. This
property is vital in tracking a changing environment.
The parameter � in Renyi’s deJnition of entropy stands as a design parameter whose

eOect on the performance and convergence properties of the algorithm is yet to be
explored in more detail. We have demonstrated how this parameter changes the in-
formation forces acting on an information particle (sample) compared to the quadratic
case. A weighting factor that is proportional to the estimated probability density of the
particle of interest scales the quadratic force, hence the larger the probability density
of the particle, the larger the force that acts on it. This will cause the natural clusters
of the data samples to disintegrate and spread faster since the density estimates for
a group of particles that are closely spaced will be higher than isolated particles in
the perimeter of the space. Thus, by adjusting the parameter �, one can control how
fast this spreading of the data clusters will occur. Analytical analysis and simulations
had shown that for super-Gaussian sources an entropy order ¿2, and for sub-Gaussian
sources, an entropy order smaller than 2 should be used.
Another advantage of the MRMI is that it takes advantage of the large literature and

methods for training nonlinear systems (such as the backpropagation algorithm) by
substituting the injected error by the information force. This coupled with the superior
estimation capabilities of the Parzen estimator leads us to predict that MRMI can be
applied even in the case of nonlinear mixtures. As a Jnal comment, it is noted that the
proposed method achieves better separation for a small number of data points, because
the other algorithms either require the estimation of a joint entropy or the fourth order
cumulants, both of which require a larger number of samples due to the dimensionality
and the sensitivity to outliers, respectively.
In this paper, no form of optimization of the kernel function is employed. Future

work on how to optimize the kernel function choice and especially the kernel size must
be conducted. This, the authors believe, will improve both the Jnal performance and
the convergence speed of the algorithm.
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