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Abstract—This paper investigates the application of error-en-
tropy minimization algorithms to digital communications channel
equalization. The pdf of the error between the training sequence
and the output of the equalizer is estimated using the Parzen
windowing method with a Gaussian kernel, and then, the Renyi’s
quadratic entropy is minimized using a gradient descent al-
gorithm. By estimating the Renyis entropy over a short sliding
window, an online training algorithm is also introduced. Moreover,
for a linear equalizer, an orthogonality condition for the minimum
entropy solution that leads to an alternative fixed-point iterative
minimization method is derived.

The performance of linear and nonlinear equalizers trained with
entropy and mean square error (MSE) is compared. As expected,
the results of training a linear equalizer are very similar for both
criteria since, even if the input noise is non-Gaussian, the output
filtered noise tends to be Gaussian. On the other hand, for non-
linear channels and using a multilayer perceptron (MLP) as the
equalizer, differences between both criteria appear. Specifically, it
is shown that the additional information used by the entropy crite-
rion yields a faster convergence in comparison with the MSE.

Index Terms—Adaptive equalization, equalizers, neural net-
works, nonlinear equalization, Renyi’s entropy.

I. INTRODUCTION

M ODERN digital communications systems demand
high-speed efficient transmission over bandwidth-lim-

ited channels, which distort the signal causing intersymbol
interference (ISI). In addition, the digital signal is subject
to other impairments such as noise, nonlinear distortion,
time-variant channels, etc. At the receiver, an equalizer is used
to mitigate these effects and restore the transmitted symbols.

An equalizer is characterized by its structure, the optimiza-
tion criterion, the adaptive algorithm used to train it, and the
availability or not of a training sequence (supervised or blind
equalization, respectively). In particular, this paper is focused
on supervised equalization, using linear or nonlinear structures
trained with backpropagation-like algorithms to minimize a cost
function based on the entropy of the error.
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The most popular equalizer is the linear transversal equalizer
(LTE), trained to minimize the MSE between its output and the
desired sequence by means of the LMS or the RLS algorithm
[1]–[3]. An interesting and powerful alternative to the LTE is
the decision feedback equalizer (DFE). In this case, the past
decisions are included in the equalization process to improve the
margin against noise and the performance, mainly in channels
with deep nulls. Although the DFE structure is nonlinear, it can
only cope with very moderate nonlinear distortion. Moreover, it
suffers from error propagation due to the feedback part.

When the channel is nonlinear, a nonlinear equalizer is
required to eliminate the ISI. Traditionally, Volterra filters were
applied for this purpose [4]. However, they require a large
number of parameters, and their training is computationally
involved. More recently, artificial neural networks have been
proven to be attractive alternatives for nonlinear equalization.
In particular, the multilayer perceptron (MLP) [5], [6] and the
radial basis function (RBF) [7], [8] have demonstrated good
performance in several nonlinear equalization problems.

Regarding the cost function or optimization criteria, most of
the conventional linear or nonlinear equalizers are trained using
an MSE criterion. The error is defined as the difference be-
tween the desired training sequence and the output of the equal-
izer. Some recent attempts have been made to explore other cost
functions for this problem such as the structural risk minimiza-
tion (SRM) principle [9]–[11].

In this paper, we consider an alternative criterion that con-
sists of minimizing the entropy of the error sequence. Informa-
tion-theoretic criteria have been widely applied to blind equal-
ization and deconvolution. In particular, it is well known that the
Shannon entropy provides a measure that can be used to push the
probability density function of the equalizer’s output away from
that of a Gaussian, thus deconvolving the output [13]. Typically,
the lack of efficient estimators for Shannon’s entropy was cir-
cumvented by minimizing a cost function related to entropy but
easier to estimate (such as the normalized kurtosis) [13]–[15].
Other approaches aim at forcing a given probability density at
the output of the equalizer. As a measure of distance between
densities, the Kullback–Leibler distance or relative entropy is
used in [16]–[18]. In particular, in [16], it was proven that un-
like the MSE, the relative entropy is a well-formed cost function
in the sense of Wittner and Denker [19], showing a better capa-
bility to track time-varying channels.

Although some of these ideas can be also applied when a
training sequence is available, the use of information theoretic
criteria for nonblind equalization is not so common. As a new
contribution in this line, in this paper, we consider equaliza-
tion techniques that seek a direct minimization of the error en-

1053-587X/02$17.00 © 2002 IEEE



SANTAMARÍA et al.: ENTROPY MINIMIZATION FOR COMMUNICATIONS CHANNEL EQUALIZATION 1185

tropy. Entropy is a function of the pdf of the error, and there-
fore, by minimizing it, we are using much more information
than by minimizing just its variance (i.e., the MSE). Hopefully,
this extra information in the error sequence can provide some
advantage either in terms of performance or in terms of requiring
shorter training sequences. Instead of using the widely known
Shannon’s entropy, which is difficult to estimate directly from
samples without a model, we use the quadratic Renyi’s entropy
[21], [22]. This alternative entropy measure can be more easily
estimated from data, and it has shown improved performance
over the MSE criterion in other problems [23], [24].

The rest of this paper is organized as follows. In Section II,
the problem of linear and nonlinear equalization is briefly in-
troduced. In Section III, we present quadratic Renyi’s entropy
and describe its estimation from samples using a Parzen win-
dowing method. In Section IV, we analyze the solutions pro-
vided by the new criterion and show the equivalence between
the MSE and the minimum entropy solutions for an LTE in a
small error case. The training of linear equalizers by means of a
new fixed-point iterative algorithm, as well as batch and online
training algorithms for nonlinear equalizers, are considered in
Section V. Some simulation results are presented in Section VI,
comparing the performance of linear and nonlinear equalizers
trained with MSE and entropy. Finally, Section VII presents the
conclusions and points out some lines for further research.

II. L INEAR AND NONLINEAR EQUALIZERS

The received signal at the input of the equalizer can be ex-
pressed as

(1)

where the transmitted symbol sequenceis assumed to be an
equiprobable binary sequence, are the channel co-
efficients (we assume here an FIR channel), and the measure-
ment noise can be modeled as zero-mean Gaussian with vari-
ance .

The equalization problem reduces to correctly classify the
transmitted symbols based on the observation vector. For in-
stance, an LTE estimates the value of a transmitted symbol as

sgn sgn (2)

where
output of the equalizer;
equalizer coefficients;
vector of observations;
equalizer delay.

The LTE implements a linear decision border; however, it
is well known that even if the channel is linear, the optimal
(Bayesian) decision border is nonlinear [7]. As long as the noise
increases, the nonlinear character of the optimal border becomes
more important.

On the other hand, when the channel is nonlinear, in order to
eliminate the ISI, it is necessary to consider a nonlinear equal-
izer. In this case, the output of the equalizer is given by

(3)

where is a nonlinear mapping, and denotes the param-
eters of the equalizer. After the mapping, a hard threshold is still
needed in order to decide the symbols; in this way, (3) can be
viewed as a mapping from the input space to an output space,
where the classification becomes possible and hopefully easier.

In this paper, an MLP is considered to be the nonlinear
structure to perform that mapping. Assuming an MLP with one
hidden layer with neurons, (3) reduces to

(4)

where
matrix connecting the input layer with the hidden

layer;
vector of biases for the hidden neurons;
vector of weights connecting the hidden layer to

the output neuron;
bias for the output neuron.

The training of this structure to minimize the MSE criterion can
be done using the backpropagation algorithm [12].

III. QUADRATIC ERROR-ENTROPY FOREQUALIZATION

Conventional equalizers are trained to minimize the MSE be-
tween the desired output and the output of the equalizer. For a
linear equalizer, for instance, this criterion yields the following
cost function

(5)

The MSE criterion, which uses only second-order statistics,
is adequate under the assumptions of linearity and Gaussianity.
When the noise is not Gaussian or the distorting channel (and,
therefore, the required equalizer) is not linear, a criterion con-
sidering all the higher order statistics of the error signal would
be more appropriate.

The entropy of the error sequence is a quantity that takes
into account its probability distribution function (pdf). Then,
by minimizing the entropy instead of the MSE, all higher order
moments (not only the second one) are minimized. Other ar-
guments supporting the minimization of the error entropy as a
useful criterion in equalization will be given later.

The most known definition for entropy (Shannon’s entropy)
is, in general, hard to estimate and minimize since it involves the
integral of the logarithm of the pdf. Recently, some efficient pro-
cedures for estimating Shannon’s entropy have been proposed
(see [20] and references therein).

On the other hand, Shannon’s entropy is not the only useful
definition of entropy. Other alternative definitions have been
proposed; in particular, Renyi’s entropy with parameter[21]
is defined as

(6)

where is the pdf for the error. In this paper, only quadratic
Renyi’s entropy will be considered since it can be easily
estimated from data. In this case, (6) reduces to

(7)
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Recently, a nonparametric estimator for quadratic Renyi’s en-
tropy has been developed [22]. It allows the maximization or
minimization of the entropy criteria using simple gradient de-
scent techniques. Furthermore, this technique has been success-
fully applied to short-term prediction of chaotic time series [23]
and blind source separation [24].

As it is shown in [22], given a set of error samples
, the error pdf can be estimated by the Parzen window

method using a Gaussian kernel of variance

(8)

Then, substituting (8) into (7), the entropy is given by

(9)

where

(10)

is called the information potential. In (10), denotes
the Gaussian kernel with variance . To simplify the notation,
in the sequel, the kernel size will be omitted.

From (9), it is clear that minimizing the error entropy reduces
to maximize the information potential . On the other hand,
as it is shown in [23], when Parzen windowing with Gaussian
kernels is used to estimate Renyi’s entropy, the minima of (7)
correspond to points where the error is constant over the data
set. Therefore, it can be concluded that the global minimum of
Renyi’s entropy is preserved as a minimum of the estimated
entropy. This allows the use of gradient descent techniques for
minimization.

Obviously, the minimum of (7) is obtained when
for any , i.e., when the error is a constant signal.

On the other hand, the pdf of the equalizer’s output ,
given the training sequence(considered as deterministic), is

(11)

In this way, the output of the equalizer converges to
with probability one. In practice, a finite training sequence is
used; in this case, by maximizing (10), each error sample inter-
acts with all other errors, pushing the solution toward a constant
error signal. The constant term has no influence since it can
be easily eliminated using an additional bias term in the equal-
izer.

Finally, it has been also proven in [23] that minimizing the
error entropy is equivalent to maximizing the mutual informa-
tion between the output of the equalizer and the training se-
quence. These arguments support the use of an error-entropy
minimization criterion in equalization problems.

IV. A NALYSIS OF THE OPTIMAL SOLUTIONS

To gain some insight into the error entropy criterion, it is in-
teresting to write the information potential as a function of the

output of the equalizer (linear or nonlinear). Considering a
binary signal, the set of outputs for the training setcan be
partitioned according to the desired output into the
following two subsets:

(12)

Now, taking into account that

(13)

it is easy to show that

(14)

The first two terms in (14) are maximized when for
and , respectively. This process can

be viewed as minimizing the “intraclass” output entropy, that
is, the equalizer tries to cluster the outputs in delta functions for
inputs belonging to and .

On the other hand, the third term is maximized when
, for and ; therefore, it tries to separate

the outputs for each class. As a comparison, the MSE criterion
in terms of the equalizer outputs is given by

MSE (15)

It can be concluded that the entropy criterion forces additional
constraints by exploiting the relationship between each pair of
equalizer outputs. Moreover, although the MSE criterion forces
a constant modulus for the output signal as in (15), the entropy
criterion makes thatthe differencebetween the outputs for the
two classes has a constant value.

This analysis suggests that when the training sequence is
short, as occurs, for instance, in packet data transmission (in
GSM, for instance, only 21 training bits per packet are used),
the additional constraints used in (14) can be very helpful in
achieving a faster convergence of the algorithm. This result will
be confirmed later by some simulation examples. The analysis
performed in this section can be easily extended to-ary and
complex modulations.

Considering now a linear equalizer , it is inter-
esting to compare the optimal solutions obtained for an LTE
with MSE and entropy criteria. The derivatives of (10) with re-
spect to the linear equalizer coefficients are given by

(16)

Equating (16) to zero and taking into account that the Gaussian
kernel is a symmetric and positive function that fulfills

(17)
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we finally find that the following equation holds at any minima
of the cost function

(18)

which is the entropy counterpart of the orthogonality condition
obtained for the MSE criterion

(19)

The difference is that for entropy, the error must be orthogonal
to a nonlinear function of the input, which is a function of the dif-
ferences between inputs and errors for each pair of training data.

An interesting remark is that if the equalizer can equalize the
channel in such a way that the final error sequence is small
in comparison with , i.e., the kernel size of the Gaussian
window used in (18), then, we have a solution for which

(20)

and (18) reduces to the following condition:

(21)

where and denote the mean of the error sequence and the
mean of the input signal, respectively. This result shows that al-
though, in general, the MSE and entropy solutions are different,
for an LTE, if the error is small so that (20) holds, then as long
as either the error sequence or the equalizer input is zero mean,
the minimum entropy solution is equal to the MSE solution.

V. TRAINING THE EQUALIZERS

In this section, we describe batch and online training algo-
rithms for linear and nonlinear equalizers. Basically, gradient
descent techniques are used to minimize the entropy cost func-
tion over the whole set of training data (batch) or over a short
sliding window (online). In addition, for a linear equalizer, a
fixed-point method, which converges much faster than a batch
gradient descent, is also proposed.

A. Batch Training

Given a set of input–output training samples
, the corresponding set of errors

is obtained as for a linear equalizer or
for an MLP. The gradient to be used for

the maximization of the information potential (10) is given by

(22)

where denotes any parameter of the equalizer. For an MLP, it
can be any weight or bias parameter, and can be com-
puted as in standard backpropagation [12].

For an MLP and taking into account that the entropy of the
error does not depend on the mean, the algorithm may con-
verge to a non zero-mean error. This can be easily corrected by
choosing the bias of the output neuron to give a zero-mean error.
That is, after convergence of the information potential, the bias
in (4) is selected as

(23)

To accelerate the converge of the algorithm, a variable
learning step size is used. As long as the information potential
increases, the step size for the next iteration is selected as

, whereas if the information potential decreases, the
learning rate is also decreased as , and the previous
parameters of the equalizer are kept. In the simulations, this
optimization technique will be denoted as batch gradient
descent (BGD).

B. Online Training

The BGD algorithm described in the previous section can be
readily extended to an online (sample-by-sample) adaptive al-
gorithm, which is more sounding in an equalization context and
from a practical point of view. In comparison with a batch pro-
cedure, an online version allows tracking of the time-varying
channels, prevents the introduction of long delays into the deci-
sion, and enables a low-cost implementation.

At each time instant , a window of size is constructed
using the current and the past error samples, which have
been previously stored in memory .
Then, using this window, one gradient iteration according to
(22) is carried out. This stochastic gradient descent approach
can be considered to be the entropy counterpart of the LMS.
Specifically, the instantaneous error estimate used in the LMS
is replaced here by an estimate of the Renyi’s entropy obtained
from a short sliding window. In both cases, with each new
incoming sample, a single step is taken. As will be shown
later, this online approach, which will be denoted as stochastic
gradient descent (SGD), is rather effective, even when a short
window is used.

Finally, the proposed algorithm can be summarized in the fol-
lowing steps.

1) Initialize the parameters of the algorithm: the stepsize
, the kernel size , the window size , the equal-

izer delay , and the equalizer parameters (with random
values).

2) Initialize the window of errors

for

3) For
3.1) Update the window with the current error

for
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3.2) Update the coefficients of the equalizer as

where is given by (22).
3.3) Fix the bias of the output neuron for zero-mean error

4) End.

C. Fixed-Point Algorithm for Linear Equalizers

For a linear equalizer, the output error entropy could be mini-
mized by applying the BGD or the SGD algorithms described in
the previous sections. However, the orthogonality condition (18)
suggests an alternative algorithm to the BGD approach, which
has proven much faster to converge.

Considering again that the whole set of input–output
training samples is available (batch), the orthogonality condi-
tion (18) can be rewritten as

(24)

where is an vector ( being the filter length) given by

(25)

Equation (24) can be written in matrix form as

(26)

where
matrix with columns given by (25);

matrix with rows given by
;

vector with the desired responses.
To find a solution to the set of nonlinear (26), we can use the
following iterative procedure.

1) Initialize .
2) For
2.1) Obtain the output error and estimate matrixas (25).
2.2) Compute the new solution as

(27)

3) End.
This well-known technique to find the root of an equation is

denoted in the mathematical literature as the method of iteration
or the method of successive approximations [25]. Conditions
for the convergence of this procedure are also given in [25].
Basically, by rewriting the nonlinear transformation (27) as

...
...

(28)

the process of successive approximations converges to a fixed
point if

(29)

Although we were not able to prove (29) in our particular
case, all the simulations carried out for a number of different
situations converged to the correct solution much faster than the
BGD technique.

This technique requires the inversion of the matrix
. Note, however, that as long asis sufficiently large

, the probability for to be rank-deficient (and hence sin-
gular) is very low, i.e., matrix will have rank for most of
the cases.

Regarding the computational cost of this procedure in com-
parison with the BGD approach, note that since, typically,

, most of the computational cost for both algorithms comes
from the evaluation of the Gaussian kernels in (16) and (25).
The additional cost of the fixed-point method, due to matrix in-
version, is of order , and therefore, it only becomes no-
ticeable when the equalizer length is large. We can conclude that
the computational cost per iteration of the fixed point and BGD
approaches is roughly the same. However, as it will be shown in
the next section, the fixed-point algorithm requires very few it-
erations to converge, whereas the BGD approach usually takes
much longer to converge. Therefore, for a linear equalizer the
fixed-point method should be preferred from a computational
point of view.

VI. SIMULATION RESULTS

In this section, we present some simulation results consid-
ering linear and nonlinear equalizers trained with MSE and min-
imum error-entropy criteria. In all the examples, the Gaussian
kernel size was .

A. Linear Equalizers

In the first example, a BPSK signal is sent through the channel
, and then, white Gaussian

noise for SNR dB was added. The aim of this example
is twofold: first, to compare the convergence rate and compu-
tational cost of the BGD and the fixed-point algorithms and,
second, to validate the analysis carried out in Section IV. We
train an LTE with coefficients and an equalization delay
of using MSE and entropy. The equalizer taps were ini-
tialized to zero, and it was trained using a known sequence of
100 symbols. We use a least squares (batch) method for the MSE
and the fixed-point and BGD algorithms for the entropy. The
BGD used an adaptive stepsize to speed up the convergence,
the initial learning rate is .

Fig. 1 shows the normalized information potential (10) versus
the number of iterations using the BGD algorithm and the pro-
posed fixed-point technique. Three iterations of the fixed-point
procedure provides a solution that requires more than 30 gra-
dient iterations. On the other hand, Table I compares the compu-
tational cost per iteration for the fixed-point and the BGD algo-
rithms using different sizes of the training set
and : The cost per iteration is roughly the same.
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Fig. 1. Information potentialV (e) versus iterations for the fixed-point and the
batch gradient descent (BGD) algorithms.

TABLE I
COMPARISON OF THECOMPUTATIONAL COST (FLOPS) PER ITERATION

FOR THE FIXED-POINT AND THE BGD ALGORITHMS. TRAINING SET

SIZE = N , EQUALIZER COEFFICIENTSm = 7

Now, we compare the MSE and entropy criteria; for this ex-
ample, the error at the output of the equalizer is small in compar-
ison with , and therefore, for the minimum entropy solution,
(20) and the orthogonality condition (21) hold. Fig. 2 shows the
error sequence at the output of the equalizer for the MSE and
entropy solutions, respectively. As it was proven by the analysis
carried out in Section IV, although the cost functions are very
different, the final solution is exactly the same.

In the second example, we consider a situation for which (20)
does not hold, and then, the minimum entropy and MSE solu-
tions are different. Now the channel is

, the LTE has coefficients, and the equal-
izer delay is .

As in the previous example, the equalizer was initialized to
zero, and then it was trained with 100 known symbols using
a least squares method for the MSE and the fixed-point algo-
rithm for the entropy criterion. Finally, the BER was evaluated
by counting errors after transmitting or symbols, de-
pending on the SNR. We run 50 independent simulations. Fig. 3
shows the BER curves for this example. It can be seen that al-
though the solutions are different, from a classification point of
view, both criteria provide practically the same results.

It can be concluded that if the structure of the equalizer is
linear and the noise is Gaussian, then minimizing the variance is
equivalent, from a practical standpoint, to minimizing the error
entropy. In fact, if the error is Gaussian, as long as its variance
decreases, its entropy decreases as well.

Extensive simulations using other noise distributions (uni-
form, impulsive, zero-mean Rayleigh, ) confirm the results

Fig. 2. Error sequence at the output of an LTE for the MSE solution (“�”), and
the minimum entropy solution (solid line). ChannelH(z) = 0:87+0:44z +
0:23z ;m = 7; d = 3;SNR= 10 dB, kernel size� = 1, and100 training
samples (batch training).

Fig. 3. BER comparison for the minimum entropy (solid) and MSE (dashed)
linear equalizers. ChannelH(z) = 0:35 + 0:8z + z + 0:8z ;m =
9; d = 5 and100 training samples (batch training).

presented for the Gaussian noise. The explanation to this lies in
the fact that the noise filtered after the linear equalizer and added
to the residual ISI tends to be practically Gaussian, regardless
of the input noise distribution.

B. Nonlinear Equalizers

In thisexample,weconsideranonlinearchannelcomposedofa
linear channel followed by a memoryless nonlinearity. The trans-
mitted binary sequence is passed through a linear channel, and
the output of the channel is added to some static nonlinear func-
tion.Suchanonlinearmodelcanbeencounteredindigitalsatellite
communications [26] and as nonlinear channel models for digital
magnetic recording [27], [28]. The linear channel considered is

, and the nonlinear
function applied is , where is the linear
channel output. Finally, white Gaussian noise for SNR
dB was added. The nonlinear equalizer structure is an MLP with
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(a)

(b)

Fig. 4. Convergence characteristics of online adaptive algorithms for a linear
equalizer withm = 7 coefficients (dotted line) and an MLP(7-4-1) trained with
MSE (dashed line) and minimum entropy criteria (solid line) using a window
size ofN = 5 samples. (a) MSE. (b) Normalized information potential.

seven neurons in the input layer and three neurons in the hidden
layer [MLP(7, 3, 1)], and the equalization delay is .

For this example, the online adaptive algorithm (SGD) de-
scribed in Section V-B is applied. A short sliding window of
just error samples is used to minimize the MSE or the
error entropy using a backpropagation-like algorithm. At each
iteration, a single step was taken. For both criteria, a fixed step-
size was used, which is the largest stepsize for which
the algorithms converged in all trials. The results provided by a
linear (FIR) equalizer with coefficients and trained with
an MSE criterion were also obtained. In this case, a conventional
LMS algorithm with a fixed stepsize was used.

Fig. 4 shows the convergence of the normalized information
potential and the MSE evaluated over the sliding window for the
three algorithms. These results were obtained by averaging 100
independent simulations. Each method is characterized by an
structure (MLP/FIR), an optimization criterion (Entropy/MSE),
and the adaptive algorithm used. It can be seen that the MLP
trained with the entropy criterion achieves the best results, and it

Fig. 5. Estimated pdf of the error at the equalizer’s output for the MSE (dashed
line) and the minimum entroy (solid line).

Fig. 6. Convergence of the BER with the number of iterations for the MSE
(dashed line) and the minimum entropy (solid line).

also provides the fastest convergence, whereas the linear equal-
izer is not able to remove the nonlinear part of the ISI. It is in-
teresting to point out that even though the entropy criterion does
not directly minimize the MSE, surprisingly, it achieves a lower
MSE than a direct minimization of this criterion. The explana-
tion of this fact is that, in comparison to the MSE, the entropy
criterion yields a spiky error with more abrupt changes (higher
kurtosis) but with a lower MSE.

In Fig. 5, the pdf of the error sequence (estimated using Parzen
windowing method with ) for the MLP trained with
both criteria are depicted. As it was discussed in Section III, it can
be seen that the minimization of the error entropy tries to push the
pdf of the error closer to a delta function.

The convergence of the BER with the number of training
symbols is shown in Fig. 6; the entropy criterion achieves a
very fast convergence, but the final BER is slightly worse than
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Fig. 7. Error sequence at the output of nonlinear equalizer for the MSE
solution (dashed line), and the minimum entropy solution (solid line). Circles
and crosses indicate classification errors for MSE and entropy, respectively.

the BER obtained by the MSE criterion. This apparent discrep-
ancy between MSE and BER can be explained by examining
the error sequence obtained after the convergence of the equal-
izer in Fig. 7. As we previously pointed out, the entropy cri-
terion yields a spiky signal with a low MSE and low entropy
(remember Fig. 4). However, only the error samples larger than
one (in absolute value) cause a classification error. For instance,
in Fig. 7, the entropy sequence generates three errors (depicted
with crosses), whereas the MSE sequence only causes two er-
rors (depicted with circles). To switch from an initial entropy
criterion during the first training symbols (thus achieving a fast
convergence) to an MSE criterion during the last symbols of the
training sequence seems to be the best strategy to exploit the
benefits of the entropy criterion. As a final comment, the results
of Figs. 6 and 7 suggest that for this particular application, a
criterion that directly minimizes the number of errors (instead
of the MSE or entropy) might be a better choice. Recent works
on the use of support vector machines [9]–[11] or a direct min-
imization of the BER [29] point in this direction.

VII. CONCLUSION

In this paper, we have considered the use of a new optimiza-
tion criterion based on the Renyi’s error entropy for supervised
equalization of digital communications channels. For an LTE,
it has been shown that this criterion tends to minimize the in-
traclass entropy, whereas, at the same time, it tries to separate
the classes. Moreover, it was also shown that if the LTE struc-
ture allows an effective equalization in the sense that the output
error is small, the minimum entropy solution becomes the MSE
solution. In general, for linear filtering problems and regardless
of the noise distribution, the entropy and MSE criteria provide
similar results. The differences appear when a nonlinear equal-
izer is considered; in this case, some simulation results indicate
that the minimization of all higher order moments of the error
through entropy yields a faster convergence in comparison with
the MSE. This suggests that this new criterion can be useful for

packet-based data transmission when the training sequences can
be short.

This preliminary work using the entropy criterion in nonblind
equalization problems has provided interesting results. How-
ever, it is our belief that the main interest of this technique will
appear when applying this criterion to blind equalization prob-
lems. This is, undoubtedly, an interesting line for further re-
search.
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