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Blind Source Separation Using Renyi’s Mutual
Information

Kenneth E. Hild, II, Deniz Erdogmus, and José Príncipe

Abstract—A blind source separation algorithm is proposed
that is based on minimizing Renyi’s mutual information by means
of nonparametric probability density function (PDF) estimation.
The two-stqge process consists of spatial whitening and a series of
Givens rotations and produces a cost function consisting only of
marginal entropies. This formulation avoids the problems of PDF
inaccuracy due to truncation of series expansion and the estima-
tion of joint PDFs in high-dimensional spaces given the typical
paucity of data. Simulations illustrate the superior efficiency, in
terms of data length, of the proposed method compared to fast
independent component analysis (FastICA), Comon’s minimum
mutual information, and Bell and Sejnowski’s Infomax.

Index Terms—Blind source separation, component analysis,
Givens rotations, mutual information, Renyi’s entropy, Renyi’s
information.

I. INTRODUCTION

M INIMIZATION of the mutual information (MMI)
between outputs is considered the ideal information

theoretic criteria for blind source separation (BSS) [1]–[3].
The (Shannon) mutual information can be written as the sum
of the (Shannon) marginal entropies minus the joint entropy.
One of the difficulties of using MMI is the estimation of the
marginal entropies. In order to estimate the marginal entropy,
Comon and others approximate the output marginal probability
density functions (PDFs) with truncated polynomial expan-
sions [2]–[4], a process that inherently introduces error in the
estimation procedure. Another MMI method proposed by Xu
et al. [5] avoids the polynomial expansion by approximating
the Kullback–Leibler divergence with the Cauchy–Schwartz
inequality and estimates Renyi’s entropy nonparametrically
by Parzen windows. The second method requires estimation
of the -dimensional joint entropy, and nonparametric PDF
estimation using Parzen windows is ill-posed in high-diem-
sional spaces [5]. We propose below a new algorithm based
on Renyi’s mutual information that requires only marginal
entropy estimation and avoids both polynomial expansions and
estimation of Renyi’s joint entropy.
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II. COST FUNCTION

Renyi’s mutual information is defined as [6]

(1)

The sum of Renyi’s marginal entropies minus the joint entropy
is

(2)

which differs from (1). However, both (1) and (2) are nonnega-
tive [6], and both evaluate to zero when and only when the joint
PDF can be written as a product of the marginals, which occurs
identically when the statistically independent sources are sepa-
rated. Therefore, minimizing Renyi’s MI can be accomplished
by, minimizing the sum of (Renyi’s) marginal entropies minus
the joint entropy, just as with Shannon’s entropy. Notice that (2)
is not a reformulation of MI, but is preferred since Renyi’s en-
tropy can be estimated nonparametrically as proposed in [9].

In order to produce an algorithm that scales favorably as the
number of sources increases, the estimation of the joint entropy
is avoided by the two-step parameterization proposed in [4]. The
first stage performs spatial whitening, and the second stage per-
forms a rotation in -dimensions. The rotation, denoted as ma-
trix , is adapted to minimize the cost function given by (2). In
fact, since Renyi’s joint entropy is invariant to rotations

det
det

(3)

the joint entropy may be discarded from the adaptation process,
leaving only the marginal entropies. Hence, the cost function
becomes simply

(4)

which mimics the cost function of [3], [4], but with Renyi’s
entropy substituted for Shannon’s entropy. Using the nonpara-
metric Renyi’s entropy estimator proposed in [9], we arrive at a
new algorithm for BSS.
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Fig. 1. System block diagram for two sources/observations.

III. SYSTEM DESCRIPTION

The overall BSS block diagram for two inputs/observations is
given in Fig. 1. The equations for a system havingsources/ob-
servations are given by and , where

, is the matrix of eigenvectors of the autocor-
relation of , and is the corresponding eigenvalue matrix.
Notice that is the identity matrix, due to
the spatial whitening. The rotation matrixis constructed from
the product of . Givens rotation matrices1 are ,
where equals with elements , , ,
and modified to , , , and ,
respectively, where is the element of located at the
th row and th column. There is one rotation angle for each

, whose purpose is to perform a rotation in the output space
in the plane specified by theth and th (orthogonal) basis vec-
tors. The gradient of with respect to is also needed for the
algorithm development and it is denoted as .

IV. STOCHASTIC GRADIENT DESCENTALGORITHM

When Parzen windowing is used with a Gaussian kernel, the
estimate for Renyi’s quadratic marginal entropy simplifies to [9]

(5)

where is a Gaussian PDF, and is the th sample
of output . Notice that the infinite-limit integral disappears
and that there are no approximations involved (aside from the
implicit PDF estimation using Parzen windows). Substituting
(5) into (4) and taking the derivative with respect toproduces
(6), shown at the bottom of the page, where is the th
column of , and is the vector of at time . The
overall update equation for stochastic gradient descent is then

, where and are vectors
of angles, and is the step size.

V. RESULTS

The proposed method is compared to FastICA [7], Bell and
Sejnowski’s Infomax [8], and Comon’s MMI method [4] using

1This is the number of unique pairwise combinations ofN orthogonal basis
vectors.

Fig. 2. Signal-to-distortion plots for ten sources/observations. Notice that the
x-axis is logarithmic.

an instantaneous mixture of ten audio sources consisting of
one music source and speech from five male and four female
speakers. Spatial prewhitening is used for each method, the
values of the mixing coefficients are chosen uniformly in
[ 1, 1] and the performance criterion is the signal-to-distortion
ratio, defined as

SDR (7)

where , is the th row of , and
equals the maximum of the argument. This criterion effectively
measures the distance offrom the product of a permutation
matrix with a diagonal matrix.

Fig. 2 shows the SDR for each method as a function of, the
data length in number of samples. FastICA uses the symmetric
approach and the cubic nonlinearity, Infomax uses Amari’s
natural gradent [11], Comon’s method uses a fourth-order
PDF expansion (requiring estimates of third and fourth-order
cumulants) and our algorithm, MRMI, uses a kernel sizeof
0.5 ( 100) or 0.25 ( 100). In addition, small step sizes
were used to maximize SDR. As can be seen from the figure,
the MRMI method requires much less data to yield a given
performance level (good separation is achieved at an SDR of
20 dB). This is imperative in a number of applications such
as channel equalization and in nonstationary environments. In
hearing aid applications for example, Torkkola explains [10]
that “Any system which attempts to apply some means
of inverse filtering would have to be adaptable on almost a
frame-by-frame basis to be effective.” The results for MRMI
are not shown beyond 1000 due to the computational

(6)
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complexity, which is compared to for the other
three methods.

VI. CONCLUSIONS

A new BSS algorithm has been developed that is based on the
minimization of Renyi’s mutual information. Unlike the Comon
approach, which uses Shannon’s entropy and requires trunca-
tion of a PDF series expansion, there are no approximations in
the proposed method due to the utilization of Renyi’s quadratic
entropy. While this algorithm is computationally more complex
than its predecessors, it has been shown to be much more effi-
cient in terms of the amount of data samples required, an item
that is paramount in tracking a rapidly changing environment.
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Correspondence________________________________________________________________________

Corrections to “Blind Source Separation Using Renyi’s
Mutual Information”

In the above paper [1], the authors have found that it contains an
incorrect statement. The introductory section includes the sentence
“However, both (1) and (2) are nonnegative [6], and both evaluate to
zero when and only when the joint PDF can be written as a product
of the marginals.” As it is written, reference [6] in the letter appears
to apply to both (1) and (2); however, it should only apply to (1).
Furthermore, the previously held belief that the estimator of Renyi’s
Mutual Information, given by (2), can never be negative has since
been determined to be in error. This is the case, for example, for
sub-Gaussian sources. Although it has been proven that (2) has a
minimum value of zero for the case that there are two Laplacian
sources, there is no known proof that generalizes this result for any
combination of super-Gaussian sources and/or for any number of
sources. It does appear that, for sub-Gaussian sources, there is a
local minimum at the location corresponding to separation (which
evaluates to zero), but it may not be the global minimum. Therefore,
the sentence above should be corrected to read “... (1) is nonnegative
and evaluates to zero when and only when the joint PDF can be written
as a product of the marginals [6]. In addition, for super-Gaussian
sources there is experimental evidence that (2) is also nonnegative
and evaluates to zero only when the joint PDF can be written as a
product of the marginals.” The end result is that the criterion must
be slightly modified in order for it to also separate sub-Gaussian
sources. The details of the modification may be found in a paper by
the same authors [2]. The authors wish to extend an apology for any
inconvenience this may have caused.
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Comments on “Fast Approximation of Kullback–Leibler
Distance for Dependence Trees and

Hidden Markov Models”
For the above paper [1], the Associate Editor coordinating the review

of this manuscript and approving it for publication was Dr. Marcelo A.
Bruno.
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Corrections to “Robust Stability of Two-Dimensional
Uncertain Discrete Systems”

The authors of the above paper [1] point out that, unfortunately,
they were unaware that a similar topic has been studied in [2], and that
Theorem 1 and Theorem 2 of the letter have already been obtained in
[2].

H. Kar and V. Singh (Dept. Electrical-Electr. Engineering, Atilim
Univ., Incek, Ankara, Turkey) also made a comment on the following
statement appearing on page 135 of the letter [1]: “Give an initial value
� > 0, [� � �] small enough. Solve LMI (20) again. If� approaches one
eventually, then it means that the uncertain discrete-time 2-D system is
not robustly asymptotically stable.”

Since the Lyapunov theorem provides only a sufficient condition for
stability, the last sentence in this statement is not justified. In other
words, merely on the basis of the fact that the conditions given in The-
orem 2 are not met, it would not be correct to draw the inference that
the uncertain discrete 2-D system is not robustly asymptotically stable.
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