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Abstract

Bre whiis paper we investizmte the we of edaprive extended
Luenberier state estimators far general monlinear and
possibly dime-varying svstems,  We fdentifi ihe conrection
Between  the  eviended  Luenberger  observer  and
Grasshers & adaitire sodel e dwamie reural aeivonts
Ther associarion henween dwiamic sewral noiworks and the
Luenberger obrerver feads o an ofvious modiffoarion or
ihe propaied ahierver schemre o woafd allon faud(ing
state esgimation for those sysfems wilose diniamic egrs
frons ave partiolly known or mof knows af all. The per-
jormance af the adeptive ofiserver s demonstvaled o a
mnher af sysiems fofding an LT susten, the Van der
Pal psoillgian, e Lovenz aivactor and o realiseie pavial
sasaling engine model,

Intraduction

The potentinl of powerful mapping and representulionil
capabilities of arificial neural network architectures has
long been recognized in the neural network community?,
The introduction of a backpropagation algerithm by
Rumelhart ef «f enabled real-time applications of neural
networks as adaptive svstems”, Meural networks (NN are
being recognised in other ficlds of reseorch incleding sig-
nal processing, communications, and control as valuable
toels that offer simple solutions to difficult problems™"
Eapecially in the are of adaptive controls, neural networks
have experienced an increased interest in the last decade,
due to their inherent adaprability and universal approxima-
lion properties.  This interest was mainly ignited by the
carly works of Werhos, Shourcshi er af, Narendra and
Parthasarathy, Cupta and Bao, and Miller e .
Although these st atempts were mostly heuristic in
patiere, there has been o stream of publications inspired by
the iden, involving deeper analyses!9. These later works
hawe mostly focused on the application of recurrent neural
networks Tor system identification and observer design, as
well as adaptive and robust controllers for general nonlin-
it Syslens,

Puskorius and Feldkamp!s investigate the application of
recurrent mnltilayer percepirons (MLPY 1o the control of
nonlinear dynamical svstems and propose an altemative
fraining algorithm o update the dyoarme weights of the
network based on parametes-hased extended Kalman flier
{EKF) estimates. Their simulation results with a number
of nonlinear svatems fvour the use of ERF-based training
algorithm over the conventional backpropagation. Zhu e
al focos on the application of dynamic recurrent nenral
networks (DENN] as observers for noalinear systems'.
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They consider a class of single-input-single-output (81500
nonlinear Hme-varying systems in their work, whene they
prove the boundedness of the observer emor and the
DR weights during adaptation using Lyapunov siahili-
tv theory and the well-known universal approximation the-
orem for newral networks® Y. With an alternative
approach, Wang and W expleit the multilaver recarrent
neural networks 25 matrix sguation solvers and utilise this
scheme to synthesise linear state obscrvers in real-time by
golving the Sylvester’s equation [or pole placement™.

There are also examples of static feedforward neural net-
work applications to obszerver and controller design.
Ahmed and Rivaz consider an off-line truining scheme for
a MLPF based obsorver design for noalinear systems. They
node that althougl the NN observer reguires more Gompu-
tation in the traiming phase, it is more computation-eft-
cient compared 0 the EKF in the implementation phase /7.

AT interesting approach is presented in'? by Vargos and
Hemerly, where they employ linearly parametrized newral
networks (LPRNY for the design of an adaptive observer
for gencral nonlinear systems. LPWM include a wide class
of networks neleding radial-basis-functhion (REBE) net-
works, adaplive fuxzy svelems (with specific choices of
rules and membership functions it can be shown that fueey
swstems ane cquivalent to BBF networks), and wavelet net-
works, They use Lyapunov stability theory to prove fhe
stability of the observer and the neural network weighis
and demonstrate the performance of the designed observer
on a single-link robot manipulator model. Fretheim e of
on the other hand, utilise the feedforward MLT in the
ohserver design problem with a linle rwist. They formu-
late the problem as a multi-step prediction, and exploit the
extrapolation ¢apabilities of the MLP to obtain the stile
eatimates™, Ge ef af, in their contnbation o neurocantrol,
use RBF networks i an adaptive output feedback MM con-
triller scheme, for which they provide proofs and simula-
tion studies Tor hounded tracking errors given sulliciently
large networks"?, Another theoretical line of study, direct-
Iy related to the subject is the neurul network approach 1o
obtain approximate realisations of an unknown dynamic
gyatem solely from is input-output history, A recent result
an this hos been provided in'% In their work, Hovakimyan
e af utilise a feedforward MLE i the prediction-frame-
waork o obtain o model of the unknown nonlinear dynam-
ical sysiem.

Besides all the theeretical approaches to the subject mal-
ter, there are also a number of application-oriented studics
on the use of neural netwarks incontrols, Most common-
Iv investigated applications arg observer and controller
designs for robot manipulators ™= induction motors?-21,
synehronous motors™ % and fnally air-fucl ratioc (AFR) in
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gasoline engines™ 72 n faet, the AFR problem has
become more important recently a5 the need for more eeo-
frendly and fucl-efficient vehicles escalated,

O the ather side, some researchers followed a maore
vonservative approach 1o nonlinear observer design.
Mostly inspired by the idea of extended Kalman filtering,
the Luenberger observer was extended to nonlinear sys-
tems and it convergence properties were studied S50
These extensions, under the influence of the classical
observer design theory, were focused on analvtical design
technigues of the nonlinear observer. The main approach
Fallowed in this line of practice is to choose the chserver
gaing such that the overall linearised error dvnamics matrix
consisting of the gain vector and the Jacokians of the state
dynamics, ind the cutput mapping hes stable cigenvalies
over i closed subset (0 of the state space. For convergence,
the state trajectory s constrained to remiin in this subset al
all imes™ ¥ This procedure of analvtic ELO design hus
been applied successfully to realistic nonlinear svstemss™
44Tt has also been utilised in designing nonlinear siate
feedback stahilisers lor nonlinear svatems 435 In contrast
to this analytical design approach, in this paper, we inves.
tgate the performance of the adaptive svatem approach to
nonlingar observer design.

Ihe organization of iz paper 5 as follows, In Section
Zowe briefly describe Grossherg's additive model in the
class of recurrent newral networks. Section 3 presents
extensions 1o the Luenberger observer scheme for applica-
bility to nonlinear systems and provides the link batween
the praposed adaptive observer scheme and the additive
model. Section 4 describes the backpropagation algorithm
for off-line traiving of the adaptive observer and Section 3
expling the necessary simplifications required to obiain an
on-line fraining rule and offers the on-line irining nlgo-
vithm, Section & investigaies the performance of the on-
line trained adaptive observer on a variety of dynamical
systems, including linear, nonlinear and chaotic sysiems
Also in Seetion & the application of the proposed adaptive
observer scheme te a realistic partial engine model is con-
sidered, Thiz is an important expmple for acewrste estima-
ton of the enging states and is imperative o efficient aper-
ation of the engine in terms of mr-fuel ratio.  Finally, we

present our conclusions and proposed Tuture lines of

research related to the wopic

2, Additive Model for Recurrent Meural Metwarks

The most widely used dynamic neural network s the so-
called additive model by Grossbesg®, The state dynarics
of the additive model is deseribed by
W= vy + o (W) + W, 41 (1}
Usually, the weights matrix multiplying the input vector
il is chosen o be the identity matrix and the passive
decay milnx T is a diagonal positive definite matris and
the interactions between states is provided through W, and
the nonlinearity of the neurons, of.), but these are ol
necessities.  The biological motivation for the additive
madel provided by SejnowskidT has contnibuted to the
increased popularity of thiz strecture in numerans applica-
tions. The static MLP is just a special case of the additive
muodel obtained by setting the time-derivative of the states

to zero, thus imposing the staticity consiraint on the states

ard restricting the weight matrix ¥, to be stricily lower

diagonal. [n this case. the feedforward MLP is expressed as
=Tl (W ) vl o
= W Wy i)+ W, 1

(2

where some of the states may be designated as the oulputs
of the MLP A special cuse of interest is when the nonlin-
earity of the neurons in (17 15 chosen 1o be a linear fune-
tion. For the choice , (1) reduces 1o a linear dynamic neo-
ral network whose dynamics are of the form

My = (W - ) ity + W, 40 i3

[n the [ollowing section we will point owt how this
relates 1o the classical Luenberger observer and thus pro-
vide an understanding of how the additive model in (1)
commels 1o the extension that 1s proposed.

3. Nonlinear Extension of the Luenberger Observer

A well-known result from linear system theory is that, [or
a lincar tirne-invariant (LT1) system with the dynamics

A0 = Ay + B owih)
WE = Cexlf) = Danl(ny

14

with an observable (A,C) pair, a stable linear Luenberger
ohserver, which is given by

= AT+ Balny + LA - 7o) (3)
can be designed by placing the poles of the observer at any
desired location such that the error signals cxhibil (he
desired dynamies®,  The extension of the Luenberger
observer 1o nonlinear systems is siraightlorward. Given a
ronlinear dynamical system, possibly time-varying, whose
cquations are

ey = ehate).e) (&)
Wi = Jj{x[.l}.a.{.'},r}

the following observer scheme 15 atilised,
A = A0+ - Fi) ()

ey = e F )

Although there i= o solid theory behind the linear
Luenberger observer in (53 and there are rigorous anlyti-
cil methods of selecting the ohserver gain vector L, such
resuliz are not available for the extended version in (7.
vet. However, a5 we will demonstrate in the following see-
tions, there is & way to overcome this difficulty by letting
L adapt on-line while the system is raonning,

Regarding the link berween the Luenberger observer
structure and the additive model, we first point out the sim-
ilarities between squations (39 and (51, In fact, if we re-
express (33 in an alternative form, the connection becomes
more visible. For this, we will substitute the explicit
expression for (11 in the extimated state dynamics and then
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group the signals wr) and 1) inio a vector,

0y = (A - LCRTOHE - LD) wiayL e Ho) ()
= (A - LCYy x() {H ﬁ‘r'ﬂ E] ' “%HJ
Cross comparing (3 and (B), we conclude
(Wg-1) = (4-LO) (@
= [Es‘{-JJ’_ﬂ }J,

ELEL
o= L:J-E,:.

Thus, with proper adapiation, it is possible for the linear
dynamical newral network o approximate o dlable
Lugnberger obaerver for a linear system. In fact, we can
ceneralize this sentence to the connection between the
additive model in (17 and the extended Luenberger obsery-
er (ELOY i {7Y, singe with sufficient number of neurons
and proper choice of weight matrices the additive model
can approximate any function with an arbitrarily small
error. In fact, ©° demonsiraies low approximately o neural
network can leam the unknown system dynamics. [ncases
where a complete model of the dynamical system 5 nol
avanlable, sueh approaches can be taken to obiain approxi-
mators of system models and substituted in the observer
structure in proper places,  From thes point on, however,
we will assume that either the full system dyoamie equi-
tions are known or 2 neural network has been trained Lo
sufficient aecurey as described for this purpose,  This is
because the main focos of this stedy is to determine the
capubilities of the adaptive observer structure, not 1o inves-
tigate the function approximation capabilities of the men-
tiomed additive model,

4, Backpropagation Algorithm for Extended
Luenberger Observer

In this section we will consider the discrete-lime eguiva-
lent of the ELC for reasons of analviical simplicity in com-
puting and evaluating the gradient tor off-line adaptation.
[n this context, the backpropogation refers 1o the back-
propagation-in-tirme of the partial derivatives with respect
i the observer gains. The svstem and the observer we are
considering are given by the following equations.

Ty = Xl ) (10}
M = lr?':'.rll'.‘!l'_l.l‘:ﬁ
Ty =T KL = ) il

Ty = BR Lk

Auppose we winl 10 train for £ such that the mean-squeare-
error (MSE) along a given training trajectory {wp} S in
minimised,  We would like to remark at this point that
MSE is not the sole possibility as the performance criteri-
on. In that case, the cost function and the geadient 12 opti-
mise L for the given training trajectory using stespes!
descent algorithim are given below in (12} In fact, it has
keen previously shown that in many applications, informz-
tion theoretic performance criteria oulperform MSE and
other second-erder-statistics based eriteria; mainly bacause
seponil arder statistics are not optimal anymore when the
probability distributions involved are not Gaussian, and in
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order to achieve information-leaming it requires more than
just the seeond order statisties™.

The gradient expression resembles the backpropagation
of error in fime that arises in the woining of dynamical neu-
ral networks due to the dyaamic observer structure, 1F the
system in (10 15 observable and LT1, only a single training
trajectory is sufficient to obtain a globally asymptotically
slable observer (the proof is omited hergd.  However, if
this off-line mode training is assumed, then for nonlinear
andd time-varying systems, either the observer must be re-
trained at different points of the state-space or different
observer gains irained for different locations in state-space
or in Lime must be used switching from ome abserver W the
oiher as the system moves in the state space.

M-l

o _.l-vl;.!"..: '.t.f-:lq.:lll 7. -:I.II:I [ | 1]
0

A Al at

Al _ N e, nATE _|.

E —:l"_I-:E.!'r CALEREAUA

- ; ; ; o
=g =A% b 1) -L BT =10 Ew__'l
T I"I.'\-l_.:|-ll-|] |.I']r|.'.n
.|I., =L = -i;r—
5T (11, I‘_I' EL

where ©0.) and #,0.) represent the Jacobians of the corne
sponding functions with respect o the state vector, and
[0, represents an all-ones sguare matrix of the size of (e
slatle vectorn

In extensive simulations, this algorithm, which wses
Batcli-teaining approach, wos found ineffective in leaming
the dynamics and estimating the states of nonlinear svs-
tems, alihowgh it was very successtul for LTI systems. In
any cuse, an off-ling training requirement may impose oo
et restriction to the applicability of an adaptive sy=tem
to many 1asks requiring real-time opgration and adaptation.
Therefore we would like o adopt an on-line training
approach, thus avoid i) the requirement of off-line iraining,
i} the necessity of using muliiple experts and switching.
For (hese stated reasons, we modily the training approach
from off-line o en-ling, and employ Widrow's stochastic
gradient approach.

5. Widrow's Stochastic Gradient Adaptation for
Extended Luenberger Observer

When the instantaneous squarsd error 15 used 25 a siochas-
tic approximation to MSE, the computed gradient of this
stochastic cost function with respect o the weights, one
gets Widrow's stochastic gradient for MSE®. Note that in
compatation of the stochastic gradient with respect to the
weights of a regursive svatem Widrow suggests the design-
er approaches the problem with care and caution.
Adthough the cost fonction depends only on the instaniz-
neous value of the error, due 1o recursion the croor still
exhibits a backpropagation property and it is easy o over-
see this. In the case of the ELO, af time step £, one may
use the petual gradient expression computed with full con-
gideration of the recursive structure of the topology o use
an approximate version of the gradient, which is very
aceurate if the leaming rate is chosen to be a small valwe,
The former allows the use of larger learning rates, where-
as the latter may go unsizble for those same values of
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leming rates. The stochastic cost funetion and its approx-
imate gradient {withoul consideration of the recursive
mature of the system) are simply computed using (13) and
the current value of the observer gains. For the full gradi-
ent expression that takes inio account the recursive natune
seeAppendix A, Mote that if the learming rate is chosen o
be smmall, their behaviours are the same,

J= (- 7T - )

L =20 - TR AT e KD %

(13}

c.f_ i A ETRRTIRN QWYY EAET |-':"l]‘-| Ly
¥ |":'.: [ e
L=y - rﬁg{-

where 17 s the learning rate,

It is 2 well-known fact that Widnow's stechastic gradient
algorithm makes the weights converpe 1o the optimal MSE
solution in the men, Furthermore, the LMS algorithm is
# well understood and proven algorithm that is wseful in
real-time adapiation problems’ (ver, there are stochastic
versions of the information theoretic adaplation criteria
also, and in studies they are shown to exhibit all the advan-
tagesus properties of LMS and moress),

. [llustrations With Basic Classes of Dynamical
Systems

In this section, we will demonstrate the high performance
of the adaptive ELO trained real-time with the stochastic
gradient on o varicty of dvnamical systems, namely an LT1
system, the Van der Pol oscillator, and the Lorenz attractar,

6.7 Linear Time-Invariant System
[ the first case study. we consider a 5150 LTI system

cxcited by white Ganssian noise (WGN) The system
matrices are given by

I:I".J N -
A= ]n’J [ n,;]a—[l 1] i1y

Two simulation results are presented, one with zern
mesurement noiee and the other with WGN on the meas-
Urements.

Metice in Migwre £, where there is mo measurement ermor,
the {absolute value of the) state estimation crrors decay
exponentially, corresponding to an ohserver pole located
inside the unit gircle, Tn the noisy measurements case, we
abgerve that the estimation errors canned reduce 10 below
a level determined by the signal-to-nmse-ratio (SNR) of
the measwrements,

6.2 Wan der Pol Oscillator

The second case stody is a simple suonomous nenlinear
system. The Van der Pol oscillator dvnamics, discretized
using the first order difference approximation ane

.1.'|I_|;_| — -"'-I,l +T .'l.-_:l.k |: | 5]

Eygey = Xap O xp e+ W1 - xf by,

where we ook the sampling time T=0.1 and the parzme-
ter g = (L5 The system output is assumed 1o be the first
state varialle.
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Fig, 3 and Fig, & show simulation resulis for the Van der
ol oscillator. Motice that the characteristic behaviour of
the error remaing and on the average, error deciys expo-
nentially when there is no noise and eonverzges 1o a fixed
vitlee determined by the SMNR when there 15 nodse.

5.3 Lorenz Aftractor

The Van der Pol cecillator states converge 1o a limit eyels
and one suspects that it is this periodicity that helps the
ohserver exhibat pood performance inany way. [n order to
clear such doubds, we test the observer scheme on a chaot-
¢ swstem that hus very high Lyapunov exponents, thus
without any correctional terms, the slightest difference in
izl comditions will lead toa very large diveraence in the
state trajectorics.  The Lorenz attractor dynamics, when
diseretized vzing the Nrst order ditference approximation
for derivative, become

Ty =T+ Toxgg,
o pen TEL-T)0, £ Ty (P X )
.'I.'_-,_k,| = l:-l. -:II-II]}_T'l_.A =g :Ir.'l.'l_,;.l':j

(o)

where the sampling time is token as 7 = (.01 and the
parameicrs are chosen to be o = 10, r = 28, b = B3, The
syslem oulput s assumed o be the first state variable.
Figure § and Fresre 0 show simuolation resulis Tor the
Lorene aftractor, Once again, in this chaotic system case
study. the adaptive observer performs successfully, Mot
et the adapiive observer ulilises the linear correction
term offiered by the output crror efficiently and by adapting
its weights suitably, tracks the aciual state veclor accurate-
ly after an initial transient phase.

6.2 Realistic Engine Manifold Model

Mlean value engine models are used 1o design AFR conirol
systems in pasoline engines. These maodels are based on
physical principles and some empirical comelanons, They
describe engine dynamics with limited bandwidth, equiva-
lent to comsidering the mean behavieur of state varables
over an enginge cyele. A mean value model can be con-
structed either in time-domain or in crank-angle domain, 11
i also possible transfomm a tme-domain model to crank-
angle domain madel or vice-verss by using the following
relatioaship
i
(A
where N is the engine speed in BPM and @ s crank angle
i degrees, In the following a discrete mean value engine
manitold model will be introduced in crank-angle domain,
Similar medels can be found 0743,

The intake manitold is placed between the throtle and
he intake port, A tea-ztate inlake manifold model can be
obtained from the conservation of energy and the mass in
the manifold as

df =

(17}

(=1}
Podrt1) = Pofk) +757 (b?'- BT, -

+-|I mTL\HL""”ﬂ"J‘.] i

T' &T
T+ —T,l[ﬁ'_ll VP Iﬁ"'.rR haT, - TN
Y T s - ﬂu{k]}"":.-{ﬁ'} H1 =T o)

= T AR
;A]mﬁm (15}

i
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where P is the manilold pressure, T, s the manifold tem-
perature, ¥ s the manifeld valume, y is the specific heat
ratic: for air, by is the heat transfer coefficient, T, is the
manifold wall temperature, B is the specific 235 Constant
for air, T, . i= the ambient air temperalure, m s the throt-
the air tlow raie, m,,. is the air fow rate o cylinder and T,
15 the sampling tme,

Fora complete model of the enging for AFR control, fuel
and sensor dynamics as well as the delavs in measurcments
associated with sensors should be introduced to the model.
However, we will not consider these extensions in this
example. In the above two state model, the manifold pres-
sure is assumed to be the measured cutput, Figre 7 illus
trates the states, estimations and errors for the noise-free
mensurements, where the throtle angle, the input, varies as
& sinusoid with additive white noise in lime. Mote thal lhe
errors decay exponentially on the average. Frgnre &, on the
other hand, shows the results for the case where the meis-
urements are corrupled with additive white noise. In that
case, the estimation creors, as expected, decay to a value
determmined by the noise power in the measurerments,

Although not reported lere, the adaptive ELO is suc-
cesslully applicd to the complete engine model with eight
stutes for the AFR contrel problem and it is observed that
the abserver-contreller scheme mamEges 0 mainiiin the
AFE at the optimal value, the stoichimoetie AFR.

7. Conclusions
The early works of Kalman and his contemporaries on the

subject of ehservability and controllability of lincar time-
invariant systems form the basis of linear syslem theory.

Their profound theory provides a deep understanding of

linear system dynamics and offers analytical solutions to
many problems, including stile estimation, which is also
the topic of the present study.  However, in realily engi-
neers have o lce the difficulties that are associated witly
nonlinear systems, which are not tackled in the accom-
plished theory of linear svstems. In order w0 overcome
these difficelties, many solutions have been proposed,
These solutions mainly concentrated around extensions
through linearisation of nonlinear sysiems at operling
points or application of adaptive/learning systems, with the
main focus being on neural networks die fo their inleren|
approximation and adaptabilicy properties.

In this paper. we suggested the pse of an adaplive
extended Luenberger observer structure. Lugnberger
abservier has @ solid theory behind it for the case of lingar
trme-imvarint systems, The extension suggested allowed
the use of the topalogy for nenlinear and time-varving svs-
tems without the necessity to salve for complicated analve-
Hal expressions, We had tested the performance of the
adaptive extended |.|."|||_'|::rg|:r filter on a variety of s
ems ranging from chastic w realistic models, [t was
found out that the proposed adaptive scheme was extreme-
Iy successtul in asymptotically estimating the states of the
sYsiems under examination when the system dynamic
equations were completely known Lo the designer and was
determined 1o be robuse o nowsy measurements.  Ohe
advantage of this scheme over other adaptive methods is
thit the correction lerms invilved are linear and the strse-
ture of the observer is very simple. As o consequence the
adaptation rules are extremely simple and regquire much
less computation.

The connection established between Grossherg's addi-
tive model and the proposed adaptive observer scheme
pointed cut a direction of development. It became evident
that by utilising properly trained neural networks, with
methods whose examples are present in the literature, in
substitution for the actual state dynamics and the outp
MAPpPings, one can achieve stable adaptive obhservers also
for systems whose dynamic equalons are nod compleiely
known to the designer. Tn that case, however, it is clear and
expected that there will be & degradation in the perform-
ance of the observer as the function approximation errors
will prevent state estimation errors from asymptodically
Lonverging lo zero.

The presented work did not deal with the ohsen abilicy
sonditicns that will govemn the success and applicability of
asymplotic observers for a particular given system. For
that, there exisis a vast literature on nonlinear observabili-
ty and controllability o which the reader is refere

As a future ling of study, we will look inio the conver
genee and stability |5|||Eh,:r|iu3; of the proposed adaptive
observer scheme and aim for an analytical proof of the
convergence of estimation errors to zro in the general
nonlinear syatem case and set the conditions for the stabil-
iy of the proposed observer. One item we know which
affects the stability of the adaptive observer is the learing
rike of the adaplation rule, Simulations pointed out that fhe
ahaerver tends to go unstable if very large leaming rates
are emploved,
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Appendix A

In the main text, an aceurate approgimeation 10 the actuzl gra-
dient expression is provided. That expression is close to the
actual gradient, which will be presented in this appendix,
when the slep size in sleepest descent is small. The advan-
tge of using the approximate gradient is that it is computa-
tionally much more simple, whereas it requires the use of
smaller step size values for stability of the wizighls,

Suppose we assign & time index to each gam vector dur-
ing the adaptation process in the following mammer (we
will drop the input and tme variables from the CRpPessions
for simnplicity).

Ty =N Ly - ) (A1)
Fo= b

The instantaneous cost function is given by

Sy = O - B - b (4.2)

We compute the gradient of the eost function in {A.2)
with respect to the observer gaing at time instant k as
&y Jr,

e TATh (E =t A
ar, = 2y = ¥l i () ol [4.3])
'E:-t-'-'} . 4s Ef.l.-u' e

= e By ) = Hovg - T e

Ol Gl

Flere we use the chain mule o express

r."F,;_l__ '."_l |..'I._|__: J" 1.|
I:-\:Jlgi !Tn'.._l_ 1 ':-E"-'k ['- iy
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Plotice thit when the step size is small, the second 1erm on
thee right hand side of (A4) will approsimte o the wentity
matrix. Thiz is the approximation that links this semal gra-
dient expression o the approximaie one given in (130, Now
we can use he sleepest descent update mile w determine this
second dernvative. The matrix we seek i the inverse of

Al =vilqubs shdeis avairie ngRpoalay
Ly O RO M Ty T (AS)

I summary. the actueal gradient expression, which muost
take into account the recursive nature of the system, can he
computed by erating the equations presented in (A, 3-5),
They allow the use of larger learning rates, thus provide
fsler convergense rates at the cost of increased eompiita-
fional requircmcnes.
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