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Abstract—We have recently proposed the quadratic Renyi’s
error entropy as an alternative cost function for supervised adap-
tive system training. An entropy criterion instructs the mini-
mization of the average information content of the error signal
rather than merely trying to minimize its energy. In this paper,
we propose a generalization of the error entropy criterion that
enables the use of any order of Renyi’s entropy and any suitable
kernel function in density estimation. It is shown that the pro-
posed entropy estimator preserves the global minimum of actual
entropy. The equivalence between global optimization by convo-
lution smoothing and the convolution by the kernel in Parzen
windowing is also discussed. Simulation results are presented
for time-series prediction and classification where experimental
demonstration of all the theoretical concepts is presented.

Index Terms—Minimum error entropy, Parzen windowing,
Renyi’s entropy, supervised training.

I. INTRODUCTION

T HE mean-square error (MSE) has been the workhorse of
adaptive systems research due to the various analytical

and computational simplicities it brings and the contentment
of minimizing error energy in the framework of linear signal
processing. In a statistical learning sense, especially for non-
linear signal processing, a more appropriate approach would be
to constrain directly the information content of signals rather
than simply their energy, if the designer seeks to achieve the
best performance in terms of information filtering [1]–[3].

A measure of information is the entropy, defined as the
average information [4]. Entropy was first defined and proved
useful by Shannon in the context of communication systems
[5]. Under the Gaussian assumption, Shannon’s entropy
and mutual information are still mathematically tractable.
Many entropy definitions followed Shannon’s from which
we single out Kolmogorov’s entropy very useful in statistics
[6]. A shortcoming of these entropy definitions is the lack of
computationally simple and efficient nonparametric estimators
for non-Gaussian random processes, particularly in high-di-
mensional spaces. For example, Viola uses the simple sample
mean to estimate mutual information [7] and concludes that
this estimator breaks down in high-dimensional spaces. In
the blind source separation (BSS) context, Shannon’s entropy
is estimated from the samples using truncated polynomial
expansions of the densities under consideration [8], [9]. These
reasons, along with the property that the convolution of two
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Gaussian functions is also Gaussian, were the motivating
factors to investigate Parzen windowing [10] with Renyi’s
quadratic entropy [11]. These authors have performed a signif-
icant amount of research on the performance and applicability
of this approach to various problems including BSS [11]–[13],
feature extraction, data reduction, feature ranking, and data
fusion [11], [14]. We do not know of any other work that uses
kernel estimation to build cost functions in learning. Vapnik
uses kernels to transform data into high-dimensional spaces
in his support vector machines [15] and kernel estimation in
the context of signal/information processing has been applied
as a measure of similarity between chaotic time series [16]; it
is also the basis to estimate attractor dimension [17]. We have
recently demonstrated the superiority of the entropy criterion
over the MSE in chaotic time series prediction with time-delay
neural networks (TDNNs) [18]. The results indicated that the
entropy-trained TDNN achieved a better fit to the density of the
desired samples, because minimizing error entropy minimizes
a Riemannian distance between the system output and the
desired output densities [19]. In a follow-up study, it was shown
that the entropy estimator also outperforms other methods for
BSS [12].

Renyi’s entropy is a parametric function family [20]. In this
paper, we provide an extension to the previously suggested
quadratic Renyi’s entropy estimator, which makes
possible the choice of any entropy order and kernel function. It
can be shown using L’Hôpital’s rule that Shannon’s entropy is
the limiting value of the Renyi’s entropy when approaches
one [20]. This property motivates the usage of Renyi’s entropy
and Parzen window estimator, with anvalue close to one as
a computationally efficient alternative to estimate Shannon’s
entropy.

Parzen windowing is a consistent estimator, yet it has some
problems; it is a biased density estimator where the density’s
expected value is equal to the convolution of the actual density
that produced the samples, and the kernel function [10]. How-
ever, we will show that there is a way to exploit this smoothing
property and use it to our advantage as a means of avoiding local
optima in the training process and thus achieving global opti-
mization.

The organization of this paper is as follows. First, we derive
the estimator for Renyi’s entropy in Section II and investigate
some of its mathematical properties. Next, we define the order-
information potential and information forces, study their rela-
tionship with their quadratic counterparts, and demonstrate their
role in the training process in Section III. This investigation is
followed by the presentation of the supervised steepest descent
training algorithm for adaptive systems using the entropy as the
performance measure. In Section V, we demonstrate the link
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between our estimation method and the convolution smoothing
method of global optimization. Finally, we present experimental
results from prediction and classification in Section VI, fol-
lowed by a discussion and conclusion section.

II. ESTIMATING RENYI’S ENTROPYWITH PARZEN WINDOWING

Renyi’s entropy with parameter for a random variable
with probability density function (pdf) is defined as (we
will drop the limits from the equations from now on)

(1)

Renyi’s entropy shares the same extreme points of Shannon’s
definition for all values of , i.e., its minimum value occurs
when is a Dirac- function and the maximum occurs when
the pdf is uniform. Since in realistic problems the analytical ex-
pression for the pdf is hardly ever known, a productive way is to
estimate nonparametrically the density from the samples. That
is where Parzen windowing comes into play. The pdf estimate
of a random variable for which the samples are
given is obtained using the kernel function , whose size is
specified by the parameter, with the following expression:

(2)

In [11], Gaussian kernels were specifically utilized andwas
restricted to two, yielding

(3)

where is the standard deviation of the Gaussian kernel used in
Parzen windowing and the argument of the log in Renyi’s
entropy is called theinformation potential[11]. We will now
generalize these choices. We first observe that the integral of

in (1) is the expected value of and then substitute
the sample mean for the expected value operator yielding

(4)

Then we replace the actual pdf with the Parzen window esti-
mator to obtain our estimator for Renyi’s entropy of order

(5)

The information potential is still defined as the argument of
the log (see [11]) and will come in handy when we specify a
value for . Minimizing the entropy is equivalent to maximizing

the information potential for , or minimizing the informa-
tion potential for since the log is a monotonous function.
This means that in entropy manipulation we can utilize simply
the information potential as our cost function.

The minimum value of the entropy will be achieved for a
-distributed random variable. The question is, when we have

the samples of this random variable as and
we use the nonparametric estimator in (5), is this still a minimum
of the estimated entropy? The following theorem addresses this
question.

Lemma 1: If a symmetric, continuous and differentiable, and
unimodal kernel with a peak at the origin is used, then the non-
parametric entropy estimator in (5) has a continuous and dif-
ferentiable local minimum when all the samples are identically
equal to each other.

Proof: See Appendix A.
Theorem 1: If a symmetric, continuous and differentiable,

and unimodal kernel is used, then the smooth local minimum
described in Lemma 1, which occurs when all samples are equal,
is the global minimum of the entropy estimator in (5).

Proof: See Appendix A.
This result is significant because it proves that we have an

estimator that preserves the global minimum under certain con-
straints imposed on the structure of the estimator, namely, the
choice of the kernel function. In addition, the result also yields
the profile of the cost function in the neighborhood of this global
minimum by identifying the corresponding local eigenstructure.
It is possible to design a suitable kernel function and, hence, an
estimator, by analyzing this structure.

Up to this point, we discussed some properties of the entropy
estimator in (5). Now, we show how minimizing error entropy
achieves the best statistical learning solution in terms of pdf
matching. This theoretical result based on Csiszar’s distance
[21] is also confirmed by simulation results that will be pre-
sented later.

Theorem 2: Minimizing Renyi’s error entropy minimizes a
Csiszar distance between the joint pdfs of input-desired signals
and the input–output signals. In the special case of Shannon’s
entropy, this Csiszar distance measure reduces to the Kullback-
Leibler divergence.

Proof: See Appendix A.

III. I NFORMATION POTENTIAL FIELD AND

INFORMATION FORCES

The use of kernels and the resulting entropy formulation in-
troduces an interesting interpretation of the training process.
The name information potential is not arbitrary. In fact, the con-
cept of information potential fields generated by samples seen
as information particles and the forces they exert on each other
were defined and investigated for the quadratic entropy with
Gaussian kernels in [11]. It is now possible to define the order-
information potentials and information forces among samples
and, thus, define the relationship between these new and the old
quadratic quantities. We define the information potential esti-
mator as

(6)
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where the -dimensional size- kernel can be written in terms
of the unit-size kernel according to (7) (notice that in the one-
dimensional case, the standard deviation acts as a natural scaling
factor for the Gaussian kernel)

(7)

It is important to remark that (6) reduces to (3) for
and when Gaussian kernels of twice the variance are used in the
estimation. This shows the interesting fact that, in the estimation
of Renyi’s entropy, the sample mean approximation in (3) can
beexactlycompensated by an appropriate choice of the Parzen
window function [22].

We can write the potential associated with an information par-
ticle (sample) from the above expression, since the total in-
formation potential energy is the sum of individual energies of
the particles

(8)

From this, we can compute the total information force
acting on by making the physical analogy with forces in po-
tential fields as

(9)

A more informative equivalent expression for the information
force on particle is

(10)

where the quadratic force is defined as

(11)

which makes perfectly clear the relationship of the-force and
the quadratic force.

This quadratic force expression reduces toexactlythe same
definition in [11], when Gaussian kernels of twice the variance
are employed. Now combining (10) and (11), we can define the
force exerted on a sampleby another particular sample as

(12)

Having completed the formulation of information forces and
having established the link between the order-force and the
quadratic force, we can now interpret the expressions. Basically,
the quadratic force can be regarded as the foundation for all
other information forces. Forces of any order can be represented
as a scaled version of the quadratic force, where the scaling
factor is a power of the value of the probability density of the

Fig. 1. Adaptive system training using information potential criterion.

particle that the force acts upon. For , the force on a
particle increases with increased probability density, while it
decreases for .

In this section, we have established a basis for minimum
error entropy training. We have analyzed the relations of the
general information potential and force expressions with their
quadratic counterparts. These links enabled us to understand
how the choice of the entropy parameteraffects the infor-
mation forces, hence the adaptation process. We have learned
that the information force acting on an information particle
is scaled up by a power of its probability density estimate,
therefore, selecting an greater than two will result in higher
forces acting on samples in more concentrated regions of the
data space, whereas choosing a smallerwill result in higher
forces acting on samples that are in less populated regions. In
the context of BSS, it was made clear that the use of for
super-Gaussian distributed samples was preferable, whereas

was suggested for sub-Gaussian signals [22]. Other
entropy orders, however, will also provide satisfactory results
unlike other methods based on the sign of the kurtosis [23].
If the residual error is anticipated to be Gaussian, or if the
designer does not have anya priori information about the sign
of the source kurtosis, the quadratic entropy is the best choice.

IV. GRADIENT TRAINING ALGORITHM FOR

INFORMATION POTENTIAL

Let us assume that the design goal is to adapt the parameters
of a linear or nonlinear parametric mapper in a
function approximation framework, as schematically shown in
Fig. 1. We define the error as the difference between the desired
output and the output of the mapper to a corresponding input.
Instead of the MSE, we will be using an information theoretic
learning criterion based on the information potential in (6).

Our aim is to minimize the error entropy since we know that
doing so, we would also achieve the best statistical fit to the
joint density between the input signal and the desired output.
We have demonstrated in Theorem 2 that minimizing error en-
tropy achieves this goal. On the other hand, noticing that the
logarithm is a monotonic function, it is much easier to equiva-
lently minimize or maximize the information potential for the
cases and , respectively. This simplification brings
about significant computational savings by eliminating the need
to evaluate the information potential at every step of the gradient
update algorithm.

The information forces are encountered when training an
adaptive system with weight vector with the information
potential criterion and using a gradient-based method. We
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adapt the parameters of the mapper by injecting the information
force for sample as the external error. The gradient of the
information potential of the error with respect to the weights
consists of products of the information force acting on an error
sample, and the sensitivity of the architecture at that error value

(13)

On the other hand, the gradient of the information potential
with respect to the weights of the adaptive system is explicitly
given by

(14)

where the desired response, system output, and error samples
are defined as and . The instantaneous
gradient of the system output with respect to the weights can
be calculated using efficient methods depending on the type of
adaptive system used; for example for a finite impulse response
(FIR) filter, this gradient will simply be the corresponding input
vector as in the least-mean square (LMS) algorithm [24], and
for a multilayer perceptron (MLP) it can be computed by back-
propagation [25].

It is of theoretical interest to investigate the relation between
the gradient of the order- information potential and the
quadratic information potential. The expression in (13) can be
rearranged to yield

(15)

whereas the total gradient of quadratic information potential is
simply the sum of the gradients of each particle, that is, it
corresponds to an equal mixing of the individual gradients gen-
erated by each particle (with a scale of). However, in the
order- case, the total gradient is a weighted mixture of the in-
dividual gradients created by each particle where the mixture
coefficients are the powers of the pdf estimate of the corre-
sponding particle. This property directly translates from what
was observed for the information forces.

Gradient adaptation is not the only search possibility, but it is
preferred in many training paradigms due to its simplicity and
efficient convergence [24]. Yet, there are many other alternative
optimization approaches that may be used, global or otherwise
[26], [27].

V. KERNEL SIZE AND GLOBAL OPTIMIZATION BY

FUNCTIONAL SMOOTHING

Thus far, we have derived a performance criterion and the
corresponding gradient-based supervised learning algorithm for
adaptive system training. The method can be used to train sys-
tems ranging from linear FIRs to nonlinear neural-networks sys-
tems. Now it is time to ask the question, “what are the math-

ematical properties of the combination of this criterion, with
the training algorithm?” In pursuit of an answer to this ques-
tion, we investigate the effect of the kernel size on the criterion.
The kernel size is a very important parameter if efficiently
exploited. Since Parzen windowing is a biased estimator of the
pdf where the tradeoff is between low bias and low variance,
one must choose a suitable value small enough to minimize the
bias at an acceptable variance level. The kernel size cannot be
chosen to be zero because this would mean placing-functions
on the samples and although this would make the bias zero, it
would blow up the variance of the pdf estimation.

Once a suitable value is set, training can be carried out using
that fixed kernel size value. Our experience shows that this value
is not critical in the final performance as long as it is not ex-
tremely small or extremely large. For example, the kernel size
can be set to a value so that each kernel will cover, say, ten sam-
ples on average over the foreseen dynamic range of the error.
This has been the way we have applied the method until now.
However, due to the nonlinear nature of most function approxi-
mation problems, some local optima may exist. It turns out that
the kernel size may be effectively used to avoid these local op-
tima. Consider the following relation that identifies the link be-
tween the order- information potential of a given set of error
samples for an arbitrary kernel size and for the unit size kernel

(16)

Notice that the change in kernel size causes dilation in the
-space. Therefore, all the points, including all local extremes

move radially from the origin when is increased. The only
point that maintains its position is the origin. From this, we
conclude that if the span of the function approximator that is
being used covers the function being approximated (i.e., the error
is approximately zero), then the location of the global solution is
independentof thekernel size.Also, if the functionapproximator
used is a contractive mapping, which is the case in feedforward
neural networks for example, then the dilation in the-space is
followed by dilation in the weight-space, hence, the volume of
attraction of the global optimum is increased. This observation
lead us to propose aglobal optimizationprocedure for the
training process based on gradient descent and annealing kernel
sizes. If one starts with a large kernel size and during the adapta-
tion gradually and slowly decrease it toward the predetermined
suitable value, the local solutions, which would have trapped
the training for those same initial conditions when the-space
was not dilated, will be avoided. Hence, we obtain a global
optimization result still using a gradient descent approach!

In addition to the dilation property in the finite sample
case, there is another interesting property that the Parzen win-
dowing brings about. In the literature of global optimization, a
well-known theoretical result uses convolution of the cost func-
tionwithasuitable smooth function toeliminate local optima and
gradually decrease the effect of the convolution to achieve global
optimization [28]. Convolution smoothing was proven effective
in adaptation of infinite impulse response (IIR) filters [29]. The



ERDOGMUS AND PRINCIPE: INFORMATION POTENTIAL CRITERION 1039

global convergence theorem for convolution smoothing states
that the following optimization problems are equivalent:

(17)

where the smoothened functional is defined as

(18)

and, thus, both result in the global optimal point[28]. There
are conditions that the smoothing functional has to satisfy

is a pdf (19)

Condition 3 guarantees that both and are well-
behaved functions. Condition 4 gives the problem a stochastic
optimization flavor [28]. For our purposes, this strict condition
is not a problem since even if the convolving function does not
integrate to one then the same convolution smoothing effect will
be observed, except there will be a scale factor that multiplies
the smoothed functional. The most important constraints on the
smoothing function are Conditions 1) and 2).

In the supervised training process, if we could obtain an an-
alytical expression for the pdf of the error as a function of the
weights, then we would optimize the actual information poten-
tial given by

(20)

However, we are using Parzen windowing to estimate
from the samples. Since Parzen windowing is a

consistent estimator, as , the estimated pdf converges
to the actual pdf convolved with the kernel function that is
used, which also happens in the mean

(21)

where denotes a convolution with respect to the variable.
When we equate this to the convolution smoothed information
potential, i.e., (20) and (21), we get

(22)

Although it is not easy to solve for the corresponding
smoothing function from this equation, we may be able to show
that the solution still satisfies the required conditions. At this
point, the authors can show that functionals solutions to
(22), satisfy Conditions 2)–4) of (19). Furthermore, the prop-
erty of dilation in the -space presented in (16) hints toward
the validity of Condition 1). However, it was not possible to
verify that the first condition is satisfied in general for any
mapper, nor it was possible to set forth the conditions under
which this occurs. Therefore, we propose the existence of such
a smoothing functional corresponding to each kernel function
choice as a conjecture.

Conjecture 1: Given a specific choice of the kernel func-
tion , there exists a corresponding smoothing functional

, which is a solution of (22) and satisfies Conditions 1)–4).
(See Appendix B for the solution.)

In this section, we have analyzed the effect of the kernel
size on the criterion and the search algorithm. We have shown
the link between our information potential algorithm with an-
nealed kernel sizes and the convolution smoothing method in
global optimization. This property is extremely significant since
it demonstrates that there is a built-in parameter in the algorithm
itself (the kernel size) to achieve global optimization, even when
gradient descent is utilized. Some simulation results will be pre-
sented in the following to support this conjecture.

VI. TDNN TRAINING EXAMPLE

We now consider a numerical case study, specifically, TDNN
training with information potential maximization criterion for
single-step prediction of the Mackey–Glass (MG) time series
[30]. This example is a continuation of the results presented
in [18], [19] with quadratic entropy and Gaussian kernels and
was chosen to show the practical impact of the enhancements
developed in this paper. The MG time series is generated by an
MG system with delay parameter . The MLP input vector
consists of six consecutive samples of the MG time series to be
consistent with Taken’s embedding theorem [31] and the desired
output is designated as the following sample from the sequence.
A training set of a mere 200 input–output pairs is prepared in this
manner (roughly two cycles of the trajectory over the attractor).
The TDNN consists of six processing elements (PEs) in a hidden
layer with biases and nonlinearities and a single linear
output PE. Since the information potential does not change with
the mean of the error pdf, the bias value of the linear output PE
was set to match the mean of the desired output after the training
of the other weights had concluded so that the error mean is zero
over the training set. Gaussian kernels are used throughout the
examples.

Example I: Comparison With MSE:First, we consider the
case where the Gaussian kernel size is kept fixed at
during the adaptation and the entropy order is . In this
case, to avoid local-optima, each TDNN is trained starting from
1000 predetermined initial sets of weights, which were gener-
ated by a uniform distribution in the interval [1,1]. Then, the
best solution, i.e., the one with the highest information poten-
tial after convergence, among the 1000 candidates was selected
for each TDNN. A similar procedure was followed using the
MSE criterion for the same initial conditions. Fig. 2 shows that
the TDNN trained using the entropy criterion achieved a better
pdf fit to the distribution of the desired signal data compared to
the TDNN trained using MSE. The pdfs of the original and pre-
dicted time series are evaluated using Parzen windowing over
a test set of 10 000 samples. We can observe that the entropy
training is a better fit to the pdf of the original MG system. See
[18] and [19] for further details.

Example 2: Effect of and Kernel Size:In a second set of
simulations, the solutions obtained by using different Gaussian
kernel sizes and entropy orders are compared. For each set of pa-
rameters, 100 initial conditions were utilized. After the training,
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Fig. 2. Comparison of pdf fits achieved by entropy and MSE criteria; desired
signal (solid), entropy solution (dots), MSE solution (dotted).

TABLE I
EVALUATING THE NORMALIZED INFORMATION POTENTIAL OF ERRORSAMPLES

AT DIFFERENT� VALUES (MAXIMUM POSSIBLEVALUE IS 1) FOR TDNNS

TRAINED WITH DIFFERENTPARAMETERS

the information potential of the error on the test set (consisting
of 10 000 samples) corresponding to each TDNNs for different

and are evaluated using Gaussian kernels with
(for the final error signals, each kernel covers an average of
about ten samples for this kernel size). This value is chosen be-
cause it is at least one order of magnitude smaller than any of
the kernel size values utilized in training and, therefore, allows
a fair comparison of the results obtained through different cost
function parameters. Table I shows a comparison of the perfor-
mances of TDNNs trained with different parameters of the crite-
rion. There are a total of 12 trained TDNNs, using the designated
entropy orders and kernel sizes given in the first column. The
performances of these TDNNs are then evaluated and compared
using four different entropy orders, presented in each column.

Fig. 3. Probability distribution of final normalized information potential when
kernel size is (a) large: static kernel (solid), slow annealing(+); (b) small: static
kernel (solid), fast annealing(+), slow annealing (dots).

When inspecting these results, the data in each column should
be compared. Each row corresponds to the performance of the
TDNN trained using the parameter values designated with each
column giving the evaluation of the information potential for
this data using different entropy orders.

Notice that, regardless of the entropy order used in evaluation
(each column), the TDNN trained using the quadratic entropy

yields the best performance. Furthermore, using
smaller kernel sizes in training also improves performance
slightly.

Example 3: Annealing the Kernel Size:The third example
presents results from a set of simulations where the kernel size
is annealed during training from a large value to a smaller one.
The results of these experiments are summarized in Fig. 3. In
Fig. 3(a), the probability distributions of the final information
potential values (normalized such that the maximum possible
value is one, when all the samples are equal to each other) ob-
tained with 100 random initial conditions for two experiments
(fixed and annealed kernels) are shown. The same training
window size of 200 samples as in Example 1 is used here and
the information potential is estimated with Gaussian kernels
and quadratic entropy. In the static kernel case, the kernel size
is kept fixed at , whereas the annealed kernel had
an exponentially decreasing kernel size ,
during a training phase of 200 iterations with quadratic entropy
and 200 samples. It is clear that, for this large kernel size
of , the static kernel sometimes (10% of the time)
gets trapped in a local maximum of the information potential
(which has a normalized value of about 0.1). The annealed
kernel avoids the local optimum in all the runs and achieves
the global maximum (which has a normalized value of about
0.9). In Fig. 3(b), the distributions of the performances for
three experiments are shown, but now the static kernel has a
size of throughout the training. We can expect more
local maxima with this smaller kernel value, but more accurate
performance if global maximum is achieved (due to results in
Table I). The slow and fast annealed kernels, on the other hand,
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(a) (b)

(c) (d)

Fig. 4. Results forXOR problem. (a) Distributions of final (normalized)
information potential values, static kernel (dotted), annealed kernel (solid).
(b) Annealing of the kernel size vs iterations. (c) A sample from annealed
kernel case, desired output (solid), MLP output (dotted). (d) A local optimum
sample from static kernel case, desired output (solid), MLP output (dotted).

have exponentially decreasing sizes of for
a training phase of 500 and 200 iterations, respectively. This
annealing scheme is the same for all initial conditions. In this
small kernel case with , it is observed that the static
kernel gets trapped in local maxima quite often (90% of the
time), whereas the fast annealed kernel demonstrates some im-
provement in terms of avoiding local optima (70% of the time
achieves global optimum) and eventually the slow annealed
kernel consistently achieves the global maximum (100% of the
time). These experiments have demonstrated that, by annealing
the kernel size, one is likely to improve the algorithm’s chances
of avoiding local optima. However, there is no prescription
for how to anneal the kernels, yet. The exponential annealing
scheme and the decay rates were determined by trial and error.

The second numerical case study we present is a classification
problem. Namely, the five-bit parity problem in the class of gen-
eralizedXOR problems is considered. In this case study, a 5-5-1
MLP is utilized with nonlinearities in the hidden layer and
a linear output PE. The five inputs take the values1 according
to the considered bit sequence and the desired output is again

1, theXOR value corresponding to the input sequence. The
training set consists of all possible input sequences, numbering
32. In the static kernel case, the kernel size is set to
and the MLP is trained for 1000 iterations starting from 100
random initial weight vectors. In the annealed kernel case, the
kernel size is annealed down exponentially as
in 1000 iterations. The MLP is trained starting from the same
100 initial weight vectors. It has been observed that the MLP
trained using annealed kernels achieved global optimum in all
trials (100% of the time), whereas the MLP trained using the
static kernels could rarely achieve the global optimum (10% of
the time). The results of these experiments are summarized in
Fig. 4. In Fig. 4(a), the probability distribution of the final (nor-

malized) information potential values is presented. It is clear
that with the annealed kernels, the final information potential
values are concentrated around the global maxium, whereas,
with the static kernels, the algorithm is trapped at local maxima
often. Fig. 4(b), shows how the kernel size is exponentially an-
nealed down in 1000 iterations. Figs. 4(c) and (d) are samples
of outputs of MLPs with the set of optimal weights that match
the output to the desired exactly and with a set of local optimum
weights that produce an extremely low grade output.

VII. CONCLUSION

Renyi’s entropy of the error signal in supervised learning
was previously proposed as an alternative to MSE and it was
shown in a number of applications that the quadratic entropy
had advantages over this conventional performance index. Ini-
tially, the main focus was on the special case of quadratic en-
tropy with Gaussian kernels due to the analytical simplifications
gained with these choices. In this paper, we have proposed an
enhanced, more flexible approach to estimate nonparametrically
the Renyi’s entropy of a random variable from its samples. We
have shown that this new estimator is equivalent to the previ-
ously suggested entropy estimator, if the entropy order is set to
two and the kernel function is the Gaussian function.

Since our estimator employs Parzen windowing to estimate
the pdf of a random variable from the samples, we investigated
the question whether this process preserved the global minima
of the actual quantity and showed that, in fact, this is the case.
Furthermore, we have extended to all orders of entropy, the in-
formation potential and information force concepts, which were
previously defined for only the quadratic entropy case. We have
established the links between the order-information force and
potential and their quadratic special cases. We have also ad-
dressed the possible advantages of configuring the entropy order
according to the peakiness of the data pdf whenever this infor-
mation is available. If not, the choice of quadratic entropy seems
the most appropriate and we can consider as the natural
choice for entropy estimation with the information potential. In-
terestingly enough, in terms of computational savings, quadratic
entropy is also the most advantageous. The choice of alternative
kernels for entropy estimation was not addressed in this paper,
but represents still another avenue for further research.

Another very important aspect of the proposed Renyi’s
entropy criterion is its close relation with the convolution
smoothing method of global optimization. We have explored
the effect of the kernel size on the criterion and the search
algorithm and came up with the very important understanding
that it is also possible to use this design parameter to our
advantage in the training process, i.e., by starting with a large
kernel size and properly decreasing it to avoid local-optimum
solutions with gradient rules. The final value of the kernel size
should not be zero but a predetermined nominal value, which
describes the right balance between the estimation bias and
the variance for the specific problem at hand. We are currently
investigating the choice of appropriate minimal kernel for
entropy estimation.

Finally, we have applied the criterion to the problem of
TDNN training in a short-term chaotic time series prediction
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problem. In this problem, we have investigated the performance
of the solutions generated by TDNNs that are trained using
different orders of entropy and different kernel sizes. Simula-
tion results suggested that in fact the quadratic entropy might
produce the best solutions. More analytical and numerical
studies are needed to determine which order of entropy is most
suitable for which problem. Similar analyses for the generalized
XOR problem had been carried out. It has been confirmed that
annealing the kernel size down from a large value helps achieve
global optima.

APPENDIX A

Proof of Lemma 1:Let be the error
vector over the training data set. To prove this statement, we
evaluate the gradient and the Hessian of the entropy estimator
at the point , without loss of generality. The gradient and
the Hessian of the entropy estimator with respect tocan be
written in terms of the gradient and Hessian of the information
potential as follows:

(A.1)

The following can be verified with trivial derivation and substi-
tution of

(A.2)

Hence the entries of the Hessian matrix are shown in (A.3) at
the bottom of the page, and the eigenvalue-eigenvector pairs are

(A.4)

The zero eigenvalue and the corresponding eigenvector are due
to the fact that the entropy is invariant with respect to changes in
the mean of the random variable. Thus, the entropy has a min-
imum line instead of a single point along the direction where
only the mean of the error samples changes. Provided that

(which is the case for symmetric and differentiable
kernels), the nonzero eigenvalue with multiplicity at

is positive iff , and . A
symmetric, continuous and differentiable, and unimodal kernel
satisfies these requirements.

Proof of Theorem 1:Assume we use a kernel function as
described in the theorem. In order to prove this statement, con-
sider the value of the entropy estimator in (3) when all the sam-
ples are identical. In that case, the kernel evaluations are all per-
formed at zero and the entropy becomes ,
independent of entropy order. We need to show that

(A.5)

For , this is equivalent to showing that

(A.6)

We start by the expression on the left-hand side and replace
terms by their upper bounds

(A.7)

This completes the proof for the case . The proof for
is similar. It uses the operator instead of due to

direction of inequality.
Proof of Theorem 2:The error is given as the difference

between the desired output and the actual output, i.e., .
Using this identity, we can relate the pdf of error to the pdf
of the output as , where the sub-
script denotes dependence on the optimization parameters.

(A.3)
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Minimum error entropy problem is formulated as follows (the
integral limits are from to ):

variable change (A.8)

In concern for space, we continue here for the case only.
In that case

(A9)

We recognize this final expression as the Csiszar distance be-
tween the joint pdfs of input-desired and input–output signals.
In particular, the convex function in Csiszar distance is chosen
here to be , which is convex for . In order to see
this distance measure reduce to the Kullback–Leibler (KL) di-
vergence, consider the following modification. Minimizing the
Csiszar distance above is equivalent to minimizing

(A.10)

since and log is monotonic. Taking the limit of this ex-
pression as using L’Hopital’s rule yields the KL dis-
tance measure. In fact, starting the derivation from Shannon’s
entropy definition for the error, one arrives directly at the KL
divergence.

APPENDIX B

In this Appendix, we prove that an exists, which guar-
antees the equivalence desired and also show that it satisfies
some of the required conditions. The desired satisfies the
following equality:

(B.1)

Taking the Laplace transform of both sides with respect to,
we can isolate the Laplace transform of in terms of the
transforms of the remaining quantities. The Laplace transform
of is guaranteed to exist if the error pdf and the kernel
function are absolutely integrable functions and , which
is the case. We can write this transformed function as the fol-

lowing ratio. The right-hand side is a function ofonly since
the integration over from to eliminates this variable

(B.2)

Since exists, must be absolutely integrable,
therefore, . We next observe that as
, the numerator of (B.2) converges to the denominator, hence,

the bandwidth of (considering the Fourier transform) in-
creases. An increase in frequency-domain is accompanied by a
decrease in duration of the impulse response in time-domain,
thus, the width of decreases as and there is a non-
linear monotonous relation betweenand . Now that we know
the width of decreases monotonously as , that it
is always absolutely integrable, and that it converges to in
the limit, we conclude that it has to be unimodal, symmetric,
and positive for all . Consequently, even if does not in-
tegrate to one, it integrates to some finite value and, therefore, it
is a scaled version of a pdf. A scaling factor in the convolution
process does not affect the nature of the smoothing but only the
scale factor that multiplies the smoothed performance surface.
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