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This dissertation provides an overview and analysis of existing methods of tensor de-
composition and describes a non-redundant tensor decomposition in terms of which
we define the rank of a tensor. A tensor is a multidimensional or p-way array of
scalars. Decompositions of tensors have applications in psychometrics, chemomet-
rics, signal processing, numerical linear algebra, computer vision, numerical analysis,
data mining, neuroscience, graph analysis, and elsewhere when we analyze order-p
data with p ≥ 2 [1]. The simplest case of tensor decomposition is singular value
decompositions (SVD) when the order p equals 2, in this case SVD transforms data
space into parametric space preserving cardinality. Two widely used tensor decompo-
sitions can be considered to be extensions of the SVD without preserving cardinality:
CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-1 tensors,
and the Tucker decomposition is a higher-order form of principal component analysis
(PCA) [1]. We present a tensor decomposition that includes SVD as a particular
case, describes a tensor as a set of variables, defines an upper bound for the rank of
tensors, and does not have redundancy as in the cases of CP and Tucker decompo-
sitions.



"Gedanken ohne Inhalt sind leer, Anschauungen ohne
Begriffe sind blind."

Immanuel Kant
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Chapter 1

Introduction

1.1 Problem Statement

Higher-order tensor decomposition appears in signal [2] and image [3] processing,
factor analysis [4, 5, 6], speech and telecommunications [1], bioinformatics, etc.,
where we need to perform data analysis. Tensors and super symmetric tensors were
actually already studied in the nineteenth century (homogeneous polynomials can be
presented by symmetric tensors). In the ’70s tensors appeared in Psychometrics and
Linguistics, sciences in which multi-way arrays should to be analyzed. Subsequently
they were used in chemometrics, where sets of excitation-emission matrices should
be stacked in a third-order tensor. In the ’90s non-Gaussian signal processing and
higher-order statistics became popular, where the basic quantities are higher-order
tensors. Near 2000 it was understood that the concept of "diversity" in telecom-
munication corresponds to the order of a tensor. Exponential signals, which are
considered as the atoms of signal processing, can be represented by rank-1 tensors.
Tensors have led to new efficient and accurate computation techniques. Semantic
graphs, multilayer networks and hyperlink documents are represented by higher-
order tensors. When one starts from a data matrix, one can wonder whether it
would not be worthwhile to measure several matrices (under different conditions,
at different time instances, etc.) so that one could make use of the more powerful
structure of tensor algebra. This shift of paradigm concerns the most diverse aspects
of mathematical engineering and goes together with the explosion of available infor-
mation and the increase in computing power. The development of tensor methods is
relevant to countless applications, e.g. tensor-based optimization, signal processing,

1



Introduction 2

machine learning, data mining, diffusion tensor imaging, independent component
analysis, blind source separation and factor analysis, diffusion tensor imaging.

Tensor analysis has become increasingly meaningful in theoretical and applied fields
as it operates with data preserving their "native" state. For instance, Figure 1.1
shows us a result of data misrepresentation when we refuse to have a deal with
tensors. Indeed, if we have an order-3 (5,5,2)-dimensional tensor representation we
save "native" structure of data with two clusters. Otherwise, if we transform the
tensor to habitual representation in form of matrix we will lose original relations
between data points and final form of data has 3 clusters.

1 1 1 1 1

8 8 1 1 1

8 8 1 1 1

1 1 1 5 5

1 1 1 5 5

1 1 1 1 1

8 8 1 1 1

8 8 1 1 1

1 1 1 5 5

1 1 1 5 5

1 1 1 1 1

8 8 1 1 1

8 8 1 1 1

1 1 1 5 5

1 1 1 5 5

1 1 1 1 1

8 8 1 1 1

8 8 1 1 1

1 1 1 5 5

1 1 1 5 5

Figure 1.1: Tensor representation.

While the most data sets can be viewed as matrices, and therefore analyzed effec-
tively using the SVD, certain data sets, such as a sequence of images, videos, and
texts, cannot be represented as matrices without making some choices that might
introduce unwanted artifacts, and thus make interpretation of the SVD results dif-
ficult. What is bewitching in tensors is that there is no equivalence to the SVD
which is widely known. As this dissertation shows, there are several approaches to
tensor decompositions, each with its own benefits. Their use depends a lot on the
applications, and there are many applications for which tensor decomposition is the
right tool. Below we provide some of interesting and useful examples.

As the size of the web increases, it becomes more and more important to analyze
link structure considering context as well. Multilinear algebra provides a novel tool
for incorporating anchor text and other information into the authority computation
used by link analysis methods such as Hyperlink-Induced Topic Search (HITS) [7],
Figure 1.2 [8]. T. Kolda and B.Bader [8] proposed Topical HITS (TOPHITS) method
which uses a higher-order analogue of the matrix SVD called the PARAFAC model to
analyze a three-way representation of web data. They compute hubs and authorities
together with the terms that are used in the anchor text of the links between them.
Adding a third dimension to the data greatly extends the applicability of HITS
because the TOPHITS analysis can be performed in advance and offline. Like HITS,
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the TOPHITS model reveals latent groupings of pages, but TOPHITS also includes
latent term information. In their papers, the authors describe a faster mathematical
algorithm for computing the TOPHITS model on sparse data, and Web data are
used to compare HITS and TOPHITS. They also discuss how the TOPHITS model
can be used in queries, such as computing context-sensitive authorities and hubs.

Tensors are geometric entities introduced

into mathematics and physics to extend

the notion of scalars, geometric vectors ,

and matrices to higher orders.

Geometry is a part of mathematics

concerned with questions of size, shape,

relative position of figures, and the

properties of space.

Mathematics is the study of quantity,

structure, space, and change. It seeks out

patterns, formulate conjectures, and

establish truth by rigorous deduction.

Space is the boundless, three-dimensional

extent in which objects and events occur

and have relative position and direction.

1

1

1

1

1

1 1

1 1

1

tensor

geometry

mathematics

space

Figure 1.2: Three-dimensional view of the Web.

In the decomposition of multi-channel Electroencephalogram (EEG) signals, prin-
cipal component analysis (PCA) and independent component analysis (ICA) have
been widely used. However, as both methods are based on a two-way data processing,
i.e., order-2 tensots or matrices, multi-way methods might improve the interpreta-
tion of frequency transformed multi-channel EEG of channel×frequency×time data,
Figure 1.3. Morup at al. [9] were used PARAFAC to produce 5-way analysis of
channel×frequency×time×subject×condition. They clearly presented how to per-
form data exploration using the decomposition on multi-way arrays. The PARAFAC
decompositions were able to extract the expected features of a quantitative differ-
ence of coherent occipital gamma activity between conditions of a visual paradigm.
Proposed method revealed a qualitative difference which has not previously been
reported and showed the difference of regions of interest across modalities. The au-
thors showed PARAFAC as a promising data exploratory tool in the analysis of the
wavelets transformed event-related EEG.

An example of face recognition based on multilinear tensor algebra is presented in
[10], Figure 1.4. The authors have investigated a technique for recognizing facial
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Figure 1.3: EEG signals analysis.

invariants of 3D facial expressions. Proposed potent framework possesses a remark-
able ability to deal with the shortcomings of PCA in less constrained situations. A
set of vector spaces are used to represent the variation of collections of face models
with multiple formation factors across various modes, without destroying the details
of each other. Using multilinear SVD yields better recognition rates than PCA. The
authors have used a set of landmarks as the input data for their multilinear SVD
recognition experiments. Results have shown that the choice of landmarks may con-
tribute to the accuracy of recognition. They have used the face action coding system
framework for manual selection of landmarks on prominent facial features as well as
on muscle areas.

Figure 1.4: Tensor model for face recognition.

The Taylor series are used to define functions and "operators" in diverse areas of
mathematics. For example, using Taylor series, one may define analytical functions
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of matrices and operators, such as the matrix exponential that will be used in our
evaluations below. The Taylor series represent a function as an infinite sum of terms
calculated from the values of its derivatives at a single point [11]. In practice people
use a finite number of terms of the series to approximate a function. Usually due
to complexity ones truncate the Taylor series after the second member of sequence,
such that we have a deal with scalars, vectors, and matrices. A function f(x) that
is infinitely differentiable in a neighborhood of a number a can be expressed in the
Taylor series as:

f(x) = f(a) +
f ′(a)

1!
(x− a) + f ′′(a)

2!
(x− a)2 + f (3)(a)

3!
(x− a)3 + · · · , (1.1)

or in more compact form:

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n (1.2)

For several variables x = [x1, x2, . . . , xn] we can generalize the Taylor series around
some point a = [a1, a2, . . . , an] as:

f(x) =
∞∑

i1=0

· · ·
∞∑

in=0

(x1 − a1)i1 · · · (xn − an)in
i1! · · · in!

(
∂i1+···+inf

∂xi11 · · · ∂xinn

)
(a), (1.3)

where all partial derivatives are represented as symmetric multidimensional higher-
order tensors with p = i1 + · · ·+ in, Figure 1.5.
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Figure 1.5: Partial derivatives of multivariables function.

As tensors could emerge from higher-order statistics such as joint moments and
cumulants (e.g. consider the symmetric tensor formed by order-p joint moments
of n-dimensional random vector), we believe, tensor decompositions will play more
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important role in statistical signal processing. In probability theory and statistics,
the moment-generating function of any random variable is an alternate definition
of its probability distribution [12]. In addition to univariate distributions, moment-
generating functions can be defined for vector- or matrix-valued random variables,
and can even be extended to generic cases of tensor form. The moment-generating
function of a random variable x is

Mx(t) := E
(
etx
)
, t ∈ R, (1.4)

wherever this expectation exists the value of Mx(0) is always equal to 1. A key prob-
lem with moment-generating functions is that moments and the moment-generating
function may not exist, as the integrals do not need absolutely converge. In gen-
eral case, for n-dimensional random vector x = [x1, x2, . . . , xn] we have Mx(t) :=

E
(
et

Tx
)
. The main properties of this function are that we can find all the moments

of the distribution by the Taylor expression. The series expansion of etx is

etx = 1 + tx+
t2x2

2!
+
t3x3

3!
+ · · · . (1.5)

For multidimensional random vector x the moment-generation function redefined
by1

Mx(t) = E(etx) = 1 + tTM1 +
tTM2t

2!
+
< t◦3,M3 >

3!
+ · · · , (1.6)

where Mi is the ith moment of vector x, Figure 1.6. To obtain ith moment of random
vector x we need to differentiate Mx(t) i times with respect to t and then set t = 0.
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Figure 1.6: Moments of random vector x.

In 2008 The Defense Advanced Research Projects Agency (USA) established math-
ematical challenge on the tensor analysis called as "Beyond Convex Optimization:
Can linear algebra be replaced by algebraic geometry in a systematic way?". Using
the term algebraic geometry we mean higher-order multidimensional polynomials

1By the symbol "◦" we denote outer product of vectors. More precisely we describe this opera-
tion in the next chapter.
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while linear algebra operates just with scalars, vectors, and matrices. An order-p
polynomial f ∈ R[x] of n-dimensional vector x = [x1, x2, . . . , xn] is expressed as:

f(x) = a0 + aT
1 x+ xTA2x+A3(x,x,x) + · · ·+Ap(x, . . .x), (1.7)

where a0, a1,A2 are scalar, vector ,and matrix respectively, and Ap, p = 3, . . . ,∞
denotes order-p tensor. Here if we limit the upper bound of the order,p, equals to 2
then the polynomial f(x) will depict numerical linear algebra. SVD is widely used
in linear algebra for function analysis, contrariwise there is no such a decomposition
for higher-order tensors. So the first step for algebraic geometry is to figure out the
decomposition that involves SVD’s properties for any tensor order.

1.2 Contribution of The Dissertation

In the context of this dissertation a tensor is a generalization of scalars, vectors, and
matrices to higher-order structures. Tensor analysis is an increasingly relevant and
interesting field of inquiry in signal processing and machine learning. The reason of
such an interest is that generalization of rank-1 SVD of matrices have found con-
siderable applications and success. Decompositions of tensors emerge and become
relevant when high-order data or statistics are analyzed. Canonical decomposition
(also called parallel factor analysis) and other decomposition methodologies exist
and exhibit useful properties such as uniqueness. However, particular decompo-
sitions lack structure in its vector frame that forms the rank-one decomposition
components, which prevent recursive solution formulations as in deflation of princi-
pal components. The main target of this dissertation is to analyze existing methods
of tensor decomposition and develop a non-redundant tensor decomposition, which
can be interpreted as a generalization of the spherical coordinate system of vectors
and the orthogonal matrix group based on a predetermined frame of basis vectors.
This imposed structure prevents the decomposition from achieving the minimum
cross-product tensor rank as canonical decomposition does; however, we think it
provides a solution that is more suitable for recursive calculations that is useful and
important in dimension reduction applications.
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Within this dissertation the following steps have been made:

• tensor representation and basic operations on them;

• matrix analysis with one-to-one reparametrization between data and set of
variables;

• cardinal analysis of existing methods of tensor decomposition (CP and Tucker
approaches);

• uniform distribution of points on a hyper-sphere;

• maximum entropy density estimation;

• generalized principal component analysis;

• solving systems of nonlinear equations;

Solving the problem of non-redundant tensor decomposition we reparameterize initial
data set (tensor) into set of variables preserving cardinality. In this dissertation
several new approaches to tensor decomposition are proposed:

• We describe the tensor by the set of free elements. In this term we define
tensor factorization as a reparametrization procedure from data space to pa-
rameter space preserving cardinality. Heretofore any science researchs have
not considered tensor decomposition in terms of a cardinal number property.
We have shown such a property in the case of SVD and after that extended
its to higher-order data. Final decomposition model has SVD as a particular
case.

• In the Dissertation we outlined main properties of vector frame for tensor de-
composition relaxing orthogonal behavior of vector frame for SVD. The struc-
ture of vector basis depends on the dimensions and the order of tensor. Existing
method consider vector frame either as an orthogonal or an arbitrary directed
vector frame. We also included Gram-Schmidt normalization for evaluation of
decomposition model that was not involved in tensor decomposition before.

• Our approach gives exact equation for the tensor rank evaluation on the basis
of its dimensions. In opposition to existing definitions of the rank our method
does not have restrictions, fuzzyness or exceptional cases. We apply the same
rule for any-dimensional tensor.
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• In the experimental part of the Dissertation it is shown how tensor decomposi-
tion can be applied to the problems of density estimation, clustering, principal
curve fitting, generalized and nonlinear principal component analysis. Wide
range of existing applications on tensor decomposition does not usually involve
these problems.

1.3 Dissertation Outline

The Dissertation is constructed in the following way: we start with notations and
definitions of the main terms and operations on the tensor in Chapter 2. All examples
presented in this chapter will consist of two parts: first, we describe an operation on
matrix and then we generalize it to tensor form. Chapter 3 presents information on
existing methods of tensor decomposition (CP and Tucker models) which now are
mostly used in practice and are considered to be the basis for other methods. In
the end of the chapter we present an analysis of them on cardinality between data
and result of decomposition. The main properties of SVD which preserve cardinality
are described and the main demands to non-redundant decomposition are defined.
Data decomposition without redundancy is presented in Chapter 4. In this chapter
we define the tensor rank and investigate the properties of such a model from the
simplest case of the tensor ((2,2)-dimensional symmetric tensor) to general case of
the tensor without any boundaries. This chapter also presents the main properties
of basis vector frame. We also provide a differential model and show how it can
be utilized to achieve minimum decomposition error. At the end of Chapter we
compare proposed approach with existing ones. Chapter 5 presents solutions in
different application fields for proposed model. A part of problems examined in this
chapter is dedicated to restoration and application to data density distribution. The
rest of the problems are extensions of existing linear approaches to signal processing.
Finally, in Chapter 6 we conclude the main conceptions of this dissertation and
provide future perspectives of non-redundant tensor decomposition.



Chapter 2

Notations and Definitions

The goal of this dissertation is to provide an overview of higher-order tensors, their
decompositions, and then present our own non-redundant decomposition.

I want to acknowledge Prof. Tamara Kolda from The Sandia National Laboratories
(CA\USA) as the most important author whose publications I have used from the
beginning of my PhD program. Particularly, the material for this chapter has been
primarily taken from [1] with additional citations for exact quotes, paraphrasing,
etc.

"Though there has been active research on tensor decompositions and models (i.e.,
decompositions applied to data arrays for extracting and explaining their properties)
for the past four decades, very little of this work has been published and applied in
industry" [1]. Therefore, we wish to bring this research to the attention of applied
mathematics readers.

As summarized in [1], the history of tensors is as follows. The terminology and
theory of tensor decompositions firstly appeared in the papers of Hitchcock in 1927
[13, 14], and the extended idea of a multi-way data was proposed by Cattell in 1944
[15]. These conceptions became consistent until the works of Tucker on orthogonal
base vector frame for tensor decomposition appeared in the middle of 1960s for the
psychometrics problems [5]. In 1981 Appellof [16] was the first who utilized tensor
decomposition in chemometrics after which tensors have become extremely popu-
lar in that field, even first book was published [17]. Simultaneously to the science
investigations in psychometrics and chemometrics, Knuth [18] presented interest-
ing approach in decompositions of bilinear forms in the algebraic complexity field.

10
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Strassen matrix multiplication, which is applied for a decomposition of 4 × 4 × 4

tensor through the 2× 2 matrix multiplication, is an example of this.

Also we would like to point on the latest book in the field of non-negative tensor
factorization [19]. Moreover, there are many software packages available for working
with tensors from which we would like to note Matlab Tensor Toolbox from Sandia
National Laboratories (CA/USA) [20, 21] .

2.1 Tensors

A tensor is a multidimensional array of scalars [1]. More precisely, an order-p tensor
is an element of the space spanned by the outer product of p vectors, where each
vector has its own dimension. We need to point a difference between the terms
of tensor in mathematics and physics where it is considered as tensor fields, stress
tensors or diffusion tensors [22]. There is an example of an order-4 (n1, n2, n3, n4)-
dimensional tensor A with four different indices, Figure 2.1. By the subscript indices
i1, i2, i3, i4 we denote entry value of the tensor, ai1,i2,i3,i4 .

i
1 =

1
,…

,n
1

i2=1,…,n2

i 3
=

1,
…

,n
3

1,,, 321 iii
a

i4=
1,…,n4

4321 ,,, niii
a

Figure 2.1: An order-4 tensor A ∈ Rn1×n2×n3×n4 .

The main terms for tensors are the order, dimensions, and the rank which we de-
scribe in process of exposition. The order of a tensor is the number of non-singleton
dimensions, also known as ways or modes. For instance, n-dimensional vector can
be represented as a (1, n)- or (n, 1)-, or either (1, 1, n)-dimensional vector and just
one non-singleton dimension is involved in evaluation of tensor’s order. In general,
an order-0 tensor is a scalar, an order-1 tensor is a vector, an order-2 tensor is a
matrix, and tensors of order three or higher are higher-order tensors [1], they are
presented on Figure 2.2.
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a

(a)

a

(b)

A

(c)

A

(d)

Figure 2.2: Tensors: (a) scalar – order-0, 1-dimensional tensor; (b) vector –
order-1, n-dimensional tensor; (c) matrix – order-2, (n1, n2)-dimensional tensor;

(d) higher-order tensor – order-3, (n1, n2, n3)-dimensional tensor.

In this work we denote scalars by lowercase letters, a, vectors by boldface lowercase
letters, a, matrices and higher-order tensors (order-3 or higher) by boldface capital
letters, A.

2.2 Basic Tensor Notations

In course of statement of the Dissertation, we have tried to stay as consistent as
possible with terminology that would be familiar to applied mathematicians and
with the terminology of previous publications in the area of tensor decompositions
[1, 4, 23].

The ith entry of a vector a is denoted by ai, element (i1, i2) of a matrix A is denoted
by ai1i2 , and element (i1, i2, i3) of a third-order tensor A is denoted by ai1i2i3 , etc.
To point out a certain elements in a tensor preserving the face of letter we will use
round brackets with subindexes, e.g., ai = (a)i or ai1,i2 = (A)i1,i2 . Indices typically
range from 1 to their upper value denoted by lowercase letters, e.g., i1 = 1, . . . , n1.
The kth element in a sequence is denoted by a superscript in parentheses, e.g., A(k)

denotes the kth matrix in a sequence [1].
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Subarrays are formed when a subset of the indices is fixed. For matrices, these are
the rows and columns. A colon (:) is used to indicate all elements of a mode. Thus,
the ith column of a matrix A is denoted by a:i, and the ith row of a matrix A is
denoted by ai:. Equivalently, the ith column of a matrix, a:i, may be denoted more
compactly as ai, when it is obvious from content [1].

Fibers are the higher-order analogue of matrix rows and columns. A fiber is defined
by fixing every index but one. A matrix column is a mode-1 fiber and a matrix row
is a mode-2 fiber. Third-order tensors have column, row, and tube fibers, denoted by
x:i2i3 , xi1:i3 , and xi1i2:, respectively, Figure 2.3 [1]. Fibers extracted from the tensor
are always assumed to be oriented as column vectors [1].

(a) mode-1 (column)
fibers: x:i2i3

(b) mode-2 (row) fibers:
xi1:i3

(c) mode-3 (tube)
fibers: xi1i2:

Figure 2.3: Fibers of an order-3 (5,4,3)-dimensional tensor.

Slices are 2-dimensional sections of a tensor, defined by fixing all but two indices.
Figure 2.4 shows the horizontal, lateral, and frontal slides of a third-order (5,4,3)-
dimensional tensor X, denoted by Xi1::, X:i2:, and X::i3 , respectively [1]. Alter-
natively, the ith3 frontal slice of a third-order tensor, X::i3 , may be denoted more
compactly as Xi3 [1].

The Frobenius norm of an order-p tensor X ∈ Rn1×n2×···×np is the square root of the
sum of the squares of all its elements, i.e.,

∥X∥F =

√√√√ n1∑
i1=1

n2∑
i2=1

· · ·
np∑

ip=1

x2i1,i2...,ip (2.1)
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(a) horizontal slices:
Xi1::

(b) lateral slices: X:i2: (c) frontal slices: X::i3

Figure 2.4: Slices of an order-3 (5,4,3)-dimensional tensor.

This is an analogous to the matrix Frobenius norm, which is denoted as ∥A∥F for a
matrix A. The inner product of two same-sized tensors X,Y ∈ Rn1×n2×···×np is the
sum of the products of their entries, i.e.,

⟨X,Y⟩ =
n1∑

i1=1

n2∑
i2=1

· · ·
np∑

ip=1

xi1i2...ipyi1i2...ip (2.2)

It follows immediately that ⟨X,X⟩ = ∥X∥2F . As we utilize this inner-product and
norm throughout the proposal, we will not explicitly refer to them as "Frobenius".

2.3 Diagonal Tensors

A tensor X ∈ Rn1×n2×···×np is diagonal if xi1i2···ip ̸= 0 and i1 = i2 = · · · = ip.
Figure 2.5 illustrates diagonal matrix and cubical tensor with non-zero entries along
their main diagonals, respectively.

2.4 Symmetric Tensors

A tensor is called cubical if every mode has the same dimension, i.e., X ∈ Rn×n×···×n.
A cubical tensor is called supersymmetric [24], if its elements constantly remain
under any permutation of the indices. For instance, an order-3 tensor X ∈ Rn×n×n
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(a) diagonal (n, n)-
dimensional tensor.

111
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nnn
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(b) diagonal (n, n, n)-
dimensional tensor.

Figure 2.5: Diagonal order-2 and order-3 tensors.

is symmetric if xi1i2i3 = xi1i3i2 = xi2i1i3 = xi2i3i1 = xi3i1i2 = xi3i2i1 for all i1, i2, i3 =

1, . . . , n. In our work we are going to name supersymmetry as symmetry because we
do not consider partial symmetry in tensors. Tensors can be partially symmetric in
two or more modes as well. For example, an order-3 tensor X ∈ Rn×n×m is symmetric
in modes one and two if all its frontal slices are symmetric, i.e., Xi3 = XT

i3
for all

i3 = 1, . . . ,m. Analysis of (super) symmetric tensors, which can be shown to be
bijectively related to homogeneous polynomials, is presented in [14, 24].

2.5 Tensor Rank

An order-p tensor X ∈ Rn1×n2×···×np is rank-1 if it can be written as the outer product
of p vectors [1], i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(p) (2.3)

The symbol ”◦” represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements [1]:

xi1i2···ip = a
(1)
i1
a
(2)
i2
· · · a(p)ip

for all 1 ≤ ik ≤ nk. (2.4)

Figure 2.6 illustrates X = a(1) ◦ a(2) ◦ a(3), an order-3 rank-1 tensor, where the
(i1, i2, i3) element of X is given by xi1i2i3 = a

(1)
i1
a
(2)
i2
a
(3)
i3

.
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X

(1)
a

(2)
a

(3)
a

=

Figure 2.6: Rank-1 order-3 tensor X.

Rank-r tensor X, Figure 2.7, consists of the sum of r rank-1 tensors:

X =
r∑

i=1

a
(1)
i ◦ · · · ◦ a

(p)
i . (2.5)

)1(

2a

)2(

2a

)3(

2a

)1(

r
a

)2(

r
a

)3(

r
a

= +
............. ++X

)1(

1a

)2(

1a

)3(

1a

Figure 2.7: Rank-r order-3 tensor X.

The rank of a tensor X, denoted by rank(X), is defined as the smallest number of
rank-1 tensors that generate X as their sum [1]. In other words, this is the smallest
number of components in an exact CP decomposition [1], see Section 3.1. The
first definition of the rank proposed by Hitchcock in 1927 [13], and Kruskal did so
independently 50 years later [25]. An exact CP decomposition with r = rank(X)

components is called the rank decomposition [1].

The definition of tensor rank is exactly the same as for matrix rank, but the prop-
erties of matrix and tensor ranks are quite different. One difference is that the rank
of a real-valued tensor may actually be different over R and C, see [1] for more de-
tails. Another major difference between matrix and tensor rank is that there is no
straightforward algorithm to determine the rank of a specific given tensor; in fact,
the problem is NP-hard. In practice, the rank of a tensor is determined numerically
by fitting various CP or Tucker models [1]. In tensor calculus we can have a deal with
maximum and typical ranks. The maximum rank is defined as the largest attainable
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rank, whereas the typical rank is any rank that occurs with probability greater than
zero. For the collection of (n1, n2)-dimensional matrices, the maximum and typical
ranks are identical and equal to min(n1, n2). For tensors, the two ranks may be
different in state-of-the-art and identical in our approach [1]. In fact, Monte Carlo
experiments based on existing theory reveal that the set of (2, 2, 2)-dimensional ten-
sors of rank two fills about 79% of the space, while those of rank three fill 21%.
Rank-1 tensors are possible but occur with zero probability [1].

One of the main achievements of the Dissertation is we can always compute the
maximal tensor rank for any order and dimensions of a tensor. Below we shortly
describe the most popular approach for the tensor rank evaluation proposed by
Comon [26].

In 2002 Comon investigated the special case of symmetric tensors over C. Let X be
an order-p (n, . . . , n)-dimensional symmetric tensor. Define the symmetric rank of
X to be as

rank(X) = min{r : X =
r∑

i=1

a◦p
i , where A ∈ Cn,r}, (2.6)

i.e., the minimum number of symmetric rank-1 tensor [1]. Comon has shown that
the lower bound of the rank for such a symmetric tensor is

rank(X) ≥

⌈(
n+p−1

p

)
n

⌉
, (2.7)

except for the cases (p, n) ∈ (3, 5), (4, 3), (4, 4), (4, 5), when it should be increased
by one.

For the case of non-symmetric tensors the lower bound of the rank is evaluated by

rank(X) ≥
⌈ ∏p

i=1 ni

1 +
∑p

i=1(ni − 1)

⌉
. (2.8)

2.6 Matricizing: Transforming a Tensor into a Ma-

trix

In many numerical tasks there is often need to transform a tensor into a matrix or
vector form and vice versa since it is easer to perform basic operations in vector-
matrix forms. Especially it is important because all data in computer are stored in
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a vector form with liner index and we do such a transformation all the time when
we access to stored data.

One can find different names of a tensor-matrix transformation, we use term "matri-
cizing" as in [1, 23], since it is a general name of final data form after rearrangement,
where we reorder the elements of an order-p array into a matrix, Figure 2.8. Here
both matrices and vectors are obtained by identical algorithms, the difference is that
in tensor-vector transformation one of two dimensions is always equal one. Although
some authors use term "unfolding" [2] or "flattening" [27] for the such operation.

)1(
A

)2(
A

)3(
A

)1(
A

)2(
A

)3(
A

Figure 2.8: Transformation of a rank-3 tensor A to a matrix.

For instance, a 2 × 3 × 4 tensor can be arranged as a 6 × 4 matrix or a 3 × 8

matrix, and so on [1]. In this work, we consider only the special case of mode-k
matricizing because it is the only form relevant to our discussion. More general
treatment of matricizing can be found in [28]. The mode-k matricizing of a tensor
A ∈ Rn1×n2×···×np is denoted by A(k) and arranges the mode-k fibers to be the
columns of the resulting matrix. The concept cam be more easily understood if we
introduce it with an example [1]. Let the frontal slices of A ∈ R3×4×2 be

A1 =


1 4 7 10

2 5 8 11

3 6 9 12

 , A2 =


13 16 19 22

14 17 20 23

15 18 21 24

 . (2.9)
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Then the three mode-k unfoldings are:

A(1) =


1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

 ,A(2) =


1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24

 ,

A(3) =

[
1 2 3 4 · · · 9 10 11 12

13 14 15 16 · · · 21 22 23 24

]
.

(2.10)

Sometimes different papers use different orderings of the columns for the mode-
k unfolding [1]. In general, the specific permutation of columns is not important
as long as it is consistent across all related calculations. Last, we note that it is
also possible to vectorize a tensor. Once again the ordering of the elements is not
important as long as it is consistent. In the example above, the vectorized version
of the data [1] is

vec(A) =



1

2

3
...

23

24


. (2.11)

Now we present general operation of matricizing. Let A be an order-p (n1, n2, . . . , np)-
dimensional tensor, and it is supposed that we wish to rearrange this to be a matrix
of size m1 ×m2 (or a vector when m1 or m2 equal one) [21]. Clearly, the number
of entries in the matrix must equal the number of entries in the tensor; in other
words,

∏p
i=1 ni = m1m2. Given m1 and m2 satisfy the aforementioned property,

the mapping can be done by any number of ways, so long as we have a one-to-one
mapping ϕ such that

ϕ : {1, . . . , n1}×{1, . . . , n2}×· · ·×{1, . . . , np} 7→ {1, . . . ,m1}×{1, . . . ,m2} (2.12)

Here we convert a tensor to a matrix as follows [21]. Let the set of indices be
partitioned into two disjoint subsets: {1, . . . , p} = {r1, . . . , rk} ∪ {c1, . . . , cl}. The
set {r1, . . . , rk} defines those indices that will be mapped to the row indices of the
resulting matrix and the set {c1, . . . , cl} defines those indices that will likewise be



Chapter 2. Notations and Definitions 20

mapped to the column indices [21]. In this case,

m1 =
k∏

j=1

nrj and m2 =
l∏

j=1

ncj . (2.13)

Then we define ϕ(i1, i2, . . . , ip) = (j1, j2), where

j1 = 1 +
k∑

j=1

[(irj−1)

j−1∏
ĵ=1

nrĵ
] and j2 = 1 +

l∑
j=1

[(icj−1)

j−1∏
ĵ=1

ncĵ
]. (2.14)

Note that the sets {r1, . . . , rk} and {c1, . . . , cl} can be of any order and are not
necessarily ascending [21].

2.7 Tensor Multiplication

Notations and operations for tensor multiplication are very similar to matrix ones,
though obviously the symbols for such operations are much more complex. The main
problem with such operations is to determine which dimensions are to be multiplied
and how the dimensions of the result should be ordered [21]. In this section we
consider three types of tensor multiplication: a tensor with a vector, a tensor with a
matrix, and a tensor with a tensor. For more information on tensor multiplications
we refer the reader to [21, 29].

2.7.1 Multiplying a Tensor With a Vector

Multiplication of a tensor A ∈ Rn1×···×np with a vector v ∈ Rnk along kth-mode is
denoted by A ×k v. The result of such a multiplication is an order-(p − 1) tensor,
i.e., the size is n1 × · · · × nk−1 × nk+1 × · · · × np. Elementwise, we have

(A×k v)i1,...,ik−1,ik+1,...,ip
=

nk∑
ik=1

ai1,...,ipvik (2.15)
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The idea is to compute the inner product of each mode-k fiber with the vector v.
For example, let A be as given in (2.9) and define v = [1 2 3 4]T [1]. Then

A×2 v =


70 190

80 200

90 210

 (2.16)

One source of confusion in k-mode multiplication is what to do to the singleton
dimension in mode k when we multiply a tensor with a vector. If the singleton
dimension is dropped (as is described above) then the commutativity of multiplies
is not held because the order of the intermediate result changes and multiplication
applies to the wrong mode [21]. When it comes to mode-k vector multiplication,
precedence matters because the order of the intermediate results changes [1]. In
other words,

(A×m u)×k v ̸= (A×k v)×m u. (2.17)

However, a different statement about commutativity may be made [21]. If we assume
m < k, then

(A×m u)×k−1 v = (A×k v)×m u. (2.18)

Although we can usually determine the correct order of the result via the context of
the equation [21], it is very important for software realization. As it will be shown
in the next chapter, it is useful to calculate the product of a tensor and a sequence
of vectors [21], for instance:

B = A×1 u
(1) ×2 u

(2) · · · ×p u
(p) (2.19)

or
B = A×1 u

(1) · · · ×k−1 u
(k−1) ×k+1 u

(k+1) · · · ×p u
(p). (2.20)

Alternative notations for these operations are B = A × {u} and B = A ×−n {u},
respectively.

In practice, we must be careful, when calculating a sequence of contracted n-mode
products, to perform the multiplications starting with the highest mode and pro-
ceeding sequentially to the lowest [21].
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2.7.2 Multiplying a Tensor With a Matrix

In the case of matrix multiplication, the specification of which dimensions should be
multiplied is straightforward Ů it is always the inner product of the rows of the first
matrix with the columns of the second matrix [21]. When we apply a transposition
of matrix then we just swaps the rows and columns. Because tensors may have an
arbitrary number of dimensions, the situation is more complicated. In this case,
we need to specify which dimension of the tensor is multiplied by the columns (or
rows) of the given matrix [21]. Transposition for the tensor is not defined now in
state-of-the-art so it is one of the future problems in tensor calculus.

The k-mode product of a tensor A ∈ Rn1×cdots×np with a matrix U ∈ Rj×nk is denoted
by A×kU and dimension of the obtained result is n1×· · ·×nk−1×j×nk+1×· · ·×np.
Elementwise, we have

(A×k U)i1···ik−1jik+1···ip =

nk∑
ik=1

ai1i2···ipujik . (2.21)

Each mode-k fiber is multiplied by the matrix U. This idea can also be expressed
in the terms of unfolded tensors [1]:

Y = A×k U ⇔ Y = UA(k) (2.22)

The k-mode product of a tensor with a matrix is related to a change of basis in
the case when a tensor defines a multilinear operator [1]. As an example, let A

be the tensor defined above in (2.9) and let U =

[
1 3 5

2 4 6

]
. Then the product

Y = A×1 U ∈ R2×4×2 is

Y1 =

[
22 49 76 103

28 64 100 136

]
, Y2 =

[
130 157 184 211

172 208 244 280

]
(2.23)

We also need to point out one property of the order of k-mode matrix product. For
certain modes in a sequence of multiplications, the order of the multiplication is
unimportant [1], e.g.,

A×k U×m Y = A×m Y ×k U if m ̸= k. (2.24)
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If the modes are the same, then

A×k U×k Y = A×k (YU). (2.25)

To understand k-mode multiplication in terms of matrices (i.e., order-2 tensors),
suppose A is (m,n)-dimensional, U is (m, l)-dimensional, and V is (k, l)-dimensional
tensors [21]. It follows that

A×1 U
T = UTA end A×2 V

T = AV. (2.26)

Thereby, the matrix SVD can be written as

A = UΣVT = Σ×1 U×2 V. (2.27)

The k-mode product satisfies the following property [29]: Let A be an order-p
(n1, n2, . . . , np)-dimensional tensor. If U and V are (dm, nm) and (dk, nk)-dimensional
tensors, respectively, then

A×m U×k V = A×k V ×m U. (2.28)

As in the case of tensor times a vector product it is useful to calculate the product of a
tensor and a sequence of matrices [21]. Let A be an order-p (n1, . . . , np)-dimensional
tensor, and let U(i) denote a (mi, ni)-dimensional matrix, i = 1 . . . , p [21]. Then the
sequence of products

B = A×1 U
(1) ×2 U

(2) · · · ×p U
(p) (2.29)

is order-p (m1, . . . ,mp)-dimensional tensor. Alternative notation for this operation
is B = A × {U}. Another frequently used operation is multiplying by all but one
of a sequence of matrices [21]:

B = A×1 U
(1) · · · ×k−1 U

(k−1) ×k+1 U
(k+1) · · · ×p U

(p). (2.30)

Alternative notation is B = A ×−k {U} [21]. We will use these notations when
describe algorithms of redundant decompositions in the next chapter.
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2.7.3 Multiplying a Tensor With a Tensor

The last class of tensor multiplication to consider is the product of two tensors [21].
We describe three general operations for tensor-to-tensor multiplication: outer prod-
uct, contracted product, and inner product [21]. The outer product of two tensors
is defined as follows. Let A be a (n1, . . . , np1)- and B be (m1, . . . ,mp2)-dimensional
tensors. The outer product A ◦ B is an order-(p1 + p2) (n1, . . . , np1 ,m1, . . . ,mp2)-
dimensional tensors is given by

(A ◦B)i1,...,ip1 ,j1,...,jp2 = ai1,...,ip1 bj1,...,jp2 ; (2.31)

The contracted product of two tensors is a generalization of the tensor-vector and
the tensor-matrix multiplications discussed in the previous two subsections. The key
distinction is that the modes should be multiplied and the ordering of the resulting
modes is handled specially in the matrix and vector cases [21]. In this general case,
let A be (n1, . . . , nm, d1, . . . , dk)-dimensional tensor and B be (n1, . . . , nm, g1, . . . , gp)-
dimensional tensor. We can multiply both tensors along the first m modes [21], and
the result is a A be (d1, . . . , dk, g1, . . . , gp)-dimensional tensor, given by

(< A,B >)i1,...,ik,j1,...,jp =

n1∑
l1=1

· · ·
nm∑

lm=1

al1,...,lm,i1,...,ikbl1,...,lm,j1,...,jp . (2.32)

The remaining modes are ordered such that those from A come before B.

The inner product of two tensors requires that both have equal dimensions [21].
Assuming both are n1, . . . , np-dimensional tensors, their inner product is given by

< A,B >=

n1∑
i1=1

· · ·
np∑

ip=1

ai1,...,ipbi1,...,ip (2.33)

Using this definition of inner product, the Frobenius norm of a tensor is then given
by [21]

∥A∥2F =< A,A >=

n1∑
i1=1

· · ·
np∑

ip=1

a2i1,...,ip . (2.34)

We have described all necessary terms and definitions, and we can proceed to the
examination of two of the most widely recognized methods of tensor decomposition
(CP and Tucker models). Both of these models involve some of the properties of
SVD but are not identical to SVD in whole.



Chapter 3

Redundant Tensor Decompositions

This chapter has been prepared based on the publications of Prof. Brett Bader from
The Sandia National Laboratories (CA\USA). Particularly, we refer the reader to
his publication [21] to learn more comprehensive explanations on CP and Tucker’s
decomposition algorithms.

In this chapter we focus on two of the most widely known approaches for sum-of-rank-
1 tensor decompositions. These are: (1) canonical decomposition (CANDECOMP)
[30] or alternatively called parallel factor analysis (PARAFAC) [4]; (2) the Tucker [5]
model. With the CP model, a tensor can be represented as a sum of rank-1 tensors
with minimal number of bases in a unique fashion and by definition, the dimension-
ality of this basis set is the rank. The CP model does not constrain the geometry of
the vectors that yield the rank-1 basis tensors; this is in contrast to the assumption
of orthogonal vectors in SVD of matrices. While a matrix might be written as a sum
of fewer unconstrained left-right vector products than prescribed by SVD, the or-
thogonality constraint on the geometry of the vectors has been found to be useful in
many applications of SVD. As opposed to the CP, Tucker’s proposed decomposition
factors tensors as a finite sum assuming orthogonal vectors to generate the rank-1
basis tensors similar to SVD, but the result is not necessarily minimal. Two main
properties of these decompositions are: first, they reparameterize the tensors with
more variables than necessary (the number of variables describing decompositions is
more than the number of free elements1 in tensor), so we have redundancy in these
models; second, these decomposition models do not provide explicit equations how
to figure out the rank of tensor and we have to determine the rank on the basis of
repeated decompositions.

1Degree of freedom of the tensor.

25
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With the CP model, a tensor can be represented as a sum of rank-1 tensors in a
unique fashion without any constrains and the dimensionality of this basis set is the
rank:

A =
r∑

l=1

λlu
(1)
l ◦ u

(2)
l ◦ · · · ◦ u

(p)
l (3.1)

where λ = diag(Λ), u(1)◦u(2)◦· · ·◦u(p) denotes the p-way outer-product of the vectors
u
(i)
l , and upper index (i), i = 1, . . . , p denotes the way of product. Figure 3.1 presents

a schematic illustration of the CP model, where U(i) = [u
(i)
1 , . . . ,u

(i)
r ], i = 1, . . . , p

are the matrices whose columns form frames in ni, i = 1, . . . , p dimensional spaces.

Figure 3.1: CP model of an order-3 (n1, n2, n3)-dimensional tensor decomposi-
tion.

The CP model does not constrain the geometry of the vectors that yield the rank-
1 basis tensors; this is in contrast with the assumption of orthogonal vectors in
singular value decomposition (SVD) of matrices. While a matrix might be written as
a sum of fewer unconstrained left-right vector products than prescribed by SVD, the
orthogonality constraint on the geometry of the vectors has been found to be useful in
many applications of SVD. As opposed to the CP, Tucker’s proposed decomposition
factors tensors as a finite sum assuming orthogonal vectors to generate the rank-1
basis tensors similar to SVD, but the result is not necessarily minimal; in fact it
reparameterizes the tensors with more variables than necessary:

A =

r1∑
l1=1

r2∑
l2=1

· · ·
rp∑

lp=1

Λl1,l2,...,lpu
(1)
l1
◦ u(2)

l2
◦ · · · ◦ u(p)

lp
(3.2)
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An illustration of Tucker decomposition of an order-3 tensor is presented on Fig-
ure 3.2.

Figure 3.2: Tucker model of an order-3 (n1, n2, n3)-dimensional tensor decom-
position.

3.1 CANDECOMP/PARAFAC Decomposition

In 1927, Hitchcock [14] proposed the polyadic form of tensor, i.e., expressing a tensor
as the sum of a finite number of rank-one tensors; and in 1944 Cattell [15] proposed
ideas for parallel proportional analysis and the idea of multiple axes for analysis
(circumstances, objects, and features) [1]. The concept finally became popular after
its third introduction in 1970 to the psychometrics community, in the form of CAN-
DECOMP (canonical decomposition) by Carroll and Chang [30] and PARAFAC
(parallel factors) by [4] [1].

The CP decomposition factorizes a tensor into a weighted sum of rank-1 tensors,
given by

A =
r∑

l=1

λlU
(1)
:l ◦U

(2)
:l ◦ · · · ◦U

(p)
:l (3.3)

Here, λ is a vector of size r and each U(i) is a matrix of size ni × r, for i = 1, . . . , p.
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For example, an order-3 tensor X ∈ Rn1×n2×n3 is given and we wish to write it as

X ≈
r∑

i=1

λiu
(1)
i ◦ u

(2)
i ◦ u

(3)
i , (3.4)

where r is a positive integer and λ ∈ Rr, u
(1)
i ∈ Rn1 , u(2)

i ∈ Rn2 ,and u
(3)
i ∈ Rn3 for

i = 1, . . . , r. Elementwise, (3.4) is written as

xi1i2i3 ≈
r∑

l=1

λlU
(1)
i1l
U

(2)
i2l
U

(3)
i3l
, for

i1=1,...,n1;
i2=1,...,n2;
i3=1,...,n3;

(3.5)

This is illustrated on Figure 3.3.
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Figure 3.3: CP decomposition of an order-3 array.

The implementation of the higher-order power method [6] presented in Algorithm 1
is a multilinear generalization of the best rank-1 approximation problem for matrices
[21]. This is also the same as the Alternating Least Squares algorithm for fitting a
rank-1 CP model [21]. In the case of finding the best rank-r CP model, applying
best rank-1 CP approximation to the residuals recursively (as on the matrix SVD)
does not work. The best rank-1 approximation problem is when a tensor A is given,
we want to find a B of the form

B = λu(1) ◦ u(2) ◦ · · · ◦ u(p), (3.6)

such that ∥A − B∥ is as small as possible [21]. The higher-order power method
computes a B that approximately solves this problem. Essentially, this method
works as follows. It fixes all u-vectors except u(1), and then solves for the optimal
u(1), likewise for u(2), u(3), and so on, cycling through the indices until the specified
number of iterations is exhausted [21].
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Algorithm 1 Higher-order power method.
1: In: A of size n1 × n2 × · · · × np.
2: Out: B of size n1 × n2 × · · · × np, an estimate of the best rank-1 approximation

of A.
3: Compute initial values: Let u(k)

0 be the dominant left singular vector of A(k) for
k = 2, . . . , p.

4: for l = 0, 1, 2, . . . (until converged) do
5: for i = 1, . . . , p do
6: ũ

(i)
l+1 = A×−i {ul}

7: λ
(i)
l+1 = ∥ũ

(i)
l+1∥

8: u
(i)
l+1 = ∥ũ

(i)
l+1∥/λ

(i)
l+1

9: end for
10: end for
11: Let λ = λl and {u} = {ul}, where l is the index of the final result of step (4).
12: Set B = λu(1) ◦ u(2) ◦ · · · ◦ u(p).

3.2 Tucker Decomposition

The Tucker decomposition [5], also called a rank-(r1, r2, . . . , rp) decomposition [6], is
another way of summing decomposed tensors [21] and is given by

A =

r1∑
i1=1

r2∑
i2=1

· · ·
rp∑

ip=1

λi1,i2,...,ipU
(1)
:i1
◦U(2)

:i2
◦ · · · ◦U(p)

:ip
(3.7)

Here, Λ is a tensor of size r1 × r2 × · · · × rp itself, and each U(k) is a matrix of size
nk × rk, for k = 1, . . . , p. As before, the notation U

(k)
:i denotes the ith column of the

matrix U(k). The tensor Λ is often called the "core array" or "core tensor" [21].

Thus, in the three-way case where X ∈ Rn1×n2×n3 , we have

X ≈ Λ(1) ×1 U
(1) ×2 U

(2) ×3 U
(3) =

r1∑
i1=1

r2∑
i2=1

r3∑
r=1

λi1i2i3U
(1)
i1
◦U(2)

i2
◦U(3)

i3
. (3.8)

Here, U(1) ∈ Rn1×r1 , U(2) ∈ Rn2×r2 , and U(3) ∈ Rn3×r3 are the factor matrices (which
are usually orthogonal) [1]. The entries of the core tensor Λ ∈ Rr1×r2×r3 show the
level of interaction between the different components [1].

Elementwise, the Tucker decomposition in 3.8 is

xi1i2i3 ≈
r1∑

l1=1

r2∑
l2=1

r3∑
l3=1

λl1l2l3U
(1)
i1l1

U
(2)
i2l2

U
(3)
i3l3
, for

i1=1,...,n1;
i2=1,...,n1;
i3=1,...,n3;

(3.9)
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Figure 3.4: Tucker decomposition of a three-way array.

Here r1, r2, and r3 are the numbers of components (i.e., columns) in the factor
matrices U(1), U(2), and U(3), respectively [1]. If r1, r2, r3 are smaller than n1,
n2, n3, the core tensor Λ is considered as a compressed version of X. The Tucker
decomposition is illustrated on Figure 3.4 [1]. Most fitting algorithms assume that
the factor matrices are columnwise orthonormal, but this is not required. In fact,
CP can be viewed as a special case of Tucker where the core tensor is diagonal and
r1 = r2 = r3 [1].

The higher-order orthogonal iteration finds the best rank-(r1, r2, . . . , rp) approxima-
tion of a higher-order tensor [21], Algorithm 2 in [6]. It is the multilinear general-
ization of the best rank-r approximation problem for matrices [21].

Algorithm 2 Higher-order orthogonal method.
1: In: A of size n1 × n2 × · · · × np.
2: Out: B of size n1 × n2 × · · · × np, an estimate of the best rank-(r1, r2, . . . , rp)

approximation of A.
3: Compute initial values: Let U

(k)
0 ∈ Rnk×rk be an orthogonal basis for the domi-

nant rk-dimensional left singular space of A(k) for k = 2, . . . , p.
4: for l = 0, 1, 2, . . . (until converged) do
5: for i = 1, . . . , p do
6: Ũ = A×−i {UT

l }
7: Let W of size ni × rk solve:
8: max∥Ũ×k W

T∥ subject to WTW = I

9: U
(i)
l+1 = W

10: end for
11: end for
12: Let {U} = {Ul}, where l is the index of the final result of step (4).
13: Set λ = A× {UT}.
14: Set B = λ× {U}.
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3.3 Combination of CP and Tucker Models

Of late years several research institutions have offered different models that combine
properties both CP and Tucker. As we know from previous explanation CP decom-
position defines a tensor as the sum of rank-1 tensors. In proposed models, a tensor
is determined as a sum of low-rank Tucker tensors, i.e., block decomposition. For
instance, for an order-3 tensor X ∈ Rn1×n2×n3 , we have

X =
r∑

l=1

Λl ×1 U
(1)
l ×1 U

(2)
l ×3 U

(3)
l . (3.10)

Here we assume that Λl is (d
(1)
l , d

(2)
l , d

(3)
l )-dimensional tensors and U

(k)
l is (nk, d

(k)
l )-

dimensional matrices with l = 1, . . . , r and k = 1, . . . , 3. Figure 3.5 shows an
example.
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Figure 3.5: Block decomposition of an order-3 tensor.

The first authors which proposed a version of block decomposition [31, 32] called
this algorithm PARALIND model. De Almeida at.al [33] gave an overview of some
aspects of models of the form in (3.10) and their application to the problems in
blind beamforming and multiantenna coding [1]. In a series of papers, De Lath-
auwer [29, 34] and Nion [35] explored a general class of decompositions as in 3.10,
looking at their uniqueness properties, computational algorithms, and applications
in wireless communications; see also [36]. Vasilescu and Terzopoulos [27] explored
higher-order versions of ICA, a variation of PCA that, in some sense, rotates the
principal components so that they are statistically independent [1]. An example
of probabilistic ICA based in extended CP model described in [37] extended CP.
Version of maximum-likelihood CP formulated in [38] and [39].
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There are many other tensor decompositions, including INDSCAL, PARAFAC2,
CANDELINC, DEDICOM, PARATUCK2, etc. [1], as well as non-negative variants
of all of the above.

3.4 Non-Negative Tensor Decomposition

This section has been prepared based on the publications of Prof. Andrzej Cichocki
from The Riken Brain Science Institute (Japan). Particularly, we refer the reader
to his publication [19] to learn more comprehensive explanations on non-negative
tensor decomposition.

Many real-world data are non-negative and the corresponding hidden components
have a physical meaning only when non-negative [19]. In practice, both non-negative
and sparse decompositions of data are often either desirable or necessary when the
underlying components have a physical interpretation [19]. For example, in image
processing and computer vision, involved variables and parameters may correspond
to pixels, and non-negative sparse decomposition is related to the extraction of rele-
vant parts from the images [40, 41].The reader can be also interested in examples of
non-negative tensor factorization (NTF) in computer vision [42], application of NTF
method to image data as an order-3 tensor [43], in [44] authors considered clustering
based on non-negative factorizations of symmetric tensors, [45, 46] describe utiliza-
tion of NTF for EEG signals treatment. A sparse representation of the data by a
limited number of components is also an important research problem. In machine
learning, sparseness is closely related to feature selection and certain generalizations
in learning algorithms, while non-negativity relates to probability distributions [19].

Generally, compositional data are natural representations when the features are es-
sentially the probabilities of complementary and mutually exclusive events. More-
over, NTF is an additive model which does not allow subtraction so it can be con-
sidered as a part-based representation in which a zero-value represents the absence
and a positive number represents the presence of some event or component [19].
Specifically, in the case of facial image data, the additive or part-based nature of
NTF has been shown to result in a basis of facial features, such as eyes, nose, and
lips [19].

Below we present non-negative version of CP model. For more information we refer
the reader to recently published book of Andrzej Cichocki et al. [19].
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Let given an order-3 (n1, n2, n3)-dimensional tensor Y which is decomposable by
non-negative matrices U(i), i = 1, . . . , 3 and positive index, r, defines the number of
vectors in U (i). Then we can write an approximate decomposition of Y as

Y =
r∑

j=1

u
(1)
j ◦ u

(2)
j ◦ u

(3)
j + E, (3.11)

where the tensor E denotes decomposition error.

In order to compute the non-negative component matrices {U} we usually apply
constrained optimization approach as by minimizing a suitable design cost function
[19]. Typically, we minimize (with respect to the component matrices) the following
global cost function

e = ∥Y −U(1) ◦U(2) ◦U(3)∥2F + α1∥U(1)∥2F + α2∥U(2)∥2F + α3∥U(3)∥2F , (3.12)

subject to non-negativity constraints, where αi, i = 1, . . . , 3 are non-negative regu-
larization parameters.

The most popular approach for solving this optimization problem is to apply the
ALS technique. In this approach we compute the gradient of the cost function with
respect to each individual component matrix (assuming that the others are fixed and
independent) [19]:

∇e(U (1)) = −Y(1)(U
(3) ⊙U(2)) +U(1)[((U(3))TU(3))~ ((U(2))TU(2)) + α1I],

∇e(U (2)) = −Y(2)(U
(3) ⊙U(1)) +U(2)[((U(3))TU(3))~ ((U(1))TU(1)) + α2I],

∇e(U (3)) = −Y(3)(U
(2) ⊙U(1)) +U(3)[((U(2))TU(2))~ ((U(1))TU(1)) + α3I].

(3.13)

By equating the gradient components to zero and applying the nonlinear projection
to maintain non-negativity of components we obtain efficient and relatively simple
non-negative ALS update rules for the NTF [19]:

U(1) =
[
Y(1)(U

(3) ⊙U(2))[((U(3))TU(3))~ ((U(2))TU(2)) + α1I]
−1
]
+
,

U(2) =
[
Y(2)(U

(3) ⊙U(1))[((U(3))TU(3))~ ((U(1))TU(1)) + α2I]
−1
]
+
,

U(3) =
[
Y(3)(U

(2) ⊙U(1))[((U(2))TU(2))~ ((U(1))TU(1)) + α3I]
−1
]
+
,

(3.14)

where symbols ⊙ and ~ denote the Khatri-Rao and Hadamard products, respec-
tively. The operation [u]+ means taking non-negative value, max(0, u).
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The main advantage of ALS algorithms is high convergence speed and its scalability
for large-scale problems [19].

3.5 Redundancy and Cardinality

Let us note the main two differences on the above described models: CP model
has a diagonal tensor of linear combination coefficients Λ and arbitrary directed
vectors in frames U(i), on the other hand, Tucker model has fully filled tensor of
linear combination coefficients Λ and orthogonal vector frames U(i). When one does
analysis/decomposition/transformation of data he2 can say that his method does
not loose data when, at least, his method preserves cardinality of data. Cardinality
or cardinal number of a set of scalars is the number, c, of free elements (degree of
freedom) in a set (in our case it is a tensor), e.g. the cardinal number of any full-rank
symmetric two dimensional matrix equals three. Indeed, any reparametrization (or
coordinate transformation) must preserve the cardinality (or the number of dimen-
sions or degrees of freedom).

Table 3.1: Cardinal properties of existing models of tensor decomposition.
Matrix SVD CP model Tucker model

Cardinality
of data

Matrix A[2× 2],
c = 4

Tensor B[2×2×2],
c = 8

Tensor B[2×2×2],
c = 8

Properties
of model

Diagonal Λ,
orthogonal U(1) &
U(2)

Diagonal Λ,
non-orthogonal
U(1), U(2), &
U(3)

Non-diagonal Λ,
orthogonal U(1),
U(2), & U(3)

Cardinality
of model

d.o.f. of Λ = 2,
d.o.f. of U(1) &
U(2) = 2,
c = 4

d.o.f. of Λ = r,
d.o.f. of U(1),
U(2), &U(3) = 3r,
c = 4r

d.o.f. of Λ =
r1r2r3,
d.o.f. of U(1),
U(2), & U(3) = 3,
c = 3 + r1r2r3

In the Table 3.1 we present a brief analysis of described models and compare their
cardinality with SVD. Let us use a random (2,2)-dimensional matrix A and (2,2,2)-
dimensional tensor B. Cardinal numbers of A and B equal 4 and 8 respectively.
In the general case, to describe the SVD of A we need two singular values, r = 2,
and, because of orthogonality of vector frames U(i), two rotation angles to define
the orientations of orthogonal vector frames in 2-dimensional space. So we can see
that SVD preserves cardinality of decomposed data. For tensor B, CP models hold

2We use "he", "she" and similar third person phrases to include all genders, and wish to avoid
s/he type make-shift solutions that are necessitated by the English language.
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r linear combination coefficients and, due to the absence of any restriction on vector
frame structure, 3r rotational angles. Supposing that CP model decomposed tensor
B with rank r = 1, in this case, CP model does not preserve cardinality, c = 4. For
the case of r = 2 cardinality of CP model, c = 8, equals cardinality of tensor B. But
the same rank, r = 2, we have for matrix A that is order-2 data. We assume that
this case is just a coincidence, because more complicated data must have a higher
rank. For rank r = 3 and above cardinality of CP model is always higher than
cardinality of tensor B. Tucker model, due to orthogonality of U(i), holds 3 rotation
angles for each way of B and r1r2r3 linear coefficients. In any case of values of r1, r2,
r3 Tucker model does not preserve cardinality of tensor B at all. We need to note
that when we apply CP and Tucker models to matrix A we get the same results as
for SVD. So CP and Tucker models marginally preserve cardinality of data in case
when we apply them to matrices and do not do it in the general case.

The main goal of this work is to determine a decomposition model that preserves
cardinality of any-order any-dimensionality data. Below we investigate a standard
decomposition of symmetric and non-symmetric matrices and extend their properties
for our decomposition model. In the first part of the next chapter we provide a
model for the decomposition of real-valued symmetric tensors and then we extend
our approach to the non-symmetric case for any dimensions and orders.



Chapter 4

Non-redundant Tensor

Decomposition

In this chapter we present an alternative decomposition model that utilizes a set of
geometrically constrained vectors to generate rank-1 tensor bases; we refrain from
calling these basis vectors ’eigen’ or ’singular’ because at this time we have not
proven any invariance property that would warrant this nomenclature. The con-
straint relaxes the orthogonality assumption in matrix SVD which turns out to be
a one-to-one reparameterization of the tensor; however, we cannot also claim that
the identified decomposition is minimum rank in CP-sense. The proposition is a
generalization of the orthogonal coordinate frame interpretation of the singular vec-
tors of non-symmetric real-valued matrices, which remain as order-2 special cases.
The corresponding special case of decomposition model for symmetric tensors was
proposed and solved for using iterative random search presented here [47]. Itera-
tive descent technique for the optimization of the vector frame rotation parameters
and corresponding linear combination coefficients is based on Levenberg-Marquardt
method for Givens rotation angles [48]. In the first part we provide a model for
decomposition of real-valued symmetric tensors and then we extend our approach
to non-symmetric case for any dimensions and orders.

4.1 Decomposition of a Symmetric Tensor

The decomposition of a real-valued symmetric tensor A into a sum of rank-1 tensors
utilizes basis tensors that are p-way outer-products of the same vector (referred to

36
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as rank-1 symmetric tensors) [1, 2]:

A =
r∑

l=1

λlu
◦p
l (4.1)

where u◦p denotes the p-way outer-product of the vector u.

Tensor decomposition problem is fundamental to the extension of subspace analysis
techniques in signal processing that arise from the study of second order statis-
tics of vector-valued measurements to higher order statistics. Existing examples
of such applications include blind source separation. For instance, an exponen-
tial multivariate family as a signal model can be factorized using a sum-of-rank-1
tensor decomposition; consider an n-variate order-p polynomial q(x) = A · x◦p =∑n

l1=0 . . .
∑n

lp=0 Al1,...,lp ·xl1 · . . . ·xlp where x0 = 1. If the (symmetric) tensor A con-
taining these polynomial coefficients is decomposed into the desired form, then the
polynomial can be written as A ·x◦p =

∑r
l=1 λl(u

T
l x)

◦p , and an exponential density
eq(x) can be factorized into a product of univariate exponentials. Other applications
are reviewed in [1] and include finding polynomial factorizations [49, 50].

4.1.1 Order-2 n-Dimensional Symmetric Tensors

A symmetric n-dimensional order-2 tensor is a symmetric matrix. Eigenvector bases
for the real symmetric matrices are orthogonal, and can be always transformed to
orthonormal basis. Figure 4.1 illustrates the eigendecomposition of a matrix. Thus
a real n-dimensional symmetric matrix can be decomposed as

A =
n∑

l=1

λlu
◦2
l (4.2)

where U = [u1, . . . ,un] is the matrix in which columns form an orthogonal frame in
n-dimensional space.

For numerical eigendecomposition of (4.2) we can use, for instance, the Jacobi algo-
rithm [51] that tries to find q =

(
n
2

)
rotation angles {θk, k = 1, . . . , q}, such that we

can construct a rotation matrix R(θk) in plane (i, j){i = 1, . . . , n−1, j = i+1, . . . , n}
with angle θk (with a one-to-one correspondence between the indices k and (i, j) in
this Givens angle parameterization). This eigendecomposition solution consists of
q rotation angles and n eigenvalues. The number of free elements of a symmetric
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=A ΛU

nn´ nn´ nn´ nn´

T

U

Figure 4.1: Decomposition of order-2 n-dimensional symmetric tensor.

n-dimensional matrix A, mf (n, 2) = n(n + 1)/2, equals the sum n + q. Conse-
quently, eigendecomposition is simply a reparameterization procedure. Solving for
the rotation matrices R(θk), we can get the orthonormal eigenvectors given by U:

U =

q∏
k=1

R(θk), UTU = UUT = I (4.3)

Due to orthonormality of U, the eigenvalues are uniquely identified by the Frobenius
inner-product vector between the target matrix and the basis matrices [1]:

⟨u◦2
l ,A⟩ =

n∑
i=1

λi⟨u◦2
l ,u

◦2
i ⟩ =

n∑
i=1

λi(u
T
l ui)

2 = λl (4.4)

4.1.2 Order-p 2-Dimensional Symmetric Tensors

Let A be a 2-dimensional order-p real symmetric tensor. In a 1-1 reparameterization,
the number of linear combination coefficients r, plus the number of parameters that
characterize r corresponding vectors s, must be equal to the number of free elements
in the tensor1 (i.e., its total dimensionality); that is (r+s)=(p+1), since order-p
2-dimensional symmetric tensors have (p+1) free entries.

Incorporating these conditions into the design of the rank-1 sum decomposition on
the right-hand side of (4.1), we obtain that real-symmetric, 2-dimensional order-p
tensor A has the following decomposition:

A =

p∑
l=1

λlu
◦p
l , ul =

[
cos(θ + (l − 1)π/p)

sin(θ + (l − 1)π/p)

]
(4.5)

1We do not refer to these coefficients and vectors as eigen until some suitable invariance property
is proven.
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Figure 4.2 shows a graphical illustration of the decomposition of an order-3 2-
dimensional symmetric tensor A.

Figure 4.2: Decomposition of order-p 2-dimensional symmetric tensor, r = p.

In this case, a simple line search for θ in the interval [0, π/p) is sufficient to fit
optimally the decomposition to the tensor with zero error. Employing Gram-Schmidt
orthogonalization, the linear combination coefficient vector λ is uniquely identified
by the inner-product matrix between the basis rank-1 symmetric tensor pairs and
the inner-product vector between the target tensor and the basis tensors; i.e., at the
optimal decomposition, λ = B−1c(θ). Here the matrix B (invariant with respect
to θ, since the pairwise angles between the basis vectors leading to the basis rank-1
symmetric tensors are fixed by the frame) and the vector c are defined elementwise
as follows, assuming Frobenius tensor inner product as in (4.4):

Bij = ⟨u◦p
i ,u

◦p
j ⟩F = ⟨ui,uj⟩pF = (uT

i uj)
p, ci(θ) = ⟨u◦p

i ,A⟩ (4.6)

where i, j = 1, . . . , p. Specifically note that each entry of B reduces to the following:
Bij = cosp((i−j)π/p). For symmetric matrices, this matrix is simply identity, B = I.

4.1.3 Order-p n-Dimensional Symmetric Tensors

The number of free elements of a symmetric n-dimensional order-p tensor is given by:
mf (n, p) =

(
n+p−1

p

)
. General structure of vector frames for order-p n-dimensional

tensor is presented in next section but based on the two special cases examined
above we can conclude that the decomposition of any symmetric tensor can consist
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of some fixed frame of vectors rotated in n-dimensional space and any angle between
pairwise vectors can be constant and depends on order p. As in matrices, we need q
rotation angles to decompose any symmetric n-dimensional order-p tensor as a finite
sum of rank-1 tensors as in (4.1). The number of vectors in this decomposition is:
r = mr(n, p) =

(
n+p−1

p

)
−
(
n
2

)
. On Figure 4.3 we present a graphical illustration for

decomposition of order-3 n-dimensional symmetric tensor A.

Figure 4.3: Decomposition of an order-p n-dimensional symmetric tensor.

To obtain the decomposition numerically, we construct a frame of r initial vectors
placed in columns of a matrix F and optimize the q rotation angles θ such that
the Frobenius norm of the error tensor is minimized (to zero). In the spirit of
block coordinate descent and fixed point algorithms, for a given candidate frame
orientation, the linear combination coefficients are always obtained using (4.6) and
λ = B−1c(θ).

The optimization is done iteratively and in a fixed point manner, updating the linear
combination coefficients and updating the rotation matrix for the frame of vectors in
order to minimize the error tensor Frobenius norm. At each iteration, basis vectors
are expressed as (all rotations multiply from left):

U =

(
q∏

k=1

R(θk)

)
F (4.7)



Chapter 4. Non-Redundant Tensor Decomposition 41

4.2 Vector Frames and Uniform Distribution of Points

on the Hypersphere

As stated above, the solution of a symmetric tensor decomposition consists of nor-
malized vectors, U, and corresponding them linear combination coefficients, λ. In
this section we do not consider or analyze linear coefficients but focus on the vector
frame for symmetric tensor decompositions. From the case of CP decomposition of
an order-p n-dimensional symmetric tensor we know that such a decomposition does
not have any restrictions of vector frame. In other words, vectors can form random
points on the hypersphere, Appendix A. So for the large number of vectors the rank
of a tensor can be approximated with some error as hypersphere in n-dimensional
space. To be more precisely, to approximate a hypersphere we need to involve as well
an inversion of the vectors, −U. Imagine we have an decomposition of an order-2
2-dimensional symmetric tensor. The vector frame such a decomposition and its
inversion part form a perfect square inscribed into a circle. The solution of Tucker
model always provides us an orthogonal vector frame such that the vectors form a
regular polyhedra in n-dimensional space.

For the proposed non-redundant decomposition we need to form a vector frame, F,
as an initial step of the decomposition algorithm. In the cases when at least one
of the parameters of a tensor, n or p, is equal to 2 we do not have any problems:
the vectors are either orthogonal frame in n-dimensional space or invariant to π/p
2-dimensional frame.

Based on the cases of vector frames for order-2 n-dimensional and order-p 2-dimensional
symmetric tensors, where separation angles between closest vectors are π/2 and π/p,
respectively, we can conclude that structure of any vector frame F must maximize
minimal distance between vectors [52]. This issue is equivalent to the problem of
uniform distribution of points on the hypersphere [53]. Below we describe existing
methods of uniform distribution of points and after we present our own one.

4.2.1 Uniformly Distributing Points on the Hypersphere

This section has been prepared based on the publications of Prof Paul Leopardi and
Prof. Rob Womersley from The University of New South Wales. Particularly, we re-
fer the reader to their publications [54, 55] to learn more comprehensive explanations
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on uniformly distributing points on the hypersphere.

The problem of distributing points uniformly on the hypersphere appears in such
fields viral morphology, crystallography, molecular structure, electrostatics, polyno-
mial approximation, interpolation and integration over the sphere, etc., where we
need to approximate some spherical surfaces. In real life we have a deal with 3-
dimensional unit sphere S2 which is the set of points fi, i = 1, . . . ,m, in R3 such
that the distance |fi| = 1 from the origin. The notation S2 means we are considering
data on the surface of a ball. In contrast to the circle, it is not possible to equally
distribute points on the hypersphere except in the case of the platonic solids, see
Appendix B. In the case when m→∞ to solve this task one can apply some opti-
mization criteria: minimum energy, covering, packing, Voronoi cells, volume of their
convex hull, maximum determinant, cubature weights and norms of the Lagrange
polynomials. Most of these criteria are rotationally invariant, that is a rotation of
the whole set of points leaves the objective function unchanged. Thus the final so-
lution of point sets can consists of F and −F. Existence of many local minima is a
property of optimization problems on the hyperspere. With the exception of some
cases, it is not proven that a set of points is the global minimum. To read more and
see 3-dimensional illustrations we refer the reader to [54, 55].

Convex Hull, Voronoi Cells and Delaunay Triangulation. Given a set of
points on the unit hypersphere one quantity of interest is the volume of the convex
hull of the set of points [56]. The convex hull is the set of all points which lies on a
line segment joining two points in the set. It is also the intersection of all half spaces
containing all the points. Maximum convex hull points maximize the volume of
their convex hull, which lies inside the unit hypersphere. The dual of the maximum
convex hull problem is to arrange the points so that the tangent planes to the
hypersphere at these points encloses a polyhedron of minimum volume. The geodesic
distance between two points x, y on the unit hypersphere is d(x,y) = cos−1(xTy).
Using this geodesic distance, a Voronoi cell [57] Vj associated with a point fj is
the set of all points on the unit hypersphere which are closer to fj than any of the
other points. The Delaunay triangulation considers that no other point is contained
in the circumcircle of any triangle. The Voronoi cells are spherical polygons, see
Appendix B.

Riesz s-Energy. The Riesz s-energy (s > 0) of a set of m points fj, j = 1, . . . ,m

on the unit hypersphere is the sum over all pairs of distinct points of the terms
1/|xi − xj|s. The standard Coulomb potential used to model electrons repelling
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each other corresponds to s = 1. Finding point sets which minimize the Coulomb
potential is known as the Thomson problem [58]. The limit of Riesz s-energy, as s
grows larger, corresponds to the packing problem [53]. For s = 0 one maximizes the
logarithm of the sum of the distances |fi− fj|, which is equivalent to maximizing the
product of the distances. The minimum energy problem is to find a set of m points
on the unit hypersphere which minimize their Riesz energy.

Covering and Packing with Spherical Caps. A spherical cap C(f , c) centred
at f with radius c is the set of all points on the hypersphere a distance of at most c
from the point f . For a fixed number of points m, the packing problem is to find the
centers fj, j = 1, . . . ,m of m identical non-overlapping spherical caps so that their
common radius is maximized. This packing radius is two times smaller than angle
between the points. The set of points is called a spherical code [53]. The problem
of finding a point set to maximize the minimum angle between the points is known
as Tammes or Toth problem [59, 60]. On the other hand the covering problem is to
find the centers fj, j = 1, . . . ,m of m identical spherical caps which completely cover
the hypersphere so that their common radius is minimized. This covering radius
is given by the distance of the furthest point on the hypersphere from the closest
point in the set fj, j = 1, . . . ,m, which is also known as the mesh norm. The mesh
norm can be calculated using the Voronoi cells or Delaunay triangulation. Another
measure of the equidistribution of a point set is the ratio (always greater than 1) of
the covering radius to the packing radius. To read more on this problem we refer
the reader to the Dissertation of [54].

Norms of the Lagrange Polynomials. Spherical polynomials, that is polynomi-
als in three variables restricted to the surface of the hypersphere, of degree at most p
form a space of dimension dp = (p+1)2 [61]. The most common basis is the spherical
harmonics [62]. A set of dp points fj on the hypersphere forms a fundamental system
if a polynomial of degree at most p. If this polynomial is equal to zero at the points
than it must be equal to zero at every points on the hypersphere. Given a funda-
mental set, the Lagrange polynomials lj(x) for j = 1, . . . , dp are the polynomials of
degree p such that lj(fi) = 1 if i = j and 0 for all i not equal to j. The norms of
the Lagrange polynomials are of fundamental interest in approximation theory. The
Lagrangian sum of squares is the sum of squares of the Lagrange polynomials, while
the infinity norm is the maximum of the absolute value of the Lagrange polynomials.

Interpolatory Cubature, Cubature Weights and Determinants. The inte-
gral of a function ϕ(f) over the hypersphere can be approximated by the weighted
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(weights wj) sum of the values of the function values ϕ(fj) at the points fj for
j = 1, . . . ,m. An interpolatory cubature rule has m = dp points and is exact for
all spherical polynomials of degree not higher than p. For a fundamental system
the weights in an interpolatory cubature rule are given by wj =

∫
S2 lj(f). As such

cubature rules must be exact for the constant polynomial, the sum of the cubature
weights wj must be equal to the area |S2| of the hypersphere [63]. The linear system
that must be solved to find the cubature weights can be so ill-conditioned that a
computed solution is totally unreliable. The linear system is well conditioned if the
points are chosen to maximize the determinant of a basis matrix [64].

Form this short overview of uniformly distributing points on the hypersphere we can
see that there is no an ideal and uniquely agreed-upon approach for such a problem.
Below we describe our own approximation method that is alike to the interpolatory
determinants but grounded on tensor non-redundant properties.

4.2.2 Vector Frames for Symmetric Tensors

In this section, we propose a geometrically constrained basis vector frame that yields
a set of rank-1 symmetric tensor bases that, when rotated appropriately, is able
to attain a sum-of-rank-1 decomposition of any order, any dimensional symmetric
tensor. The number of variables that parameterizes the proposed decomposition is
equal to the number of free elements (dimensions) in the symmetric tensor.

The assumption that angle between neighbor vectors in n-dimensional space must
be equal π/p is not true in general and can be utilized just for order-2 n-dimensional
and order-p 2-dimensional tensors, because even for 3-dimensional space there are
exactly 5 convex polyhedra (called Platonic solids) with equal distances between
neighbor vectors (or vertices) [65]. For the case of dimensions n > 3 there are just
three solids with equal distance between neighbor vertexes: cube, octahedron, and
simplex.

The vector frame F consists of r vectors fi, i = 1, . . . , r, defined as its n-dimensional
columns. Based on the examined uniform distributions of points on the hypersphere
and properties of non-redundant tensor decomposition we can conclude that struc-
ture of any vector frame F must maximize minimal distance between vectors. There
is no analytic solution for this task so we propose to solve this problem iteratively
minimizing the squared error (SE):
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e2 = ⟨B− I,B− I⟩F =
r∑

i=1

r∑
j=1

(Bij − Iij)
2, (4.8)

where as in (4.6) Bij = (uT
i uj)

p = (fTi fj)
p.

Vectors fi in frame F can be defined, for instance, in hyperspherical coordinate
system with constant radial values equal 1. Thus all diagonal entries in B equal 1
and all non-diagonal entries describe distances between vectors or distances between
points on hypersphere of unit radius. So minimization of (4.8) leads to maximization
of minimal distances between vectors. Solution for minimization of (4.8) will be
described below in Section 4.6.5. Figure 4.4 presents results of proposed algorithm
for vector frames of different dimensions and orders.

We can note that proposed algorithm gives us Platonic solids (convex polyhedra with
maximal possible constant distance between nearest vectors) as particular cases of
vector frames and empirically we figured out that for any vector frame exist planes
such that frame vectors on those planes separated by π/p radian. This optimization
procedure for frame construction gives us r vectors, which yield a full-rank B in
(4.6), and do not engage an elimination procedure as in our previous work that used
an overcomplete frame [47].

It is possible to build a vector frames without numerical optimization for marginal
cases of tensors, when p or n = 2. We propose to use the following approach: the
frame consists of vectors that are recursive rotations of, for instance, the first column
of the n-dimensional identity matrix multiplied by a rotation matrix with an angle
of π/p in consecutive dimension index pairs. Specifically, this leads to a system of
r vectors, placed in columns of a matrix F, denoted by fi, using the Algorithm 3,
where Rl,l+1(π/p) is a rotation matrix in the plane (l, l+1), l = 1, . . . , n with angle
π/p.

Algorithm 3 Vector frame for the cases of p = 2 or n = 2.
In: The first vector f1 = [1 0 . . . 0]T of size in F.
Out: A system of r vectors F, i = 1, . . . , r, defined as columns of F.
for i = 2 : r do

for l = mod(i+ n− 3, n− 1) + 1 do
fi = Rl,l+1(π/p)fi−1.

end for
end for

The results of an application of such an algorithm are in phase with the results on
Figure 4.4(a),(b). Note that the number of vectors in this frame is the same as
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Figure 4.4: Vector frames for (a) 2-dimensional order-3 tensor with 3 unique
vectors, (b) 3-dimensional order-2 tensor with 3 unique vectors, (c) Platonic solid
(icosahedron with 6 unique vectors, which does not correspond to any order-p 3-
dimensional tensor), and (d) 3-dimensional order-4 tensor with 12 unique vectors.

the number of vectors needed: r, which yields a full-rank B in (4.6). This iterative
procedure for frame construction gives us the result just for r steps and does not
engage an elimination procedure as in our first work that used an overcomplete frame
[47].
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4.3 Decomposition of a Non-Symmetric Tensor

The decomposition of a non-symmetric tensor A into a sum of rank-1 tensors utilizes
basis tensors that are p-way outer-products of different vectors (referred to as rank-1
non-symmetric tensors) [1, 2]:

A =
r∑

l=1

λlu
(1)
l ◦ u

(2)
l ◦ · · · ◦ u

(p)
l (4.9)

where u(1)◦u(2)◦· · ·◦u(p) denotes the p-way outer-product of the vectors u(1),u(2), . . . ,u(p)

and upper index (i), i = 1, . . . , p denotes the way of product.

4.3.1 Order-2 (n1,n2)-Dimensional Non-Symmetric Tensors

A non-symmetric (n1,n2)-dimensional order-2 tensor is a non-symmetric matrix and
we have to deal with the common case of SVD. Singular vector bases for non-
symmetric matrices are always selected orthogonal, and can always be made into
an orthonormal basis. Thus a real full-rank (n1, n2)-dimensional non-symmetric
matrix can be decomposed as

A =
r∑

l=1

λlu
(1)
l ◦ u

(2)
l , (4.10)

where r = min(n1,n2), U(1) = [u
(1)
1 , . . . ,u

(1)
r ] and U(2) = [u

(2)
1 , . . . ,u

(2)
r ] are the

matrices where columns form orthogonal frames in n1 and n2 dimensional spaces,
Figure 4.5.

)1(
U

)2(
UΛ

=A

21 nn ´ rn ´1

rr ´

rn ´2

Figure 4.5: Decomposition of order-2 (n1, n2)-dimensional non-symmetric tensor.
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For numerical determination of (4.10) we can use, as in symmetric case, the Ja-
cobi algorithm [51] for each vector frame that tries to find q1 + q2 rotation angles
{θ(1)k1

, θ
(2)
k2
; k1 = 1, . . . , q1; k2 = 1, . . . , q2}, such that we can construct rotation matri-

ces R(θ
(1)
k1
) in plane (i, j) {i = 1, . . . , n1 − 1; j = i + 1, . . . , n1} with angle θ(1)k1

and
R(θ

(2)
k2
) respectively. Due to cross influence of rotation matrices, q1 =

(
n1

2

)
−
(
n1−n2

2

)
and q2 =

(
n2

2

)
−
(
n2−n1

2

)
, where

(
n
k

)
= 0 if k > n. This singular decomposition solu-

tion consists of q = q1+ q2 rotation angles and r singular values. The number of free
elements of a non-symmetric (n1, n2)-dimensional matrix A equals the product of
its dimensions so r = n1 ·n2− q that satisfies definition of the rank in linear algebra
where r = min(n1, n2). Again we can see that singular decomposition is simply a
reparameterization procedure. Solving for the rotation matrices R(θ

(1)
k1
) and R(θ

(2)
k2
)

we can get the orthonormal singular vectors given by U(1) and U(2):

U(i) =

qi∏
ki=1

R(θ
(i)
ki
), (U(i))TU(i) = U(i)(U(i))T = I, i = 1, 2; (4.11)

Due to orthonormality of U(i), the singular values are uniquely identified by the
Frobenius inner-product between the target matrix and the basis matrices [1]:

λl = ⟨u(1)
l ◦ u

(2)
l ,A⟩F =

r∑
i=1

λi⟨u(1)
l ◦ u

(2)
l ,u

(1)
i ◦ u

(2)
i ⟩F . (4.12)

Described combination of vectors {(1 ◦ 1), (2 ◦ 2), . . . , (r ◦ r)} in (4.10) is not unique
[48]. We can construct r ! combinations of vectors on the basis of permutation
matrices [66] and any of them can be utilized for (n1,n2)-dimensional order-2 non-
symmetric tensor decomposition. Figure 4.6(a) shows two possible combinations
of singular values based on 2-dimensional order-2 permutation matrices. Here the
permutation matrix is an order-2 r-dimensional binary-matrix that has exactly one
entry of 1 in each row and column and 0’s elsewhere. In case of symmetry n-
dimensional order-2 tensor vectors can be arranged only in ascending order that is
the initial form of permutation.

In general, decomposition of an order-2 (n1,n2)-dimensional tensor A, Fig 4.5, can
consists of (n1, n1)-dimensional matrix U(1), (n2, n2)-dimensional matrix U(2), and
(n1, n2)-dimensional matrix of singular values Λ. Where singular elements in Λ

are located by selecting a permutation matrix. Figure 4.6(b) shows all possible
combinations of singular values based in (3,2)-dimensional order-2 matrix Λ.
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Figure 4.6: Permutation matrices Λ: a) possible conformations of order-2 (2,2)-
dimensional matrix, b) possible conformations of order-2 (3,2)-dimensional matrix.

4.3.2 Order-p 2-Dimensional Non-Symmetric Tensors

Let A be a 2-dimensional order-p real non-symmetric tensor. In a 1-1 reparam-
eterization, the number of linear combination coefficients, r, plus the number of
parameters that characterize r corresponding vectors, s, must be equal to the num-
ber of free elements in the tensor; that is (r + s) = 2p, since the number of free
elements in order-p 2-dimensional non-symmetric tensors equals to product of di-
mensions. The number of rotation angles equals p. So the rank of such a tensor is
r = 2p − p, where r ≥ p.

From the expression of the rank for this case of tensors we see that the rank r is
more than its order p and from case of symmetric 2-dimensional order-p tensor we
know that for each way of tensor we can construct just p vectors. Incorporating
these conditions into the design of the rank-1 sum decomposition on the right-hand
side of (4.9), we obtain non-symmetric 2-dimensional order-p tensor A which can be
expressed as:

A =
r∑

l=1

λlu
(1)
l ◦ u

(2)
l ◦ · · · ◦ u

(p)
l ;u

(i)
l =

[
cos(θ(i) + (k

(i)
l − 1)π/p)

sin(θ(i) + (k
(i)
l − 1)π/p)

]
;

i = 1, . . . , p

k
(i)
l ∈ {1, . . . , p}

(4.13)

Based on the case of symmetric order-p 2-dimensional tensors and non-symmetric
order-2 (n1,n2)-dimensional tensors examined above we conclude that the combi-
nations of vectors {(k(1)l , k

(2)
l , . . . , k

(p)
l )} for rank-1 tensors in (4.13) must be chosen

on the basis of a permutation tensor. Here the permutation tensor is an order-p
p-dimensional binary-tensor that has exactly one entry of 1 in each way and 0’s
elsewhere, Figure 4.7.

In this case, a simple line search for each θ(i) in the interval [0, π/p) is sufficient to fit
optimally the decomposition to the tensor with zero error. Employing Gram-Schmidt
orthogonalization, the linear combination coefficient vector λ is uniquely identified
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Figure 4.7: Decomposition of order-3 (2, 2, 2)-dimensional non-symmetric tensor.

by the inner-product matrix between the basis rank-1 symmetric tensor pairs and
the inner-product vector between the target tensor and the basis tensors; i.e., at
the optimal decomposition, λ = B−1c(Θ) , where Θ = [θ(1),θ(2), . . . ,θ(p)]. Here
the matrix B (invariant with respect to θ(i), since the pairwise angles between the
basis vectors leading to the basis rank-1 symmetric tensors are fixed by the frame)
and the vector c are defined elementwise as follows, assuming Frobenius tensor inner
product as in (4.6):

Bij = ⟨u(1)
i ◦ u

(2)
i ◦ · · · ◦ u

(p)
i ,u

(1)
j ◦ u

(2)
j ◦ · · · ◦ u

(p)
j ⟩F

ci(Θ) = ⟨u(1)
i ◦ u

(2)
i ◦ · · · ◦ u

(p)
i ,A⟩F

(4.14)

where i, j = 1, . . . , r.

4.3.3 Order-p (n1, n2, . . . , np)-Dimensional Non-Symmetric Ten-

sors

The number of free elements of a non-symmetric (n1, n2, . . . , np)-dimensional order-p
tensor is given by: mf (n, p) = n1n2 · · ·np, where n = [n1, n2, . . . , np]. Based on the
two special non-symmetric cases examined above we conclude that the decomposition
of any non-symmetric tensor can consist of some fixed frames of vectors rotated along
each way in their dimensionality spaces and any angle between pairwise vectors must
be a constant and depends on the order p. As in the case of non-symmetric matrices,
we need q = q1 + q2 + · · · + qp rotation angles. Due to cross influence of rotation
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matrices:

qi =

(
ni

2

)
−
(
ñi

2

)
; ñi = ni −

p∏
j=1,j ̸=i

nj. (4.15)

For the case of non-redundant decomposition the rank of the the tensor is evaluated
as a difference between the number of free elements of the tensor and the number of
required rotational angles. So the rank of the non-symmetric tensor is

r = n1n2 · · ·np −
p∑

i=1

qi, (4.16)

and the rank of the symmetric tensor is

r =

(
n+ p− 1

p

)
−
(
n

2

)
. (4.17)

To obtain the decomposition numerically, we construct p frames each of mr(ni, p)

initial vectors F(i), i = 1, . . . , p and optimize the rotation angles θ(i) such that the
Frobenius norm of the error tensor is minimized (to zero). In the spirit of block
coordinate descent and fixed point algorithms, for a given candidate frame ori-
entation, the linear combination coefficients are always obtained using (4.14) and
λ = B−1c(Θ), basis initial frames are expressed as in Section 4.2.2. As in the
previous case we need to choose r vectors on the basis of an order-p (r1, r2, . . . , rp)-
dimensional permutation tensor Q, where ri = mr(ni, p), i = 1, . . . , p. So at each
iteration, basis vectors are expressed as:

U(i) =

(
q∏

k=1

R(θ
(i)
k )

)
F(i). (4.18)

So any order-p (n1, . . . , np)-dimensional non-symmetric tensor A decomposable by
r factors can be written, with respect to an order-p (r1, . . . , rp)-dimensional permu-
tation tensor Q, as a finite sum of rank-1 tensors:

A =
r∑

i=1

λiu
(1)

q
(1)
i

◦ · · · ◦ u(p)

q
(p)
i

, (4.19)
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where parameters q(j)i , i = 1, . . . , r, j = 1, . . . , p denote non-zero entries of per-
mutation tensor Q, Figure 4.8. In the case of symmetry of the tensor A param-
eter q(j)i transforms to the linear index i, the tensor Λ becomes cubical and di-
agonal, and vectors u

(j)
i , j = 1, . . . , p are equal to each other with respect to j,

i.e., u
(1)
i = u

(2)
i = · · · = u

(p)
i . This equation is common for both symmetric and

non-symmetric any-order any-dimensional tensors.

=

A

)2(
U

)3(
U

)1(
U

Λ

321 nnn ´´

11 rn ´

321 rrr ´´

22 rn ´

33 rn ´

Figure 4.8: Decomposition of order-3 (n1, n2, n3)-dimensional non-symmetric
tensor.
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4.4 Marginal Cases: Decomposition of Scalar and

Vector

Up to this section we have investigated all possible cases of higher-order multidi-
mensional tensors, so the order of a tensor A, p ≥ 2, and the minimal values of
dimensions in such a tensor, ni ≥ 2, i = 1, . . . , p. To check whether some theoretical
approach is universal we need to investigate it in all possible cases of data repre-
sentation without any restrictions. Let’s return to our initial terms and definitions
which describe the tensor and operations:

• A tensor - multidimensional or p-way array of scalars.

• The order of a tensor is the number of non-singleton dimensions.

• We make decomposition when we need to analyze order-p data with p ≥ 2.

This list of basic definitions has two limitations: "non-singleton" and "with p ≥ 2"
in the second and the third rows, respectively. Without them any tensor can be
presented in the infinite possible forms. For instance, an order-2 (n1, n2)-dimensional
tensor A can be considered as an order-3 (n1, n2, 1)-dimensional tensor. The second
restriction bounds the set of analyzed data, i.e., we do not decompose vectors and
scalars. Without limitations we have the following list:

• A tensor - multidimensional or p-way array of scalars.

• The order of a tensor is the number of dimensions.

• We make decomposition when we need to analyze order-p data.

Below we will consider decomposition of a vector and a scalar.

Let’s decompose an order-2 (1, n)-dimensional vector a, Figure 4.9(a). From the con-
ception of non-redundant tensor decomposition we know that the cardinal number,
c, of data set must be equal to the number of variables which describe decomposition
of such a data set. The number of variables consists of the sum of the numbers of
rotation angles, qi, i = 1, . . . , p, and the rank of a tensor, r. In this case, c = n and
q1 =

(
1
2

)
−
(
1−n
2

)
= 0, q2 =

(
n
2

)
−
(
n−1
2

)
= n−1. So the rank of a vector is always equal

to 1, r = c− q1− q2. As a conclusion we can say that non-redundant decomposition
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a1 a2 …… an

(a) an order-2 (1, n)-dimensional vector a.

a a a ...

(b) a scalars a as an order-1, -2, -3,... tensor.

Figure 4.9: Marginal cases of tensor decompositions.

of a vector simply transforms data set to the hyper-spherical coordinate system, see
Appendix A.

Resuming the above, if there are no limitations on the main definitions, a scalar can
be presented as a 1-dimensional vector (order-1 tensor) or a (1, 1)-dimensional matrix
(order-2 tensor), or (1, 1, 1)-dimensional cubic (order-3 tensor), etc, Figure 4.9(b).
For any case of representations the number of rotation angles for such tensors is
always equal to 0. So the rank of a scalar, r = 1, and non-redundant decomposition
maps scalars without alternations.

On the basis of this analysis we can conclude that proposed non-redundant decom-
position preserves cardinal properties for any cases of dimensions and orders. In case
of singleton dimensions we do not decompose data but just transform them to the
hyper-spherical space.
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4.5 Non-Negative Non-Redundant Tensor Decom-

position

Non-negative decomposition allows us to analyze data in their "native" form, e.g.
non-negative factorization of a set of images results the sum of rank-1 tensors so
the result of the sum does not nullify any parts of the factors. In the Section 3.4
we described non-negative form of classical CP model which can be applied to non-
negative matrix factorization as well. One of the most awkwardness part of that
algorithm is the operation of taking non-negative value, [u]+ = max(0, u). On
each iteration of that approach we have to lose some data and try to get new ones
without negative entries. It is similar to fitting the model with adjusted random
walk. In this section we present our approach and its analysis for non-redundant
tensor decomposition transformed to non-negative form. The main idea of it is the
same as for the described non-redundant one but with one restriction : all linear
coefficients λ as well as all entries of vector frame U must be non-negative, i.e.,
stand in positive sector of coordinate system. We do not employ the operator [u]+

and perform optimization procedure as it was described above.

Let an order-p (n1, . . . , np)-dimensional non-negative tensor A is given, i.e., ai1,...,ip ≥
0, which is decomposable as a rank-r tensor with non-negative values in U(i), i =

1, . . . , p, and λ. With respect to an order-p (r1, . . . , rp)-dimensional permutation
tensor, Q, we can write an approximate decomposition of A as in (4.19):

A =
r∑

i=1

λiu
(1)

q
(1)
i

◦ · · · ◦ u(p)

q
(p)
i

+ E, (4.20)

where the tensor E denotes decompose error. The tensor E can contain any possible
factors of A with negative inclusions.

As in the case of non-redundant decomposition, we will start to examine an order-p
2-dimensional non-negative symmetric tensor and then we will extend our approach
to the general case of the non-negative tensor.

Let A be an order-3 2-dimensional non-negative symmetric tensor. From the non-
redundant decomposition of such a tensor we know that all neighbor vectors are
separated by π/3 radian. The range of such a vector frame is from 0 to (π − π/3)
radians and solution is a rotation angle θ that lies in the range [0, π/3) radians,
Figure 4.10(left). We see that such the vector frame, in confidence with its negative
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1

q

q

p
p

p2
p

Figure 4.10: Frame vector reorganization for the non-negative non-redundant
decomposition.

part, −F, uniformly covers a unit circle, i.e., all range of R. To restrict our solutions
to non-negative form, R+, we propose to bound the range of the vector frame, F, in
half, i.e., from 0 to (π/2−π/6), Figure 4.10(right). Thereby we have a vector frame
consists of 3 vectors and invariant to rotation angle pi/6 and the rotation angle θ
lies in the range [0, π/6) radians. New non-negative vector frame is the half of the
frame for the general model of an order-6 2-dimensional tensor. Suppose we need to
implement the non-negative decomposition of an order-3 rank-2 tensor A. Involving
the idea from the previous example we need to build the vector frame for an order-4
3-dimensional tensor and utilize the vectors from positive sector only. For this case
of the tensor the vector frame consists of 12 vectors and full hypersphere does of
24. The 3-dimensional hypersphere has 8 sectors with unique sign of coordinate
coefficients. So in the positive sector we have 3 required non-negative vectors.

Generalizing these two types of tensors we can conclude that to get the vector frame,
F, for an order-p n-dimensional non-negative symmetric tensor we utilize a 2(n−1)-th
of the vectors for an order-(2p) n-dimensional common symmetric tensor. Such an
approach always gives us the exact number of required vectors, r, in positive sector
of n-dimensional space and neighbor vectors are separated by π/(2p) radian.

Till the vector frame stay in positive sector any projection of A on the vectors
ui, i = 1, . . . , r, < A,u◦p

i > is also non-negative value. But to get linear coefficients
λ we also utilize the inverse matrix B = (FFT ).p, where some of entries are negative
values, so the final values of λ can be negative.

Actually, Monte Carlo experiments (which randomly generated each entry of the
non-negative tensor from the absolute value of a normal distribution with mean zero
and standard deviation one) discovered that in the case when the tensor A in not
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absolutely factorizable in non-negative form we have non-zero value of the residual
E in (4.20).

The non-negative non-redundant decomposition of an order-p (n1, . . . , np)-dimensional
tensor is a combination of the expressed non-negative symmetric case and idea of
non-symmetric decomposition which is presented in the Section 4.3.3.

Optimization for such a problem is implemented in the same way as for general case
of the tensor and is presented in the following section. Performing non-negative
decomposition we involve both vector frame F and its inversion −F such that at
any moment we always have the required number of vectors, r, in positive sector of
n-dimensional space.
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4.6 Gradient Models and Numerical Results

In this section we present the gradient model of the Frobenius norm of the decompo-
sition error that depends on rotation matrices in Cartesian space and gradient based
optimization of the vector frame for symmetric tensors defined in hyperspherical
coordinate system.

4.6.1 Squared Frobenius Norm of Decomposition Error

Here we focus on the Frobenius norm of the error (simply referred to as the error
from now on) between the actual tensor A and its current decomposition estimate T:
e = ∥A−T∥2F . The decomposition of the tensor is achieved by iteratively minimizing
the squared error (SE):

e2 = ⟨A−T,A−T⟩ =
n1∑

l1=1

· · ·
np∑

lp=1

(Al1...p −Tl1...p)
2. (4.21)

Due to the higher order polynomials involved, we do not have a closed form so-
lution for the rotation angles that yield e(θ) = 0; therefore we will employ an
iterative numerical optimization methods. For simpler notation, SE in (4.21) can
be reformulated in matrix form using the usual vectorization operator vec(·) that
returns a vector whose elements are taken column-wise starting from the right-side
operand. So a target tensor T in vector form is t = vec(T) and the vectorized ith

rank-1 non-symmetric basis tensor obtained from the corresponding basis vector is
xi = vec(u

(1)
i ◦ u

(2)
i ◦ · · · ◦ u

(p)
i ). Collecting xi in the columns of X and defining

e = t −Xλ and λ = B−1XT t , SE takes the form e2 = eTe. The vectorized error
tensor is equivalently:

e = (I−XB−1XT )t (4.22)

and SE with B = XTX and XB−1XT = I (after some algebra to simplify the
expression):

e2 = tT (I−XB−1XT )t (4.23)

The gradient of SE with respect to the rotation angles θ(m) is:

∇e2(θ(m)
k ) = −tT ([∂X/∂θ(m)

k ]B−1XT +XB−1[∂XT/∂θ
(m)
k ])t (4.24)
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The kth column of the Jacobian matrix J for θ(m) is:

jk(θ
(m)) = ∂e/∂θ

(m)
k = −([∂X/∂θ(m)

k ]B−1XT +XB−1[∂XT/∂θ
(m)
k ])t (4.25)

The Hessian matrix for SE consists of the following entries:

H
(m)
kl (θ(m)) = −tT


∂2X

∂θ
(m)
k ∂θ

(m)
l

B−1XT + ∂X

∂θ
(m)
k

B−1 ∂XT

∂θ
(m)
l

+

∂X

∂θ
(m)
l

B−1 ∂XT

∂θ
(m)
k

+XB−1 ∂2XT

∂θ
(m)
k ∂θ

(m)
l

 t. (4.26)

The ith column of X is obtained by vectorizing the rotated ith frame vectors
{f (1)i , f

(2)
i , . . . , f

(p)
i } according to

u
(1)
i ◦ u

(2)
i ◦ · · · ◦ u

(p)
i = (R(θ(1))f

(1)
i ) ◦ (R(θ(2))f

(2)
i ) ◦ · · · ◦ (R(θ(p))f

(p)
i ), (4.27)

which for symmetric tensor is u◦p
i = (R(θ)fi)

◦p.

Consequently, we need to evaluate

∂xk/∂θ
(m)
l = vec(∂(u

(1)
k ◦ u

(2)
k ◦ · · · ◦ u

(p)
k )/∂θ

(m)
l ) (4.28)

using

∂R(θ(m))/∂θ
(m)
i = R(θ

(m)
1 )R(θ

(m)
2 ) · · · [∂R(θ

(m)
i )/∂θ

(m)
i ] · · ·R(θ(m)

q ) (4.29)

to obtain
∂(R(θ(m))f

(m)
k )/∂θ

(m)
i = [∂R(θ(m))/∂θ

(m)
i ]f

(m)
k (4.30)

and then the chain rule to get:

∂(u
(1)
k ◦ u

(2)
k ◦ · · · ◦ u

(p)
k )/∂θ

(m)
i =

∂(R(θ(1))f
(1)
k ◦ · · · ◦R(θ(m))f

(m)
k ◦ · · · ◦R(θ(p))f

(p)
k )/∂θ

(m)
i =

R(θ(1))f
(1)
k ◦ · · · ◦ (∂(R(θ(m))f

(m)
k )/∂θ

(m)
i ) ◦ · · · ◦R(θ(p))f

(p)
k

(4.31)

Similarly, using the chain rule appropriately, second partial derivatives can be ob-
tained to construct the Hessian matrix. On the next step we need to evaluate the
rotation matrix R(θ(m)) and its partial derivative with respect to angle θ(m)

k . In
Appendix C we describe two widely used approaches as well as their properties for
implementation of rotation matrices: Euler-type and skew-symmetric exponential
matrices.
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4.6.2 Optimization Algorithms

In this part we briefly describe the algorithm that we developed for minimization
of the SE in (4.23). Optimization algorithms for the widely known Tucker and
CP tensor decomposition models are described in the Chapter 3. The most widely
used method for CP and Tucker decompositions is the iterative alternating least
squares algorithm. This algorithm allows CP and Tucker models to evaluate their
decomposition components (each basis vector) in alternating/random order. We
cannot use this algorithm because our proposed frame of basis vectors is geometri-
cally constrained and one needs to iterate all vectors simultaneously as they are not
independent from each other.

For symmetric tensors we evaluated the performance of four standard iterative-
descent algorithms.

Jacobi rotation: Jacobi rotation updates one Givens angle at each iteration using
line search or other optimization technique. On the kth iteration, we update angle
θi along jth way of s tensor using gradient descent θ(j)k+1,i = θ

(j)
k,i − α∂e2/∂θ

(j)
k,i , where

the stepsize α satisfies Wolfe’s conditions.

Steepest descent: At each iteration, all Givens angles are updated along the
direction of negative gradient: θ(j)k+1 = θ

(j)
k − α∇e2(θ

(j)
k ).

Gauss-Newton algorithm: Inverse-Hessian provides directional correction in quadratic
cost surface regions at the cost of significant increase in computational complexity:
θ
(j)
k+1 = θ

(j)
k − α[H(θ

(j)
k )]−1∇e2(θ(j)k ).

Levenberg-Marquardt algorithm: The Jacobian of the error vector is used to
approximate the Hessian to yield convergence rate similar to Gauss-Newton, but at
a computational cost comparable to steepest descent, where [J(θ

(j)
k )]−1 is pseudo-

inverse of J(θ(j)k ): θ(j)k+1 = θ
(j)
k − α[J(θ

(j)
k )]−Te(θ

(j)
k ).
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4.6.3 Numerical Results of Decomposition of Symmetric Ten-

sors

In this section, we evaluate standard iterative descent techniques to determine the
proposed tensor decomposition solution by optimizing the Givens angles represen-
tation of the rotation matrix of the frame of vectors. Evaluation of optimization
algorithms was performed on rank-1 and full-rank tensors with specific structure as
well as in a Monte Carlo fashion using tensors generated randomly. Decompositions
were approximated to a prespecified accuracy and the numbers of iterations are com-
pared. First, we demonstrate the nonlinear nature of the optimization problem at
hand using two simple symmetric tensors: (i) a tensor of ones, which is a rank-1 ten-
sor since it is the p-way outer product of a vector of ones; (ii) a symmetric full-rank
n-dimensional order-p tensor (A)l1...lp = 1 +

∑p
i=1(li − 1).

The visual illustration of the error surface along vector frame in the cross-section of
rotation angles θ1 and θ2 for the 3-dimensional order-2 (matrix) and order-3 sym-
metric tensors of integer entries (type-ii) are provided in Figure 4.11. The surface
complexity compared to the matrix case is evident. We need to note that an er-
ror of decomposition of order-2 any-dimensional or any-order 2-dimensional tensor
along any rotation angle θi is periodic (due to the nature of trigonometric function).
Table 4.1 and Table 4.2 contains the number of iterations that the considered al-
gorithms need to achieve a SE less than 10−12 (in Matlab, the minimum SE is on
the order of 10−30, but optimization to that level of numerical accuracy takes very
long). Table 4.1 shows the results of decomposition of the tensor-of-ones (type-i)
and Table 4.2 shows the results of decomposition for the symmetric tensor of inte-
gers (type-ii) with all algorithms starting from the same initial estimates. In these
tables, "T" indicates that optimization was terminated at iteration 300, the preset
maximum number of iterations - and convergence to the desired level had not been
achieved. The number of iterations for Jacobi rotations and gradient descent grows
exponentially due to the ratio of max(λ)/min(λ).

Next, we present results from a Monte Carlo experiment in which the decompositions
were optimized using iterative random search (similar to stochastic annealing) in
order to demonstrate that error levels comparable to the minimum possible numerical
accuracy are attainable. In Figure 4.12, we show the average normalized SE (per
tensor entry) for randomly generated tensors of orders 2 to 5 for dimensions 2 to 5.
Errors of decomposition grow exponentially due to the number of elements in high
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(a) symmetric matrix. (b) symmetric tensor.

Figure 4.11: Error surfaces along angles θ1 and θ2 for 3-dimensional (left) order-2
and (right) order-3 tensors.

order high dimensional tensors growing in a combinatorial fashion combined with
fast numerical degradation due to ill-conditioning.
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Figure 4.12: Normalized SE for the proposed tensor decomposition.

Table 4.3 summarizes the results of decompositions for 1000 symmetric full-rank
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real-valued tensors with all algorithms starting from random initial estimates for pa-
rameters. Experiments reveal that for the given optimality criterion, the Levenberg-
Marquardt algorithm is preferable in convergence speed and computational complex-
ity considerations.

Table 4.1: Number of iterations to decompose rank-1 tensors.
Jacobi rotation Stp. Desc. Gauss-Newton Lev.-Marq.

n\p 2 3 4 2 3 4 2 3 4 2 3 4
2 1 1 1 1 1 1 1 1 1 1 1 1
3 8 51 11 9 11 3 11 3 3 7 3 3
4 21 65 63 18 52 28 10 5 5 12 3 4

Table 4.2: Number of iterations to decompose full-rank tensors.
Jacobi rotation Stp. Desc. Gauss-Newton Lev.-Marq.

n\p 2 3 4 2 3 4 2 3 4 2 3 4
2 1 1 1 1 1 1 1 1 1 1 1 1
3 9 T T T T T 8 15 13 6 7 10
4 T T T T T T 24 33 29 11 13 12

Table 4.3: Median number of iterations when decomposing 1000 random full-rank
tensors.

n\p Jacobi rotation Stp. Desc. Gauss-Newton Lev.-Marq.
3 2 75 53 5 4
3 3 50 71 6 5
3 4 155 118 10 5
4 2 T 295 19 7
4 3 T T 34 13
4 4 T T 36 15

Due to the relatively complex optimization criterion (pth order polynomials squared),
the Levenberg-Marquardt approach has been identified to be preferable considering
computational load and convergence speed. In the next section will evaluate pre-
sented non-redundant decomposition to non-symmetric arbitrary non-cube tensors.
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4.6.4 Numerical Evaluation of Upper Bound on Tensor Rank

In this section we evaluate the proposed gradient model of the Frobenius norm of the
decomposition error to show numerically that the the upper bound of non-symmetric
tensor rank satisfies the proposed decomposition model.
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Figure 4.13: Error surfaces for (a) 3-dimensional order-2 and (b) order-3
non-symmetric tensors; (c) ranks of tensors: (2, 2, n)’x’, (2, 3, n)’o’, (2, 4, n)’△’,
(3, 3, n)’*’, (3, 4, n)’▽’, and (4, 4, n)’+’; (d) decomposition SE for (2, 2, n)-

dimensional tensor: n=2’+’, 3’∗’, 4’△’, 5’o’, 6’x’.

Evaluation of the optimization algorithms was performed on full-rank tensors with
entries generated randomly from the standard normal distribution. A visual illustra-
tion of the error surface along vector frame in the cross-section of rotation angles θ(1)1

and θ
(2)
1 for the 3-dimensional order-2 (matrix) case in Figure 4.13(a) and order-3

case in Figure 4.13(b) non-symmetric tensors of random entries are provided. The
surface complexity compared to the matrix case is evident. We need to note that
an error of decomposition of order-2 any dimensional or any order 2-dimensional
tensor along any rotation angle θ(i)j is periodic (due to the nature of trigonometric
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functions). In Figure 4.13(c) we present ranks of order-3 tensors for different dimen-
sions. Figure 4.13(d) shows the normalized SE (∥T −A∥2F/∥T∥2F ) for decomposition
of (2,2,d)-dimensional tensor, where d = 2, . . . , 6.
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Figure 4.14: Non-symmetric tensor decomposition SE and corresponding tensor
rank for rank-r CP ’�’, incremental rank-1 CP ’+’, Tucker ’◦’, and proposed ’∗’
models; a) (2,2,2)-dim. tensor; b) (2,3,4)-dim. tensor; c) (3,3,3)-dim. tensor; d)

(4,4,4)-dim. tensor.

Figure 4.14 shows how decomposition results for non-symmetric order-3 different-
dimensional tensors depend on rank for best rank-r CP2 ’�’, incremental recursive
rank-1 CP3 ’+’, Tucker4 ’◦’, and proposed ’∗’ models. Clearly, when proposed model
uses frames of bases with the correct number of vectors, the decomposition error
drops to almost zero (with numerical error remaining). Here on the basis of our
definition of the tensor rank, for the data in Figure 4.14 we have that in the case of

2All parameters of such a decomposition model are adjusted independently and simultaneously.
3By incremental rank-1 CP we mean iterative reduction of error by successive best-rank-1 ap-

proximation of residual error after deflation of tensor using previously found rank-1 tensor. This is
suboptimal compared to doing best rank-r approximation using CP model. In the case of an order-2
tensor (matrix) both best rank-r and incremental rank-1 CP models proved identical results.

4The rank for such the tensor model is evaluated as a product of dimensions of its core tensor.



Chapter 4. Non-Redundant Tensor Decomposition 66

(a), the rank is equal to 5, (b) - 14, (c) - 18, (d) - 46, and decomposition errors are
zero. Proposed approach gives us the upper bound of CP-rank for tensors.
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Figure 4.15: Non-symmetric tensor decomposition SE and corresponding cardi-
nality for rank-r CP ’�’, incremental rank-1 CP ’+’, Tucker ’◦’, and proposed ’∗’
models; a) (2,2,2)-dim. tensor; b) (2,3,4)-dim. tensor; c) (3,3,3)-dim. tensor; d)

(4,4,4)-dim. tensor.

Figure 4.15 shows how decomposition results for the same non-symmetric order-3
different-dimensional tensors from Figure 4.14 depend on cardinality for best rank-r
CP ’�’, incremental recursive rank-1 CP ’+’, Tucker ’◦’, and proposed ’∗’ models.
Evaluation of the tensor cardinality was performed in the estimated ranks of the
tensors. Clearly, the proposed non-redundant tensor model utilizes the least numbers
of parameters to reparameterize tensors. Here on the basis of our definition of the
tensor rank and rotated vector frames, we have that in the case of (a), the cardinal
number is equal to 8, (b) - 24, (c) - 27, (d) - 64, i.e., the product of tensor’s dimensions.
Proposed approach gives us the lower bound of cardinality. The rank-r CP tensor
model decomposes data sets with lower tensor rank but utilizes more parameters
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than cardinality of tensors so it is redundant decomposition. The incremental rank-
1 CP and Tucker models are redundant as well.

In the Algorithms 4 we present the pseudocode for non-redundant tensor decompo-
sition. Matlab functions can be downloaded from website [67].

Algorithm 4 Non-redundant decomposition of arbitrary tensor.
In: T of size n1 × n2 × · · · × np.
Out: A of size n1×n2× · · ·×np, an estimate of the rank-r decomposition of T.

Based on values of p and ni, i = 1, . . . , p, initiate variables:
a) determine the rank of T, r.
b) construct vector frames F(i), i = 1, . . . , p, for each side of tensor T.
c) choose a combination of r vectors from F(i), i = 1, . . . , p. Combinations must
satisfy the permutation tensor Q.
d) build the matrix of vectorized rank-1 tensors, X, from F(i), i = 1, . . . , p, based
on P.
e) calculate the matrix of inner product of rank-1 tensors B = XTX.
f) determine the number of rotation angles in θ(i) for each F(i),i = 1, . . . , p and
assign them random values.
while SE has not converged to zero do

Evaluate rotated vector frames U(i) = R(θ(i))F(i), i = 1, . . . , p.
Build the matrix of vectorized rank-1 tensors, X, from U(i), i = 1, . . . , p, based
on P.
Evaluate the gradient and Jacobian of SE, e2 = tT (I−XB−1XT )t.
Adjust rotation angles θ(i), i = 1, . . . , p to minimize the SE.

end while
Set U(i) = R(θ(i))F(i), i = 1, . . . , p, build matrix X.
Set λ = B−1XT t and vec(A) = Xλ.

4.6.5 Squared Frobenius Norm of Vector Frame

We can describe a vector frame F, where F is (n, r)-dimensional matrix, as points on
the hypersphere of unit radius. Thus all diagonal entries in B = (FTF).p = YTY,
where ith column of (np, r)-dimensional matrix Y is obtained as Y:i = vec(f

(1)
i ◦ f

(2)
i ◦

· · · ◦ f (p)i ), equal 1 and all non-diagonal entries evaluate distances between points on
hypersphere. The operator A.p means element-by-element powers of A. In general
case, for maximization of distances between vectors for an order-p n-dimensional
tensor we need to minimize absolute values of non-diagonal elements in B that can
be written as a solution of an optimization problem: e2 = ⟨B − I,B − I⟩. The



Chapter 4. Non-Redundant Tensor Decomposition 68

vectorized error e = vec(B− I) = i− b and after some algebra SE is:

e2 = n− 2iTb+ bTb. (4.32)

Without any constrains, except unit vector length, on the structure of vector frame
F in hyperspherical coordinate system we can precisely define the positions of vectors
by their hyperspherical angles. Thus SE depends on (n−1, r)-dimensional parameter
matrix Ψ, where each column ψi defines position of ith vector in n-dimensional space.
As described above, to solve this problem using the gradient and Jacobian matrix we
can employ the Levenberg-Marquardt algorithm. The gradient of SE with respect
to the hyperspherical angles ψi,j is:

∇e2(ψi,j) = 2(bT − iT )∂b/∂ψi,j, (4.33)

where ∂B/∂ψi,j = (∂YT/∂ψi,j)Y +YT (∂Y/∂ψi,j) and (∂Y/∂ψi,j) can be obtained
by chain rule as in previous subsection. The kth column of the Jacobian matrix J

for ψi,j, with one-to-one reparametrization between k and pair of (i, j), is:

jk(ψi,j) = ∂b/∂ψi,j. (4.34)



Chapter 5

Applications of Tensors

In this chapter we describe utilization of proposed tensor decomposition model for
the density approximation problem, which is involved into the tasks of clustering
and principal curve estimation, generalized and robust nonlinear PCA, solving of
nonlinear equations. The most of the multidimensional nonlinear problems can be
defined by the symmetric tensor. Knowledge of decomposition model of such a tensor
allows us to analyze, compress, factorize, predict examined data.

5.1 Density Estimation

This section has been prepared based on the publications of Prof. Rafail Abramov
from The University of Illinois at Chicago. Particularly, we refer the reader to
his publication [68] to learn more comprehensive explanations on multidimensional
maximum entropy problem.

In this section we describe one of the state-of-the-art moment-constrained approaches
for the task of multidimensional density estimation and present our solution for such
a problem. Existing methods mostly solve the maximum entropy moment problem.
Proposed model is based on maximization of the loglikelihod of density which is
defined by the higher-order tensor. We involve the proposed decomposition model
of such a tensor in optimization procedure. As described in the Chapter 1 any
moments for any-dimensional system can be defined as corresponding symmetric
tensor. Many existing algorithms developed for the maximum entropy problem are
multidimensional moment-constrained approaches and, due to complexity, practi-
cally capable to solve such a problem for the {2, 3, 4}-dimensional data space with

69
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correspondent moment constraints up to order-{8, 6, 4}, respectively. Similar restric-
tions are intrinsic for our proposal as well.

The moment-constrained maximum entropy problem yields an estimation of a prob-
ability density with highest uncertainty among all densities satisfying supplied mo-
ment constraints. The moment constrained maximum entropy problem arises in
physics [69], econometrics [70], geophysics [71], etc. The approximation of the prob-
ability density itself is obtained by maximizing the Shannon entropy under the con-
straints established by measured moments [72]. A standard formalism transforms the
constrained maximum entropy problem into the unconstrained minimization prob-
lem of the dual objective function. To read more details on theoretical aspects we
refer to the latest review [68].

5.1.1 Maximum Entropy Problems with Constraints

Before reviewing the moment-constrained entropy problem, we need to define the
Shannon entropy for such a problem. Let’s have some knowledge of a probability
density g(x), where x denotes a vector data space, in form of linear constraints [68]:

f0 = F0(g) =
∫
g(x)dx = 1,

fi = Fi(g) =
∫
Ci(x)g(x)dx = 1, 1 ≤ i ≤ L,

(5.1)

where Ci(x) is such a function integral of which (5.1) is finite and linearly indepen-
dent. Then we can formulate two maximum entropy problems [68] which satisfy
(5.1) as:

1. Find the optimal probability density g∗S which maximizes the Shannon entropy

S(g) = −
∫
g(x) ln g(x)dx (5.2)

(i.e., such that S(g∗S) = maxg S(g)));

2. Find the optimal probability density g∗P which minimizes the relative entropy

P (g,Π) =

∫
g(x) ln[

g(x)

Π(x)
]dx (5.3)

(i.e., such that P (g∗P ,Π) = ming Π(g,Π)), where Π(x) is some known proba-
bility density.
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A standard optimization approach allows to write these problems for the Lagrange
multipliers in the unconstrained form [72]. In particular, the constrained optimiza-
tion problems in (5.2) and (5.3) are reduced to the unconstrained minimization [68]:

LS(λ) =
∫
exp(

∑L
i=0 λiCi(x))dx−

∑L
i=0 λifi,

LP (θ) =
∫
Π(x)exp(

∑L
i=0 θiCi(x))dx−

∑L
i=0 θifi,

(5.4)

over their sets of Lagrange multipliers λ and θ, respectively. The Hessians matrices
of (5.4) are positive definite so we have convex optimization problems with unique
optima [68]. Then the optimal probability densities g∗S and g∗P are

g∗S(x) = exp(
L∑
i=0

λiCi(x)), (5.5)

g∗P (x) = Π(x)exp(
L∑
i=0

θiCi(x)). (5.6)

If the gradients in (5.4) are equal to zeros then the constraints in (5.1) are automat-
ically satisfied by (5.5). We need to note that, since C0(x) = 1 in (5.5), λ0 and θ0

can be found explicitly from the other Lagrange multipliers [68] as:

λ0 = − ln

∫
exp(

L∑
i=1

λiCi(x))dx end θ0 = − ln

∫
Π(x)exp(

L∑
i=1

θiCi(x))dx. (5.7)

However, in the following explanation we will treat λ0 and θ0 as generic Lagrange
multipliers [68].

5.1.2 Moments and Data Preprocessing

Here we introduce a concise written form of an arbitrary moment [68]. Let’s have
x ∈ Rn, any monomial (the product of some powers of xth components) of x can be
written as:

xi =
n∏

k=1

xikk , i ∈ In, (5.8)

where the monomial order |i| is the total power of all vector components, i.e., |i| =∑n
k=1 ik. Using the above notation, for a probability density g we write a set of
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arbitrary moment constraints up to the total power m as [68]

mi = µi(g) =

∫
xig(x)dx, |i| = 0, . . . ,m. (5.9)

Before proceeding with the numerical algorithm for optimization, it is desirable to
simplify the initial problem as much as possible via linear transformations of coor-
dinate system Rn. This preprocessing removes many implementation problems and
improves convergence of optimization algorithms. To see more about transformation
procedure between the Lagrange multipliers and moments we refer the reader to [68].

Initial step in many preprocessing algorithm is shifting the mean of the data so the
target probability density g∗ is shifted to zero [68]. Let m be the mean state of g∗,
and g̃∗ be the shifted probability density:

g̃∗(x) = g∗(x+m) (5.10)

so that the mean of the x in g̃∗ is equal to zero.

The next step of preprocessing is rotating procedure and stretching the coordinate
system so that the covariance matrix of x becomes the identity one [68]. We perform
this as:

xold = EΛ1/2xnew, (5.11)

where E is the matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues
for the constraint covariance matrix.

But, performing defined operations is not enough since the higher power moment
constraints differ from the low power moment constraints by several orders of magni-
tude, which influences negatively on convergence of the algorithm [68]. For instance,
the moments of a simple 1-dimensional Normal distribution, N(0, 1) grow extremely
fast with its order increasing, p, and can be simply defined as µp(gN) = (p − 1)!!,
where p is even [68]. To partially improve this problem we can transform initial data
set with some scale factor α so that

g∗α(x) = αnĝ∗(αx) and µi(g
∗
α) = α−|α|µi(ĝ

∗), (5.12)

where α can be chosen to minimize the difference in magnitude between different
moments and usually expressed as [68] α = 2p

√
(2p− 1)!!.
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5.1.3 Maximum Entropy Problems Based on Moment Con-

straints

For practical applications it is common for the constraints in (5.1) to be various prod-
ucts of powers of data space coordinates (moments) [68]. With the set of moment
constraints in (5.9), the unconstrained optimization problems in (5.4) become

LS(λ) =

∫
exp(

p∑
|i|=0

λix
i)dx−

p∑
|i|=0

λimi, (5.13)

LP (θ) =

∫
Π(x)exp(

p∑
|i|=0

θix
i)dx−

p∑
|i|=0

θimi, (5.14)

with corresponding optimal probability densities

g∗S(x) = exp(
M∑
i=0

λix
i), (5.15)

g∗P (x) = Π(x)exp(
M∑
i=0

θix
i). (5.16)

These probability densities differ from each other due to the factor Π(x). In partic-
ular, if Π(x) itself is of the form (5.15) then the optimization problem in (5.14) can
be reduced to (5.13) [68]. Let Π be

Π(x) = exp(

p∑
|i|=0

βix
i). (5.17)

This choice of Π is natural if Π is the optimal probability density in (5.13) with
different constraints [68]. Then the optimization problem in (5.14) can be written
as

LP (θ) =

∫
exp(

p∑
|i|=0

(θi + βi)x
i)dx−

p∑
|i|=0

θimi. (5.18)

Changing variables ξi = θi + βi we obtain for (5.14)

LP (ξ) =

∫
exp(

p∑
|i|=0

ξix
i)dx−

p∑
|i|=0

ξimi +

p∑
|i|=0

βimi, (5.19)
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where the last sum is constant and does not influent on (5.19) [68]. We see that LP (ξ)

and LS(λ) for (5.13) differ just by a constant. Once the optimal sets of Lagrange
multipliers for ρS(x) and ρP (x) are found, the corresponding Shannon and relative
entropies can be computed as [68]

S(ρ∗S) = −
M∑

|i|=0

λimi end P (ρ∗P ,Π) =
M∑

|i|=0

(ξi − βi)mi. (5.20)

5.1.3.1 Polynomial Basis and its Reorthonormalization

For the optimization problem (5.13), which is convex, we can apply some an iterative
technique, e.g. the Newton method [73], but due to different sensitivity of L(λ) to
changes in different multipliers λi we meet with numerical difficulties. It appears
because the exponential function in (5.13) is more sensitive to changes in higher
powers of x, so an optimization process over the Lagrange multipliers can fail even
when the order p is equal to 6 or 4 [68].

Thus, to resolve this problem in (5.13), we can replace the set of monomials xi with
a different basis, in which (5.13) has similar sensitivity [68]. A simple solution is to
replace basis monomials xi with a set of order-p polynomials fj(x),

{xi, λi}, i ∈ In, 0 ≤ |i| ≤ p→ {fj(x), γj}, 1 ≤ j ≤ k, k =
(p+ n)!

p!n!
(5.21)

where γj are the Lagrange multipliers in new basis [68]. Since each basis polynomial
fj(x) is the order-p, the cost function should have similar sensitivity to changes in
different γj [68]. So new objective function in polynomial coordinates is

L(γ) =

∫
exp(

k∑
j=1

γjfj(x))dx−
k∑

j=1

γjfj(µ), (5.22)

where fj(µ) denotes the polynomial fj(x), where all the powers of xi are replaced
with corresponding constraints µi from (5.9) [68]. The corresponding optimal prob-
ability density function now is

g∗(x, γ) = exp(
k∑

j=1

γjfj(x)). (5.23)
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Below we show how to adapt described polynomial system to the Newton method
[68]. The Newton iteration is:

γn+1 = γn − ζn(H−1∇L)|γn , (5.24)

where γn and ζn denote the vectors of Lagrange multipliers and a stepping distance
parameter at the nth Newton iteration, respectively. The entries of the gradient,
∇Λ, and Hessian, H, are

(∇L)k =
∂L

∂γk
= Qγ(fk)− fk(µ), (5.25)

(H)kl =
∂2Λ

∂γk∂γl
= Qγ(fkfl), (5.26)

where the Qγ(g) for some function g(x) is computed as

Qγ(g) =

∫
s(x)g∗(x, γ)dx. (5.27)

The optimization problem in new coordinates remains convex [68]:

vTHv = vkQ(fkfl)vl = Q(vkfkflvl) = Q((vkfk)
2) ≥ 0. (5.28)

To improve numerical stability in (5.25), we can require the orthogonal properties
for the fk for each step of optimization algorithm [68]:

Q(pkpl) = δpl, (5.29)

where δpl is the usual Kronecker delta-symbol, so

(H)kl = (H−1)kl = δkl. (5.30)

With (5.30), the Newton method in (5.25) is the same as the steepest descent method:

γn=1 = γn − ζn(∇)|γn . (5.31)

The quadratures Q in (5.27) are weighted by the p.d.f. in (5.23) meanings of which
change between different points of the optimization process, and thus the orthogonal
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relations in (5.29) is not hold permanently. So we need to apply some orthonormal-
ization procedure, e.g. the Gram-Schmidt one, to keep the fk orthogonal in the sense
of (5.29) [68].

According to the classical Gram-Schmidt method, k arbitrary linearly independent
polynomials aj are converted into the orthonormal (in the sense of (5.29)) set of
polynomials fj as [68]

fj =
aj −

∑j−1
l=1 Q(ajfl)fl

Q([aj −
∑j−1

l=1 Q(ajfl)fl]
2)(1/2)

, 1 ≤ j ≤ k. (5.32)

Poor numerical stability of the classical Gram-Schmidt reorthonormalization is known
and common numerically stable tools to reorthonormalize a set of Euclidean vectors
usually involve the Householder reflections or Givens rotations [48]. The recent work
[74] demonstrates the modified Gram-Schmidt algorithm that yields errors which are
small multiples of the machine round-off error [68].

Algorithm 5 Modified Gram-Schmidt algorithm.
for j = 1, . . . , k do

for l=1,. . . ,r do
for m=1,. . . ,j-1 do
aj = aj −Q(ajfj)fj.

end for
fj = Q(a2j)

−1/2aj.
end for

end for

5.1.3.2 Optimization Algorithm

The described optimization algorithm, which involves polynomial basis, performs
the Gram-Schmidt reorthonormalization at each step in (5.31) [68]. To reduce the
computational expense we can perform several descent iterations between the Gram-
Schmidt reorthonormalizations. In this case we can employ some quasi-Newton
methods which is not vulnerable to curvature anisotropy, e.g. the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [73]. It needs the initial state of the Hessian, H0, which is
an identity matrix after polynomial reorthonormalization, and requires computation
of the gradient of (5.22) [68]. The structure of the BFGS approach [68] for some ith

itaration is:

1. Find the direction of descent as Hidi = −(∇L)i.
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2. Perform a line search and find the next iterate: γi+1 = γi + ζidi.

3. At the new iterate γi+1, compute the gradient (∇L)i+1.

4. Apply the Sherman-Morrison formula [73] to get pseudo-Hessian, H−1
i , and

compute the descent direction, di = −H−1
i (∇λ)i.

The schematic description of the moment-constrained approach [68] is presented in
the Algorithm 6. On practice, the values of n and p are limited for the algorithm
due to its computational speed.

Algorithm 6 Moment-constrained density estimation.
Perform precondition constraints: zero mean and diagonal covariance matrix of
x.
Create k p-order random linearly independent polynomials fj, j = 1, . . . , k.
Initiate a starting values of the Lagrange multipliers γj.
repeat

Reorthogonalize the polynomials fj according to (5.29) with respect to g and
reevaluate the set of γj.
Compute the gradient L.
Perform BFGS steps to get the minimum.

until minimum is not reached
Recompute the optimal γj into the set of standard Lagrange multipliers λi for
the monomial basis xi.

5.1.4 Maximum Entropy Problems Based on Symmetric Ten-

sors

A generalized exponential function for multivariate family in n-dimensional space
can be defined as

g(x) = e−(q(x))2 , (5.33)

where vector x consists of n + 1 elements: x = [1, x1, x2, . . . , xn]. The polynomial
q(x), in terms of tensor operations, can be presented as

q(x) = ⟨A,x◦p⟩ =
n∑

l1=0

. . .
n∑

lp=0

Al1...p · xl1 · . . . · xlp , (5.34)
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where x0 = 1. If the symmetric tensor A containing these polynomial coefficients is
decomposed into the desired form, then the polynomial can be written as

⟨A,x◦p⟩ =
r∑

l=1

λl(u
T
l x)

p, (5.35)

and a generalized exponential density in factorized form is:

g(x) = e−(
∑r

l=1 λl(u
T
l x)p)2 . (5.36)

As in the case of moment-constrained approach we propose to estimate the distri-
bution of data points by minimization of negative loglikelihood of expression:

LL = −log
k∏

i=1

e−(q(di))
2∑m

j=1 e
−(q(tj))2

, (5.37)

where data points di are initial given data set and tj is data set for density estimation.

On Figure 5.1 we demonstrate the computational ability of the maximum entropy
algorithm solving the problem of the density estimation for 1 and 2-dimensional
data sets. Figure 5.1(a) and Figure 5.1(b) present 1-dimensional toy problems for
multimodal distributions, where red dots define di and yj are linearly equally spaced
points between -3 and 3 in which we estimate the distribution of di.

Figure 5.2 presents a result of density estimation for the "Faith geyser eruption"
[75], which is at least bimodal, where axes denote interval and duration of eruption,
respectively.

Algorithms 7 presents pseudocode for density estimation based on non-redundant
symmetric tensor decomposition. The future work on this approach will be intended
to the ability of the developed algorithm to converge for the problems with higher
dimensions and orders, due to the number of iterations as well as the time to perfor-
mance for a single iteration needed to converge for a higher-order maximum entropy
problem increases significantly.
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Figure 5.1: Density estimation by the model of symmetric tensor decomposition:
(a) univariate 3-modal asymmetric density (3-order tensor); (b) univariate 5-modal

density (5-order tensor).

Figure 5.2: Density estimation of the Faith geyser eruption (interval and dura-
tion) by the 4-order model.

5.2 Principal Curve Fitting and Clustering

This section has been prepared based on the publications of Dr. Umut Ozertem
from the Yahoo! Search Sciences (USA). Particularly, we refer the reader to his
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Algorithm 7 Density estimation based on tensor decomposition.
In: D is (n+1, k)-dimensional matrix of n-dimensional data, where each column
di = [1, d1, . . . , dn].
Out: Density estimation via generalized exponential function g(x) = e−(q(x))2 ,
where x = [1, x1, . . . , xn].
Based on prior information initiate variables:
a) assign the order, p, for the polynomial q(x) =

∑r
l=1 λl(u

T
l x)

p.
b) determine the rank, r, and the number of rotation angles, θ, for vector frame
U = [u1, . . . ,ur].
c) generate a set of data points T such that D ∈ T.
d) assign random values for λl, . . . , λr and θ.
while LL is not converged to minimum do

Evaluate pdi
= −(q(di))

2, i = 1, . . . , k.
Evaluate pti = exp(−(q(ti))2), i = 1, . . . ,m.
Normalize pti =

pti
st

, where st =
∑m

i=1 pti .
Loglikelihood LL = −

∑k
i=1 pdi

+ k log st.
Evaluate the gradient and Jacobian of LL.
Adjust rotation angles θ and λ to minimize the LL.

end while
Set g(x) = e−(q(x))2 , where q(x) =

∑r
l=1 λl(u

T
l x)

p.

publication [76] to learn more comprehensive explanations on principal curve fitting
and clustering.

Data mining is a process of discovering patterns in data and relations among them. It
covers aspects of classification, segmentation, clustering, smoothing, representation
of discovered results, ets. The representation may be done by the way of statistical
indicators or through visualization by images, trees or graphs [77]. Discovered data
is any information that can be numerically interpreted, measured, and compared.
For instance, we present visual scenes of nature in form of images for the purpose of
collecting, analyzing, transmitting, and processing. Segmentation, clustering, and
smoothing do not have distinguished boundaries and can use similar or equal ap-
proaches. In common case, segmentation is a process of data partitioning onto closed
regions with taking into account similarity characteristics of the data parts (a size
of parts can be from one datum to whole data set) [78]; clustering can be described
as a task of segmentation without boundary on cohesiveness [79]; smoothing is a
process which removes short-term variations, or "noise" to discover the important
underlying form of the data [76]. In this section we apply the proposed model of
symmetric tensor decomposition to the tasks of clustering and principal curve fitting.
Experimental results are presented for each approach.
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5.2.1 Principal Curve Fitting

One of the first definition of principal curve is "self-consistent smooth curve which
passes through the "middle" of a n-dimensional probability distribution or data
cloud" [80]. The recently proposed another definition for principal curves is "a point
in the data feature space is on the principal curve if and only if the gradient of
the p.d.f. is parallel to one of the eigenvectors of the Hessian and the remaining
eigenvectors have negative eigenvalues" [81], which describes the principal curve in
terms of the gradient and the Hessian of the data probability density and yields
constrained maximum likelihood type algorithms. We utilize this definition for our
model of tensor decomposition.

Let’s consider the simple illustration in Figure 5.3. To find the principal curve,
we start with the density estimation of the data (red dots) and estimate probability
density (mesh), e.g., by the means of kernel density estimation (KDE). The principal
curve is the ridge of the p.d.f. (green dort). This is exactly where the gradient of
the p.d.f. is parallel to one of the eigenvectors of the Hessian of the p.d.f.

Figure 5.3: Curve dataset (red dots), KDE of the curve dataset (mesh) and its
principal curve (green dots).

Principal curve definition in the terms of the data p.d.f. allows us to leave all
regularization constraints to the density estimation step, which were described in
the previous Chapter.

To utilize principal curve projections, one should start with translating the signal
into a suitable feature space. Assuming that the observed signal xi corrupted by
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additive noise, where vector x = [1, x1, . . . , xn] combines the n-dimensional samples
of the noisy signal [x1, . . . , xn].

For unimodal additive noise distributions, e.g., Gaussian noise, the noiseless signal
will most likely be a smoother signal passing through the middle of the observed
noised data. Figure 5.4 shows an illustrative smooth signal with its noisy version as
well as the tensor density estimate, where x = [1, x1, x2]

T and the order of the tensor
T, p = 2. The tensor density estimate, which involves symmetric tensor model, is
given by

p(x) = e−<T,x◦p>2

, where T =
r∑

i=1

λiu
◦p
i . (5.38)

Figure 5.4: Noisy data set (red dots), underlying signal (green dots), and its
density estimation by a symmetric tensor model.

As it was proposed in [81], principal curve projection can be achieved by a likelihood
maximization in a constrained space. Below we describe the main properties and an
algorithm which helps us to achieve the principal curve based on the tensor model.
Let’s have a density estimate as in (5.38) then to get its principal curve we need to
analyze its gradient, g(x), and Hessian matrix, H(x). Due to monotonicity of log
and exp functions we can operate with log p(x) preserving directions of the first and
second derivatives. So the transformation p(x)

∇→ g(x)
∇T∇→ H(x) is equivalent to

log p(x)
∇→ glog p(x)

∇T∇→ Hlog p(x), where the log of Hessian matrix can be factorized
as Hlog p =

∑n
i=1 γi(x)vi(x)v

T
i (x).

In terms of these definitions, the n-dimensional principal surface is the set of data
x ∈ Rn, which satisfies [76]:
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• g(x)TH(x)g(x)
∥g(x)∥∥H(x)g(x)∥ = ±1.

• γi(x) < 0 for all except one i = 1, . . . , n.

The gradient and Hessian matrix of log p(x) in the tensor terms are:

glog p(x) = −2 < T,x◦p > ∂<T,x◦p>
∂xT ,

Hlog p(x) = −2∂<T,x◦p>
∂xT

∂<T,x◦p>
∂x

− 2 < T,x◦p > ∂2<T,x◦p>
∂xT ∂x

.

(5.39)

The first and second derivatives of Frobenius norm of two rank-1 tensors are

< u◦p,x◦p >= (uTx)p
∇→ p(uTx)p−1u

∇T∇→ p(p− 1)(uTx)p−2uuT , (5.40)

and corresponding derivatives for the full rank tensors defined by:

∂<T,x◦p>
∂xT =

∑r
i=1 λi

∂(uT
i x)p

∂xT = p
∑r

i=1 λi(u
T
i x)

p−1ui,

∂2<T,x◦p>
∂xT ∂x

= p(p− 1)
∑r

i=1 λi(u
T
i x)

p−2uiu
T
i .

(5.41)

The Algorithm 8 presents the overall approach. For short let’s denote gxi
= glog p(xi)(xi)

and Hxi
= Hlog p(xi)(xi). In order to be acquaint with properties and convergence

proof we refer the reader to [82].

Algorithm 8 Principal curve estimate.
Estimate p.d.f., p(x), on the basis of xi, i = 1, . . . , k.
for each data point xi do

repeat
Evaluate local gradient gxi

and Hessian matrix Hxi
.

Move xi along ascent direction gT
xi
Hxi

.

until
gT
xi

Hxigxi

∥gxi∥∥Hxigxi∥
≈ ±1

end for

Figure 5.11 presents an example of density estimation by an order-3 symmetric
tensor for hyperbolic data distribution. Red dots on the top of the surface denote
the principal curve of data (blue dots).
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Figure 5.5: Hyperbolic data distribution and corresponding principal curve fit-
ting (3-dimensional order-3 tensor T).

5.2.2 Clustering

Mean shift [83] is a very commonly used non-parametric iterative feature-space tech-
nique that maps the data points to the local maxima of the probability density, where
the gradient is equal to zero and all eigenvalues of the Hessian are non-positive [84].
Application domains widely include clustering in image processing, computer vision
[78]. Here we briefly describe mean-shift algorithm and extend it by proposed tensor
density estimate.

Let’s have some data set xi, i = 1, . . . , k, its initial estimate x, and kernel function
K(x,y). This function determines the weights of points xi, which are close to x,
and used for re-estimation of their means. Generally the Gaussian kernel is used for
such an estimate, K(x,y) = e−∥x−y∥2/σ, then the weighted mean of local density is
defined as

m(x) =

∑
xi∈N(x)K(xi,x)xi∑
xi∈N(x)K(xi,x)

, (5.42)

where N(x) defines the neighbor data set of x. At the end, the mean-shift algorithm
sets x←m(x) and repeats the estimation until m(x) converges to some stable state.

Selection of the Gaussian kernel bandwidth is a significant stage in the implementa-
tion that severely influents on the performance of the algorithm. It is known that an
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appropriate window, or kernel, size, corresponds to an appropriate density estimate.
Literature on density estimation is rather rich on the domain of the kernel width
selection, especially for data sets of low to moderate dimensionality, and methods
in the literature are extended from simple heuristics to more technically approaches
like maximum likelihood [79]. All above mentioned techniques are general purposed
kernel bandwidth selection methods that blindly approach the data. Particularly
for this problem, one can also select the kernel bandwidth by considering the actual
physical meaning of the data. The Renyi entropy estimate is directly connected to
Parzen windowing [85]. Silverman’s rule [75] is considered to be one of the simplest
and is given by

σ = σx[
4

(2n+ 1)k
]

1
n+4 , (5.43)

where σ2
x = n−1

∑
i Σxii

, and Σxii
are the diagonal elements of the sample covariance

matrix. Unless otherwise stated, the window size is determined using this rule.

For a tensor density function (5.38) the mean-shift is transformed to

m(x) =

∑k
i=1 xie

−<T,x◦p
i >2−∥x−xi∥2/σ∑k

i=1 e
−<T,x◦p

i >2−∥x−xi∥2/σ
. (5.44)

An example of clustering problem is presented on Figure 5.11(c), where we have a
mixture of normal distributed points [78]. Estimated density (by an order-4 sym-
metric tensor) was applied using mean-shift algorithm to converge the data points
to their local maxima.
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Figure 5.6: Density estimation and corresponding mean-shift clustering (3-
dimensional order-4 symmetric tensor T).

5.3 Generalized PCA

This section has been prepared based on the publications of Prof. Rene Vidal from
The Johns Hopkins University (MD\USA). Particularly, we refer the reader to his
publication [86] to learn more comprehensive explanations on Generalized PCA.

In this section we describe an approach to the problem of linear subspaces mixture
estimation in data set, which is known as Generalized Principal Component Anal-
ysis (GPCA) problem [86]. The GPCA is equivalent to factoring a homogeneous
polynomial degree of which is the number of subspaces and factors of which repre-
sent normal vectors to each subspace, where any homogeneous polynomial can be
presented by a rank-r symmetric tensor or a rank-1 nonsymmetric one. We describe
an approach for an estimate of the number of subspaces. As a solution of the GPCA
problem in the presence of noise or data nonlinearity, we can utilize constrained
nonlinear least squares optimization as well as kernel PCA, which transforms data
to linear form. Application of the GPCA can be widely used to solve the computer
vision problems, e.g., when we need to analyze the mixture of objects motion, data
compression, regression, etc.

The standard PCA problem estimate a linear subspace S ⊂ Rn of unknown dimen-
sion m < n from k data points xj ∈ S, j = 1, . . . , k, and can be solved by applying
the SVD to the data set X = [x1,x2, . . . ,xk] ∈ Rn×k [86]. In probabilistic PCA
[87] the subspace is estimated in Maximum Likelihood sense using a probabilistic
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generative model, where we assume that data points within each subspace are drawn
from an unknown probability distribution. The membership of the data points is
estimated by multinomial density distribution. Nonlinear PCA (NLPCA) [88] is
considered in the following Section. For this method a subspace is estimated after
applying a nonlinear transformation to the data.

Let a set of data points X = {xj ∈ Rn}, j = 1, . . . , k is given and drawn from
p > 1 linear subspaces {Si ⊂ Rn}, i = 1, . . . , p of dimension m, 0 < m < n. By
identifying the subspaces Si without prior knowledge about belonging of data xj we
mean the following [86]:

1. Identify the number of subspaces and their dimensions;

2. Identify a basis for each subspace Si or its normal vector;

3. Group or segment given k data points into the subspace(s);

In the GPCA the data points xj, j = 1, . . . , k are drawn from p m-dimensional linear
subspaces of Rn, Si, i = 1, . . . , p, as shown on Figure 5.7 for p = 3,m = {1, 1, 2}, and
n = 3 [86]. In this case, the problem consists in identifying of each subspace without
any prior knowledge of the number of subspace and belongings of data points to a
subspace.

1
S

2
S

3
S

Figure 5.7: GPCA for 3 linear subspaces S1 ∈ R2, S2 ∈ R1, S3 ∈ R1 in 3-
dimensional data space, with equivocal interpretation of S2 and S3, which can be

considered as one 2-dimensional data set.

In the noiseless data, GPCA interprets the number of subspaces as degree of the
certain polynomial, that is multi-dimensional higher-order tensor, and the normals
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to each subspace become the factors of such a tensor. We will show how to obtain
the number of subspaces p from the rank of a certain matrix which depends on the
data in presence of noise and without it. For the given n and p, the estimation of
the subspaces Si ⊂ Rn is essentially equivalent to tensor factorization problem.

In the following explanation we will present a solution for the special case of known
dimension of subspaces, m = n − 1. The general case, where 0 < m < n, can
be obtained by consecutive applying of GPCA to a separated subspace of higher
dimension, m + 1. It turns out that the general case can be always reduced to the
special case, as long as all the subspaces Si, i = 1, . . . , p have the same dimension m
[86].

5.3.1 GPCA Subspaces

The GPCA problem for m = n − 1 is algebraically equivalent to factoring of a
homogeneous polynomial of degree p in n dimensional space into a product of p
polynomials of degree 1 [86]. Any (n− 1)-dimensional space Si ⊂ Rn can be repre-
sented by a nonzero normal vector bi ∈ Rn as

Si = {x ∈ Rn : bT
i x = bi1x1 + bi2x2 + · · ·+ bi1xn = 0}. (5.45)

For clarity, we need to point out one of the most important structure properties for
vector x. One of its elements must be always equal to 1 (usually we denote 1th entry
as in the case of density estimation). It does not define any coordinate position in
the data space but it is used as a bias of liner subspace. Otherwise, all our linear
subspaces must be pass through the origin. So in fact for the GPCA problem a
n-dimensional vector x defines one data point in (n − 1)-dimensional data space.
Since we consider distinct subspaces Si, normal vectors bi, i = 1, . . . , p, are pairwise
linearly independent. Let’s imagine that we have a point x ⊂ Rn lying on one of the
subspaces Si. Such a point must satisfy the equation [86]:

(bT
1 x = 0) ∪ (bT

2 x = 0) ∪ · · · ∪ (bT
p x = 0), (5.46)

which is equivalent to the order-p homogeneous polynomial:

fp(x) =

p∏
i=1

(bT
i x) = 0. (5.47)
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Now the problem of identifying Si is equivalent to the problem of finding the vectors
bi, i = 1, . . . , p from the nonlinear equation (5.47) [86].

As we know from the previous explanation on symmetric tensor, any order-p n-
dimensional homogenous polynomial can be defined by an order-p n-dimensional
tensor A, where A =

∑r
i=1 λiu

◦p
i . So in the tensor form the equation (5.47) is

transformed to

fp(x) =< A,x◦p >=
r∑

i=1

λi(u
T
i x)

p = 0. (5.48)

Now the problem of identifying Si is then equivalent to the factorization problem of
the tensor A. The vectors bi, i = 1, . . . , p, are factors which decompose symmetric
rank-r tensor A as a non-symmetric rank-1 tensor B, where B = b1◦b2◦· · ·◦bp and
vectors bi, i = 1, . . . , p are different and independent. The trick is to evaluate the
difference between tensors A and B because the sum of element-wise square errors
e2 = ∥A−B∥2F will be always greater than zero. To produce such a decomposition
we need to evaluate the square difference between the sums of tensor entries under
permutation of their indices. Let’s order-2 2-dimensional tensors A and B are given
by

A =

[
a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
. (5.49)

Then the square error of the sums of tensor entries under permutation of their indices
is

e2 = (a11 − b11)2 + ((a12 + a21)− (b12 + b21))
2 + (a22 − b22)2. (5.50)

The general square error for such a decomposition is evaluated by

e2 =
∑
ic

∑
ip

(A)ip −
∑
ip

(B)ip

2

, (5.51)

where index ic denotes all unique combinations of tensor indexes and index ip denotes
all possible combinations in ic.

Let g(n, p) = g[x1, . . . , xn] be some homogeneous polynomial of degree p in n vari-
ables, where g(n, p) is generated by the set of monomials xp = xp11 x

p2
2 · · ·xpnn , with

0 ≤ pj ≤ n, j = 1, . . . , n, and p1+p2+ · · ·+pn = p. So the number of unique mono-
mials is equal to the number of free elements in a n-dimensional order-p symmetric
tensor A [86], i.e.,

m(n, p) =

(
p+ n− 1

p

)
, (5.52)
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where the dimension of g(n, p) is equal to m(n, p). Therefore, we can transform data
space from Rn into Rm(n,p) [86].

Here we describe Veronese map which will be utilized to the problem of subspaces
estimation in absence of noise. Let p and n are given, the Veronese map of degree
p, vp : Rn → Rm(n,p), is defined as:

vp : [x1, . . . , xn]
T → [. . . ,xp, . . .]T , (5.53)

where xp is a monomial of the form xp11 x
p2
2 · · ·xpnn [86]. So (5.47) becomes the linear

expression with vector of coefficients a ∈ Rm(n,p) which defines all unique entries in
an order-p n-dimensional tensor A:

fp(x) = vTp (x)a =
∑

(A)p1,...,pnx
p1
1 x

p2
2 · · ·xpnn = 0, (5.54)

where ap ∈ R represents the coefficient of the monomial xp [86].

5.3.2 The Number of Subspaces with Absence of Noise

Applying (5.54) to a given data set xj, j = 1, . . . , k such that k ≥ m(n, p)− 1 gives
us the system of linear equations on the vector of coefficients a [86]

Lpa =


vTp (x1)a = 0

vTp (x2)a = 0
...

vTp (xk)a = 0

(5.55)

Since this linear system depends only on the number of subspaces, p, we need to know
p in advance in order to estimate a. So the estimation of the number of subspaces p
is very much related to the conditions under which the solution for a is unique [86].
Let’s assume that a collection of k ≥ m(n, p) − 1 data points xj, j = 1, . . . , k on
p different (n − 1)-dimensional subspaces of Rm is given. Let Li ∈ Rk×m(n,i) be the
matrix defined above, but computed with the Veronese map vi(x) of degree i. If the
data points are in general positions and at least m − 1 points correspond to each
subspace then [86]:

rank(Li)


> m(n, i)− 1, i < p,

= m(n, i)− 1, i = p,

< m(n, i)− 1, i > p.

(5.56)
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Therefore, the number p of subspaces is given by [86]:

p = min{i : rank(Li) = m(n, i)− 1}. (5.57)

So there is no polynomial of degree i < p that is satisfied by all the data, hence
rank(Li) = m(n, i) for i < p. Conversely, there are multiple polynomials of degree
i > p, namely any multiple of fp(x), which are satisfied by all the data, hence
rank(Li) < m(n, i) − 1 for i > p. Thus the case i = p is the only one in which
system has a unique solution, namely the coefficients a of the polynomial fp(x) [86].

5.3.3 The Number of Subspaces with Presence of Noise

Data without noise exist just in theory. Here we describe a kernel PCA which is
based on the concept of maximum entropy preservation [85] and can be utilized for
estimation of the number of subspaces in data as well as transformation of nonlinear
subspaces into linear ones. The method, named kernel maximum entropy is based on
Renyi’s quadratic entropy estimated via Parzen windowing, which was described in
the previous Section, 5.43. The data transformation is obtained using eigenvectors
of the data affinity matrix [27]. These eigenvectors are in general not the same as
those ones used in kernel PCA. The Renyi quadratic entropy is given [89] by

H2(x) = −log
∫
f2(x)dx, (5.58)

where f(x) is the density associated with the random variable x and n-dimensional
data set xi, i = 1, . . . , k is generated from f(x). A non-parametric estimator for
H2(x) is obtained by replacing the actual p.d.f. by its Parzen window estimator as

f̂(x) =
1

k

k∑
i=1

Wσ(x,xi), Wσ(x,xi) =
1

(2πσ2)n/2
exp{−∥x− xi∥2

2σ2
}. (5.59)

Alongside with Gaussian window we can utilize any appropriate one, but it must be
a density itself. So we have

Ĥ2(x) = − log
∫
f̂ 2(x)dx = −log 1

k2

∑k
i=1

∑k
i=1

∫
Wσ(x,xi)Wσ(x,xj)dx =

− log 1
k2

∑k
i=1

∑k
i=1W

√
2σ(xi,xj),

(5.60)
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where in the last step we employ the convolution theorem for Gaussian functions.

For notational simplicity, we denote W√
2σ(xi,xj) as a value of kernel function

k(xi,xj) and present the kernel matrix Kx, such that element (i, j) of Kx is equal
to k(xi,xj), i, j = 1, . . . , k. So the Renyi quadratic entropy may be expressed com-
pactly in the terms of the kernel matrix as Ĥ2(x) = −log 1

k2
1TKx1, where 1 is a

(k × 1) ones-vector. Since the logarithm is a monotonic function, we can focus on
the quantity V (x) = 1

k2
1TK1.

The maximum entropy method is mapping X→ Y, such that the entropy associated
with Y is maximally similar to the entropy of X. Since we are concerned with Renyi’s
entropy, therefore such a data mapping results in a V (y) = 1

k2
1TKy1, in the terms of

the Y data set, should be as close as possible to V (x) = 1
k2
1TKx1. This means that

the kernel matrix Ky must be maximally similar to Kx in some sense. According to
the fact that our input data space is the kernel matrix, we do not actually want to
obtain Y.

Let the kernel matrix Kx be decomposed as EDET and Φx be such a matrix each
column of which represents an approximation of the corresponding kernel feature
space data point in the set {Φ(x1),Φ(x2), . . . ,Φ(xk)}. So an approximation which
preserves inner-products is given by Φx = D1/2ET , then Kx = ΦT

xΦx = EDET .
Now we can define a dimensionality reduction in the kernel space, obtaining the m-
dimensional Φy from Φx, yielding Ky = ΦT

yΦy such that V (y) ≈ V (x). According
to [90], the value V (x) is given by

V (x) =
1

k2

k∑
i=1

λi(1
Tei)

2 =
1

k2

k∑
i=1

λiγ
2
i , (5.61)

where ei is the eigenvector corresponding to the ith column of Kx, and 1Tei = γi and
the products λiγ2i have been sorted in decreasing order. If we approximate V (x) using
only m terms of its sum, we must use the m first terms in order to achieve minimum
approximation error. This invokes using of the m largest λiγ2i . Let’s define the data
set Φy = D1/2ET , using the m eigenvalues and eigenvectors of Kx corresponding to
the m largest products λiγ2i . Hence, Ky = ΦT

yΦy = EmD
1/2
m D

1/2
m ET

m = EmDmE
T
m,

and

V (y) =
1

k2

m∑
i=1

λiγ
2
i =

1

k2
1TKy1, (5.62)

the best approximation to the entropy estimate V (x) using m eigenvalues and eigen-
vectors. So we refer to the mapping Φy = D

1/2
m ET

m as a maximum entropy data
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transformation in a kernel feature space. We need to mention that this is not the
same as the PCA dimensionality reduction, which is defined as ΦPCA = D

1/2
m ET

m,
using the eigenvalues and eigenvectors corresponding to the m largest eigenvalues of
Kx. So the kernel maximum entropy procedure is given by

Kx = EDET → Φx = D1/2ET

↕ ↕
Ky = EmDmE

T
m ← Φy = D

1/2
m ET

m

(5.63)

Figure 5.8(a) shows a ring-shaped data set consisting of 3 clusters. The original data
set is ordered as a sequence of data points: 100 (green), 300 (red), and 500 (blue).
The two bar graphics on Figure 5.8(b) present the 20 largest normalized eigenvalues
λi (blue) and entropy terms λiγ2i (red) corresponding to the largest eigenvalues.
We need to point out that the entropy terms corresponding to the 1st, 2nd, and
6th eigenvalues are significantly larger than the rest and define the exact number of
clusters in the data set that is impossible by standard KPCA approach. Figure 5.8(c)
shows the first six eigenvectors, where the vectors with maximum entropy (red) carry
information about the cluster structure with their blockwise appearance.
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Figure 5.8: Results of data analysis using standard and entropy KPCA: (a)
initial data set; (b) normalized eigenvalues of standard KPCA (blue) and maximum

entropy KPCA (red); (c) first 6 eigenvectors of Kx.

The affinity matrices Kx for the described data set are shown on Figure 5.9(a). In
ideal situation, the task of any clustering approach is to transform such a matrix
into a blockwise one. Figure 5.9(b) shows the KPCA approximation of Kx, obtained
from the first three eigenvectors, which do not provide us blockwise structure. In
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contrast, the entropy KPCA approximation Ky, Figure 5.9(c), shows the blockwise
appearance.

(a) (b) (c)

Figure 5.9: Affinity matrices: (a) initial data set; (b) standard KPCA; (c) max-
imum entropy KPCA.

On Figure 5.10 the data transformation is shown via (a) standard KPCA and (b)
maximum entropy KPCA. We note that in the case of entropy KPCA the clusters
are located along different lines radially from the origin. These lines are almost
orthogonal to each other, which is suitable for GPCA model. The results of data
transformation by standard KPCA is significantly different and the mean vectors of
the clusters are not spread angularly.
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Figure 5.10: Data transformation by: (a) standard KPCA and (b) maximum
entropy KPCA.
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5.3.4 Estimation of the Subspaces with Absence of Noise

The linear system (5.54) allows us to determine the number of subspaces, p, and the
vector of coefficients, c, directly from the data set xj, j = 1, . . . , k. The rest of the
problem now is to recover the normal vectors bi, j = 1, . . . , p from a. From (5.47)
and (5.54) we have

fp(x) =
∑

apx
p =< A,x◦p >=

p∏
i=1

(
n∑

j=1

bijxj

)
. (5.64)

Therefore, recovering bi, j = 1, . . . , p from A is equivalent to factoring a given
homogeneous polynomial fp(x) ∈ g(n, p), into p distinct polynomials in g(n, 1) [86].
We can interpret A as a symmetric tensor representation of the non-symmetric part
of the tensor b1 ◦ · · · ◦ bp. In this case estimating bi, j = 1, . . . , p from A is
equivalent to factoring such a symmetric tensor. We utilize the proposed model
of rank-r symmetric tensor decomposition to obtain coefficients in A and then we
apply the model of rank-1 non-symmetric tensor to get a set of vectors b1 ◦ · · · ◦bp.
The reader can learn an initial approach to solve such a problem, which is based on
consecutive reducing of data dimensionality, in [91].

The linear subspace estimation can be defined as a solution of a nonlinear least
square problem:

min e2
b1,...,bp

= min
b1,...,bp

k∑
j=1

(
p∏

i=1

(bT
i xj)

)2

, (5.65)

where bi is a vector of linear coefficients of ith subspace in Rn, and a vector xj =

[1, x1, . . . , xn]
T . Parameter p defines the number of linear subspaces and k - the

number of data points. In tensor form we can present this problem as

min e2
λ1,...,λr,Θ

= min
λ1,...,λr,Θ

k∑
j=1

(
r∑

i=1

λi(u
T
i xj)

p

)2

. (5.66)

To minimize such cost function we need to find appropriate values of the linear co-
efficients, λi, i = 1, . . . , r, and rotation Givens angles, Θ, which define the position
of vector frame U in Rn data space. From the proposed method of tensor decom-
position we know that linear coefficients are estimated for each unique value of Θ.



Chapter 5. Applications of Tensors 96

Let’s take partial derivatives of e2 with respect to λi, i = 1, . . . , r:
∂e2

∂λ1
= 2

∑k
j=1

(∑r
i=1 λi(u

T
i xj)

p
)
(uT

1 xj)
p = 0

...
∂e2

∂λr
= 2

∑k
j=1

(∑r
i=1 λi(u

T
i xj)

p
)
(uT

r xj)
p = 0

(5.67)

Now we have a system of r linear equations with r unknown:

MλT = 0, s.t. λi ̸= 0,

where ml1l2 =
∑k

j=1(u
T
l1
xj)

p(uT
l2
xj)

p, and i, l1, l2 = 1, . . . , r.
(5.68)

As an appropriate solution for such linear system we can utilize the Eigendecom-
position to the matrix M and assign the eigenvector which corresponds to minimal
eigenvalue as a solution of λT . Now to minimize the cost function e2 we need to
estimate the Givens angles, Θ. We perform this operation on the basis of the gra-
dient symmetric tensor model, see Chapter 4. When the symmetric full-rank tensor
A is given we need to factorize it as a non-symmetric rank-1 tensor B, (5.51). The
equation (5.51) is a multidimensional order-2 polynomial the root of which can be
found, for instance, by the Newton’s method. Note that the roots of the equation
(5.51) are normal vectors to subspaces Si, i = 1, . . . , p and can be normalized as
soon as the solution is reached. Once we have normalized vectors bi, i = 1, . . . , p

we can segment data space Rn onto p linear subspaces Si ∈ R(n−1) via distances to
the subspaces (bT

i x).

Figure 5.11(a) shows an example of an application of a symmetric tensor to GPCA
problem. The data points (marked by different colors) denote result of the estimation
of intersected linear subspaces and the surface on the figure denotes error for all
data space. Figure 5.11(b) presents a segmentation problem when data points were
expanded to the second order data space, i.e. x = [1, x1, x2, x1x2, x

2
1, x

2
2]

T .

5.3.5 Estimation of the Subspaces with Presence of Noise

In the previous subsection, we described a "linear" approach for estimating a set of
subspaces from data points xj, j = 1, . . . , k which lied on those subspaces. Essen-
tially, proposed approach solves the normal vectors bi, i = 1, . . . , p from the set of
nonlinear equations

∑r
i=1 λi(u

T
i xj)

p = 0, j = 1, . . . , k. From an optimization point
of view, proposed algorithm gives a "linear" solution to the nonlinear least squares
problem
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Figure 5.11: GPCA and estimated subspaces: (a) linear subspaces and (b) non-
linear ones, where each data are mapped to an order-2 space.

min
λ1,...,λr,Θ

e2 = min
λ1,...,λr,Θ

k∑
j=1

(
r∑

i=1

λi(u
T
i xj)

p

)2

. (5.69)

where a solution is Sn−1 unit sphere in Rn.

In this section, we derive derive an optimal algorithm for subspaces reconstruction
for the case when the data points are corrupted with i.i.d. zero-mean Gaussian noise.
We show that the optimal solution can be obtained by minimizing a function similar
to (5.69) in manner of fixed-point iteration. Since our approach is based on tensor
representation proposed algorithm depends on Givens rotational angles and involves
final rank-1 decomposition. Fixed-point manner provides us final smoothed data in
form of linear subspaces.

Let xj, j = 1, . . . , k be the given collection of noisy data points. We would like
to find a collection of subspaces Si, i = 1, . . . , p such that the corresponding noise
free data points x̃j, j = 1, . . . , k lie on those subspaces. It leads to solving of the
constrained nonlinear least squares optimization problem

min
∑k

j=1 ∥x̃j − xj∥2

s.t.
(∑r

i=1 λi(u
T
i x̃j)

p
)2

= 0, j = 1, . . . , k.
(5.70)
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Using Lagrange multipliers γj for each constraint, the above optimization problem
turns out to be equivalent to minimizing the Lagrangian function

k∑
j=1

∥x̃j − xj∥22 + γj

(
r∑

i=1

λi(u
T
i x̃j)

p

)2
 . (5.71)

After taking partial derivatives with respect to γj we obtain

(
r∑

i=1

λi(u
T
i x̃j)

p

)2

= 0, (5.72)

this leads to the minimization problem of linear subspace estimate with absence of
noise as in (5.66). So we have the system of linear equations (5.67) which can be
solved as in (5.68).

Now we can take partial derivatives of (5.71) with respect to x̃j so we obtain

2(x̃j − xj) + 2pγj(
r∑

i=1

λi(u
T
i x̃j)

p)
r∑

i=1

λi(u
T
i x̃j)

p−1uT
i = 0 (5.73)

from which we can find a solution for γj as

γj =
(xj−x̃j)

p(
∑r

i=1 λi(uT
i x̃j)p)

∑r
i=1 λi(uT

i x̃j)p−1uT
i
=

∑r
i=1 λi[(u

T
i x̃j)

p−1(uT
i xj)−(uT

i x̃j)
p]

p(
∑r

i=1 λi(uT
i x̃j)p)∥

∑r
i=1 λi(uT

i x̃j)p−1uT
i ∥22
.

(5.74)

Replacing obtained γj value in (5.73) gives us fixed-point algorithm

x̃j,q+1 = xj − pγj(
r∑

i=1

λi(u
T
i x̃j,q)

p)
r∑

i=1

λi(u
T
i x̃j,q)

p−1uT
i , (5.75)

where q = [1, . . . , until converge] and the value of γj is, in essence, the weight factor
which, to reduce computational cost, can be replaced on some exp functions of the
iterate number. Thus the objective function (5.71) is minimized as corresponding
noise free data points x̃ forms linear subspaces. The initial values for x̃ can be equal
to the noised data x. To perform better convergence in (5.75) we can reassigned the
nosied data set, x, by the x̃ after each iteration . Optimization can be implemented
as in Algorithm 9.



Chapter 5. Applications of Tensors 99

Figure 5.12 shows an example of estimation of linear subspaces in presence of noise
by an order-3 tensor. On Figure 5.12(a) we present initial data which consist of tree
linear subspaces denoted by different colors and symbols, each subsapce consists
of 100 data points, and on Figure 5.12(b) – noised data from (a) with noise level
σ = 0.1. The result of estimate of linear subspaces is on Figure 5.12(c), note that in
the intersection regions some data points converged to different subspaces that can
happen due to noise and data intermixing and can not be eluminated without any
prior information on data belonging. Overall we have rather good results of linear
subspaces estimate based on proposed algorithm.

Algorithm 9 Generalized principal component analysis.
Initiate noise free data points x̃j = xj, j = 1, . . . , k.
repeat

Optimize Givens angles Θ and find optimal λT for current states of x̃j.
Evaluate Lagrange multipliers γj, j = 1, . . . , r via (5.74).
Perform fixed-point iterations for x̃j j = 1, . . . , k as in (5.75).
After each mth itatere reassign data set, x̃=x.

until (
∑k

j=1 < A, x̃j >= 0)
Estimate normal vectors bi, i = 1, . . . , p.
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Figure 5.12: GPCA and estimated subspaces in presence of noise: (a) initial
linear subspaces, (b) noised linear subspaces from (a) with σ = 0.1, (c) estimated

linear subspaces with an order-3 tensor.
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5.4 Robust Nonlinear PCA

This section has been prepared based on the publications of Prof. Danijel Skocaj
from The University of Ljubljana (Slovenia). Particularly, we refer the reader to his
publications [92, 93] to learn more comprehensive explanations on Robust PCA.

Different methods have been proposed to perform PCA on a set of data. Major
drawback of existing methods is that they are not robust, because they are based on
the least squares minimization [94], and they are restricted to linear case. Robust
methods, which have made the recognition stage less sensitive to outliers, are very
important for real applications. In this Section we present a robust nonlinear PCA
method for obtaining a consistent subspace representation in the presence of outlying
data. The approach is based on tensor model and involve the robust expectation-
maximisation (EM) algorithm for estimation of principal subspaces [92, 95].

5.4.1 Robust PCA Based on EM

We denote a n-dimensional data point by a vector xi = [x1, . . . , xn]
T ∈ Rn and

data set is then a matrix X = [x1, . . . ,xk] ∈ Rn×k. The eigenvectors obtained from
X are denoted by m rows in matrix E = [e1, . . . , ek] ∈ Rm×k, where each column
ei = [e1, . . . , em]

T ∈ Rm . We assume X as not necessary be normalized or zero-
mean matrix, since the first row in E can be defined as a vector of ones, which
can be used for data normalization. Generally, m < n and we utilize a matrix of
combinational coefficients A ∈ Rn×m to represent xi with sufficient accuracy [92],
where A = [a1, . . . , an]

T and vector ei:

x̃j = Aej, j = 1, . . . , k. (5.76)

where x̃ denotes the approximation of x. The entire data set X can thus be repre-
sented as X̃ = AE [92]. In the case of tensor representation we can rewrite above
equitation as

x̃ij = aT
i ej =< ai, ej >, i = 1, . . . , n, j = 1, . . . , k. (5.77)
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So in the general case of an order-p tensor representation robust PCA becomes
nonlinear:

x̃ij =< A(i), e◦pj >=
r∑

l=1

λ
(i)
l (eTj u

(i)
l )p, i = 1, . . . , n, j = 1, . . . , k. (5.78)

which means that for each dimensionality of the data set we utilize different rank-r
order-p tensors A(i), i = 1, . . . , n. In this case the linear PCA becomes the marginal
case when p = 1. Now we will present an algorithm based on EM and Probabilistic
PCA (PPCA), which can operate with missing data. On the basis of this algorithm
we will then present a robust nonlinear PCA approach.

5.4.2 EM Algorithm for PCA

Most of the algorithms for building principal subspaces are based on the eigendecom-
position of the covariance matrix of the input data [92]. However, there exist other
approaches. For instance, a probabilistic approach, where PCA can be considered
as a limiting case of a linear Gaussian model, when the noise is small with stable
characteristics. From these definitions we can derive an algorithm for calculating
principal axes, which is based on the EM algorithm. This algorithm consists of two
steps, E and M, which are sequentially and iteratively executed [93]:

• E-step: Estimate coefficients A using computed principal axes E.

• M-step: Compute new principal axes E which maximize expected joint like-
lihood of the estimated coefficients A and the observed data X.

The EM algorithm for PCA proposed in [96] is given by:

• E-step: A = XET (EET )−1.

• M-step: E = (ATA)−1AX.

The rows of A span the space of the first m principal axes. These vectors are, in
general, not orthogonal, but they can be orthogonalized at the end of EM recursion
[92]. Described algorithm does not allow us to use nonlinearity. Both matrices are
evaluated in whole.
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The convergence of the algorithm can be checked by looking at a difference in the
successive estimates of the average lost variance σ2 per discarded dimension. As
shown in [97], the error for the maximum likelihood solution is σ2 = 1

k−m

∑k
j=m+1 λj,

that corresponds to the sum of the discarded eigenvalues. It can be conveniently
calculated by [92]

σ2 =
1

k −m
(V AR(X)−

m∑
j=1

λj), (5.79)

where V AR(X) is the variance of X which is defined as the sum of variances in rows
of X. Since in the EM algorithm we do not explicitly calculate eigenvalues at each
iteration, we can estimate σ2 by [92]

σ2 =
1

k −m
(V AR(X)− V AR(X̃). (5.80)

In [96] it was proposed a generalized E-step for handling missing data. One can
treat missing data as additional hidden states and estimate them in the E-step
simultaneously with estimating the coefficients by solving a least squares problem
[92]. In the following explanation we describe an algorithm for handling missing
data in the EM approach, which involves tensor model.

5.4.3 PCA in the Presence of Missing Data

It is important to note that in the case when we use all data points, the M-step is
equivalent to calculating the coefficients by the solution of the nonlinear system of
equations (5.76). This can be easily seen by noting that ei = (ATA)−1Axi. The
least squares solution of (5.76) is equivalent to the pseudo-inverse. A very similar
observation is held also for the M-step. Therefore, we can perform the EM-algorithm
by iteratively solving the following systems of nonlinear equations [93]:

• E-step: Estimate coefficients in A(i), i = 1, . . . , n in the following way: For
each data point xj, j = 1, . . . , k, solve the following system of nonlinear equa-
tions in the least squares sense:

xij =< A(i), e◦pj >, i = 1, . . . , n. (5.81)

• M-step: Estimate principal axes in E in the following way: For each data
point x = [x1, . . . , xn]

T , solve the following system of nonlinear equations in
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the least squares sense:

xij =< A(i), e◦pj >, j = 1, . . . , k. (5.82)

From these considerations we can also see how to compute the coefficients and prin-
cipal axes in the case of missing data. We only need to set up these equations with
the known data points and to compute the coefficients in ai and ei. Similar solutions,
but just for linear model was proposed in [92].

When dealing with data containing a considerable amount of missing data points,
such a formulation results is an ill-posed problem. To alleviate this problem we
impose additional application dependent constraints to the minimization process.
When the data are ordered , e.g, image sequences, we can extend the algorithm
to include also a smoothness prior to enforce that the missing data are changing
smoothly over time. Thus, in the M-step we minimize the second derivative of the
reconstructed missing data points. If S is a set containing all missing points, the
algorithm looks as follows [92]:

• E-step: Estimate coefficients in A(i), i = 1, . . . , n in the following way: For
each data point xj, j = 1, . . . , k, solve the following system of nonlinear equa-
tions in the least squares sense:

xij =< A(i), e◦pj >, i = 1, . . . , n, where xij /∈ S. (5.83)

• M-step: Estimate principal axes in E in the following way: For each data
point x = [x1, . . . , xn]

T , solve the following system of nonlinear equations in
the least squares sense:

xij =< A(i), e◦pj >, j = 1, . . . , k, where xij /∈ S,

0 =< A(i), (e◦pj )′′ >, j = 1, . . . , k, where xij ∈ S,
(5.84)

where α is the parameter which weights the influence of the smoothness con-
straint.

The overall algorithm minimizes the following error function:

ε =
k∑

j=1

∑
i∈Gj

(xij− < A(i), e◦pj >)2 + α
k∑

j=1

∑
i∈Bj

(< A(i), (e◦pj )′′ >)2, (5.85)
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where Gj denotes a set of indices of non-missing data points in jth data layer, while
Bj denotes a set of indices of the corresponding missing data points.

Alternatively, the principal axes can in the M-step also be obtained by applying the
standard PCA using all data points [92]. It provides that missing data points are
filled-in. The question is how to optimally fill-in the values of the missing data points.
Since not all points of a data set are known, some coordinates of the corresponding
point in the data space are undefined. Thus, the position of the point is constrained
to the subspace defined by the missing points. Let the principal subspace E, which
models the input data space, is given. We can determine the optimal location of a
missing data point as a weighted value of principal subspaces. This data point is
obtained on the basis of the reconstructed values by replacing missing data points.
Missing data points are calculated by (5.76) using the coefficients ei, which were
estimated in E-step of the current iteration, and the principal axes ai obtained in
the previous iteration [92].

• M-step: Estimate principal axes in A by applying the standard PCA on X

with the reconstructed missing data points:

xij = x̃ij, i = 1, . . . , n, j = 1, . . . , k, xij ∈M where X̃ as in (5.78). (5.86)

What still remains to be determined is how to calculate initial solutions for A(i), i =

1, . . . , n. In fact, for the general case of tensor, we just start with random values. For
the linear model, p = 1, we can calculate the principal axes A(i) from an estimate
of E obtained by performing SVD on the inner product matrix S. The matrix S is
evaluated from the non-missing points of the input set X:

sij =
1

|L|
∑
l∈L

xlixlj; L = {l|xli /∈M, xlj /∈M}. (5.87)

To summarize, the nonlinear algorithm for missing data points is [92]:

Let’s consider a set of 1-dimensional vectors which is formed of 6 shifted harmonic
(sinus) functions with different magnitudes [92]. We randomly removed 20% of
the elements, as depicted in the top row of Figure 5.13(a). Now, the goal is to
find the optimal principal axes representing these vectors which contain missing
data by applying Algorithm 10. In this experiment, the estimation of the principal
axes in the M-step of the EM algorithm was performed by applying the standard
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Algorithm 10 Restoration of the missing data points in NLPCA.

Generate randomly symmetric tensors A(i), i = 1, . . . , n.
Perform M-step according to (5.84) obtaining an estimate for E.
repeat

Perform E-step according to (5.83).
Perform M-step according to (5.84).
Replace missing data points in X by reconstruction using (5.78).
Calculate σ2.

until σ2 → 0

PCA on the input data with the reconstructed missing data points. Figure 5.13
illustrates the performance of the proposed method. First, the initial values of the
principal axes are obtained from the covariance matrix estimated from the non-
missing values of the input vectors. Then, based on the E-step, we calculate the
coefficients and the reconstructed signals. The missing data points are then replaced
by their reconstructed values from the previous iteration. The initialization, the last,
stable, iteration of the algorithm are shown in the first and second rows, respectively.
We can note how the functions representing estimated principal axes are getting
smoother after every iterations and obtain a perfect reconstruction of the input
vectors [92].
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Figure 5.13: A 1-D example with missing data points: (a) input data at each
iteration, (b) estimated principal axes, (c) reconstructed vectors.
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5.4.4 Robust PCA

The basic idea of our robust PCA algorithm is to determine the outliers and treat
them as missing data points, and then use the algorithm described above to calculate
PCA without these outliers [92]. Being based on the estimated principal axes and
coefficients we can again determine the outliers and repeat the process. The crucial
question is how to determine the outliers. We describe two approaches, one of which
gives a global threshold and another gives a local threshold [92]:

• Global threshold: Subject to the number of principal components which we
choose to represent the data, m, we expect that an average error is equal to
the discarded variance, which is σ2 = 1

n

∑n
i=m+1 λi. If we divide obtained value

σ2 on the number of data points, k, we can get an average expected error per
data point, σ2

point = σ2/k. Now we can treat all those data points as outliers
whose reconstruction errors are larger than biased value of σ2

point. The problem
with this method consists in assuming the same variability across the data set,
which is in general not true.

• Local threshold: In [94] it was proposed to compute a local threshold for
each point based on the Median Absolute Deviation (MAD). They compute
σ2 for each point as a median value over region with center in the data point.

According to this we can outline our robust nonlinear PCA algorithm as follows
[92]: Usually, for leaner data and model only a few iterations of this algorithm are

Algorithm 11 Robust nonlinear PCA.
repeat

Compute principal axes and coefficients using robust nonlinear PCA on X.
Detect outliers using either global or local threshold.
Treat outliers as missing data points and perform NLPCA by using Algo-
rithm 10.
Replace missing data points in X by reconstruction using estimated E and
A(i), i = 1, . . . , n.

until the outlier set is empty

sufficient for convergence.

Figure 5.14 illustrates the performance of the algorithm robunst nonlinear PCA.
Now, a set of 1-D vectors is formed from 6 shifted sinus functions with different
magnitudes and random frequencies. We randomly replaced 20% of the elements
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with Gaussian noise, Figure 5.14(a). Figure 5.14(b) and (c) depict the reconstruction
after the using standard PCA and proposed robust nonlinear PCA algorithm of
treating noised data, where p = 2. One can observe, how initially noisy signals
become more regular. We need to note that due to nonlinearity of the data, the case
of differen frequencies, it is impossible to reconstruct pure signal by standard PCA
because it is leaner operator.
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Figure 5.14: A 1-D example with noisy signals: (a) input data, (b) reconstruction
after using the standard PCA algorithm, (c) reconstruction after the using tensor

robust PCA algorithm.
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5.5 Tensor Methods for Systems of Nonlinear Equa-

tions

This section has been prepared based on the publications of Prof. Brett Bader from
The Sandia National Laboratories (CA\USA). Particularly, we refer the reader to
his publication [98] to learn more comprehensive explanations on solving large-scale
systems of nonlinear equations.

In this section we describe iterative tensor methods for solving systems of nonlinear
equations. Systems of nonlinear equations arise in many practical tasks, e.g., solu-
tion of partial differential or non-polynomial equations. Tensor approach is based
on higher-order Taylor approximation of the system of nonlinear equation, that is
required in each tensor iteration, while Newton’s method is the first order approxi-
mation [98]. Newton’s method is a state-of-the-art approach which is widely used in
practice but is weak for large-scale problems because of its high linear algebra costs
and large memory requirements. The diagram on Figure 5.15 shows classification of
solutions for system of nonlinear equations [99].

System of Nonlinear Equations

Newton’s Method Tensor Methods

Newton-Krylov’s Methods Tensor-Krylov’s Methods

Small problems

Large problems

First-order approaches Higher-order approaches

Figure 5.15: Existing optimization methods for systems of nonlinear equations
solving.

Direct tensor methods for nonlinear equations have performed especially well on
small, dense problems, for instance, when the Jacobian matrix at the solution is
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singular or ill-conditioned, which may occur when the current solution approaches
to optimal value. For large space problems we can utilize modified method, called
Newton-Krylov’s method, which involves approximate solution for a local linear
model, or tensor-Krylov method [98]. Here we concentrate on small space problem
and compare algorithms of Newton’s and tensor models as well as their performances.
The test results evidently show that that tensor methods are generally more robust
and efficient than Newton’s one for some classical optimization problems.

To acquaint with well discussed tensor methods for large nonlinear equations we
refer the reader to [100], where author uses direct methods for solving the linear
systems of equations that arise in each tensor iteration. Unfortunately, for very
large systems of nonlinear equations, the slow asymptotic performance and large
storage requirements of direct methods make them impractical. For these systems
robust and fast iterative solvers such as Krylov’s algorithms must be used. Different
tensor-Krylov’s approaches are presented and analyzed in [98]. One of the main
problems of tensor methods is that the Jacobian matrix must be available explicitly
in each iteration. Tensor-Krylov’s methods do not almost require matrix storage. It
is one of the main advantages of these methods.

Now we can define the system of nonlinear equations as [98]

for f : Rn → Rn, find x∗ ∈ Rn such that f(x∗) = 0, (5.88)

where f(x) is at least once continuously differentiable.

Below we present and compare Newton’s and tensor approach for the problem of a
system of nonlinear equations.

5.5.1 Newton’s method

Standard methods in numerical optimization are called such methods, for which
solutions of (5.88) are based on linear local models [98]. Most popular among these
methods is Newton’s one, which bases each of its iterations on a linear local model
m(xc + d) of the function f(x) around the current state xc as [98]:

m(xc + d) = f(xc) + J(xc)d, (5.89)
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where xc means the current iterate of a nonlinear solver, d ∈ Rn is the step and
J(xc) ∈ Rn×n is either the current Jacobian matrix of f(x) or its approximation. A
root of this local model provides the Newton step [98]

d = −J−1(xc)f(xc), (5.90)

which is used to reach the next iterate point. Thus, Newton’s method is defined when
J(xc) is nonsingular and consists of updating the current point with the Newton step

x∗ = xc + d. (5.91)

In practice, for the case of large-scale problems, it is not suitable to implement the
Newton’sĄmethod using direct factorizations of J(xk) due to large arithmetic and
storage costs [98].

5.5.2 Tensor method

Tensor methods solve (5.88) by including more information in local model. According
to this generated steps are of better quality than for Newton’s method and reaching
the solution is faster [98]. Especially it happens for problems where the Jacobian
is singular or ill-conditioned at its solution. Common local tensor model bases each
iteration on a quadratic model of the nonlinear function [98],

m(xc + d) = f(xc) + J(xc)d+
1

2
Tc ×2 d×3 d, (5.92)

where Tc ∈ Rn×n×n is an order-3 tensor (that is why these methods get their name),
which includes second-order information of f(xc). Usually, Tc is selected so that the
model interpolates r previous function values in the recent history of iterates, which
makes Tc a rank-r tensor. Thus no second derivative information is evaluated in
forming the tensor term Tc. In practice, for most approaches r is equal to 1 or 2,
but, as was shown in our tensor analysis, to describe any system in whole we need to
involve full rank tensor. From here and below, for simplicity, we denote the current
state f(xc) as f and J(xc) as J.

Let’s define the tensor term Tc by such a way that the local model m(xc + d)

interpolates values of the function f(x) at past iterates [98]. The model should
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satisfy [98]

f(x−k) = f + Jsk +
1

2
Tc ×2 sk ×3 sk, k = 1, . . . , r, (5.93)

where
sk = x−k − xc, k = 1, . . . , r. (5.94)

Generally, it is required that the past points x−1, . . . ,x−r should be selected so that
the set of directions sk from xc to the selected are linearly independent [98]. That is
why in practice r is small. The procedure of finding linearly independent directions
is easily implemented easily using Gram-Schmidt algorithm. After selecting the
linearly independent past directions, we form the tensor term. In [101] authors
define Tc as a tensor that satisfies the interpolation conditions [98]:

min
Tc

||Tc||F ,

subject to Tc ×2 sk ×3 sk = 2(f(x−k)− f − Jsk).
(5.95)

The solution of above equation is the sum of r rank-1 tensors [98] whose horizontal
faces are symmetric,

Tc =
r∑

k=1

ak ◦ sk ◦ sk, (5.96)

where ak is the kth column of matrix A ∈ Rn×p and defined by A = ZM−1, Z is an
(n× p)-dimensional matrix whose columns are zj = 2(f(x−j)− f − Jsj), and M is a
(p× p)-dimensional matrix entries of which defined by mi,j = (sTi sj)

2, 1 ≤ i, j ≤ p.

Using the tensor term derived above, the tensor model (5.92) becomes [98]

m(xc + d) = f + Jd+
1

2

r∑
k=1

ak(d
T sk)

2. (5.97)

The simple form of the second term in (5.97) is the key of being able to efficiently
solve the tensor model. The cost of forming the tensor term and the tensor model
is O(n2r) arithmetic operations.

As was shown in [100] the solution of (5.97), where m(xc + d) = 0, can be reduced
to the solution of a system of r quadratic equations in r unknowns, plus the solution
of r + 1 systems of linear equations that all involve the same matrix, J possibly
augmented by r dense rows and columns. We can utilize the same approach to solve
the minimization problem min ∥m(xc + d)∥2.
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The basic approach used in these algorithms is illustrated by the case when J is
nonsingular and the tensor model has a root. In this case, premultiplying the tensor
model by sTi J

−1, i = 1, . . . , r, gives the r quadratic equations in the r unknowns
βi = sTi d,

sTi J
−1f + βi +

1

2

r∑
k=1

sTi J
−1akβ

2
k = 0, i = 1, . . . , r. (5.98)

These can be solved for βi, i = 1, . . . , r, and then the equation

f + Jd+
1

2

r∑
k=1

akβ
2
k = 0 (5.99)

can be solved for d. This process requires the calculation of J−1F and J−1ak, k =

1, . . . , r (or alternatively J−1(F + 1
2

∑r
k=1 akβ

2
k) and J−T si, i = 1, . . . , r) and the

solution of the system of quadratic equations (5.98). We need to note that in general
case of f(x) it can be impossible to get explicit value of Jacobian matrix, J(x), from
system of nonlinear equations. So we have to approximate J(x) as well. To solve the
generalized minimization problem, min ∥Qm(xc + d)∥2, we refer the reader to [100].

Now let’s focus on the case when r = 1 so our approach transforms to one secant
update. Similar idea is used for large-scale tensor-Krylov methods [98]. In this case,
the tensor model about some data point xk reduces to

m(xk + d) = f(xk) + J(xk)d+
1

2
ak(s

T
kd)

2, (5.100)

where
ak =

2(f(xk−1)− f(xk)− J(xk)sk)

(sTk sk)
2

and sk = xk−1 − xk. (5.101)

After forming the model, we use it to determine the step to the next trial point.
Because (5.100) may not have a root, one can solve the minimization subproblem
min∥m(xk + d)∥2 and a root or minimizer of the model using the tensor step. Due
to the special form of (5.100), the solution of subproblem in the nonsingular case
reduces to solving a quadratic equation followed by solving a system of n− 1 linear
equations with n− 1 unknowns. Based on described material, we can outline rank-1
tensor method as follows [98]:
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Algorithm 12 Tensor algorithm.
Choose initial state x0.
On the basis Newton’ algorithm evaluate the next state, xk, k = 1.
repeat

Form local tensor model as in 5.100 for xk.
Find d that minimize m(xk + d).
Update xk+1 = xk + d.
If xk+1 is not acceptable, then perform linesearch min ∥f(xk + αd)∥2 and
xk+1 = xk + αd.

until the xk+1 is stable

5.5.3 Numerical Testing

Here we present results of testing Newton’s and tensor models for minimization of
modified Rosenbrock’s function:

f(x) =

{
f1(x) = 5(x2 − x21)
f2(x) = 1− x1

(5.102)

Modification was performed just for squeezing the range of the function in observing
area. The modified function has the same root, (1, 1), as for classical definition.
Figure 5.16 presents optimization results for described above (a) Newton’ and (b)
tensor methods, respectively [99]. To show and compare performance of the algo-
rithm we used the same initial data point (denoted by yellow dot), (−0.5, 0.5), for
both optimization methods. Both subfigures have the same meaning of colored lines:
red dashed lines denote estimated position of the next optimal points, xk+1 = xk+d,
and green lines denote accepted locations after linesearch procedure, xk+1 = xk+αd.
As we can see from the obtained results the tensor method needs almost 3 steps to
reach the minimum whereas Newthon’s method takes 8 steps and performs fluc-
tuation around the root point due to ill-condition of Jacobian matrix near by the
root. Is is evident that due to nonlinearity of tensor method we can reach functional
minimum faster and more reliable than in the case of linear methods utilization.
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(a) (b)

Figure 5.16: Minimization of modified Rosenbrock’s function: (a) Newton’s
method, (b) tensor method.



Chapter 6

Conclusions and Future Work

This dissertation contributes to the field of tensor analysis which appears increasingly
in many application domains such as signal and image processing, factor analysis,
computer vision, etc., where we need to decompose higher-order data. A tensor is
a multidimensional order-p array of scalars, where p denotes the number of non-
singleton dimensions. Attractiveness of tensors consists in their "native" form of
data representation, e.g., higher-order moments and derivatives. During the last
half a century tensors have played arisingly important role in data analysis. And
again I would like to acknowledge Prof. Tamara Kolda and Prof. Brett Bader from
Sandia National Laboratories as well as other authors whose publications I have used
in this dissertation.

6.1 Conclusions

At the beginning of this dissertation we have described importance of tensor ap-
proach and presented an overview of the state-of-the-art research works as well as
notations and operations in the field of tensor analysis. After, we have analyzed
existing methods of tensor decomposition and their applications.

In this dissertation we have defined a sum-of-rank-1 non-redundant tensor decom-
position in terms of which we have determined an upper bound for the rank of
symmetric and non-symmetric tensors and described tensors as sets of variables.
The decomposition we have proposed reinterprets the orthogonality property of the
singular vectors of matrices as a geometric constraint on the rank-1 matrix bases

115
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which leads to a geometrically constrained singular vector frame. The main idea of
the proposed decomposition consists in preservation of cardinality between initial
data set and obtained result. As it was shown, the simplest case of tensor decompo-
sition which preserves cardinality is SVD (p = 2), in this case SVD just transforms
data space into parametric one.

We have figured out that widely known and used tensor models, CP and Tucker,
can be considered as extensions of the SVD without preserving cardinality. This
means that the number of variables, which describes the decomposition results, in
higher than d.o.f. of initial data set. So decomposition like that is considered to be
redundant. It happens because the algorithms of CP and Tucker models are based
on properties of SVD but do not involve them in whole. We have presented a tensor
decomposition that includes SVD as a particular case with all its corresponding
properties. It has been numerically proved that proposed tensor model does not
have redundancy.

We have presented a geometrically constrained basis vector frame that yields a set of
rank-1 symmetric tensor bases that is able to attain a sum-of-rank-1 decomposition of
any order, any dimensional symmetric tensor. We have also defined permutation ten-
sors on the basis of which we have determined how to pick vectors for non-symmetric
rank-1 tensor bases from vector bases for symmetric ones. The number of non-zero
entries of such permutation tensors are determined by the upper-bound of rank for
tensors. We have provided a differential model of non-redundant decomposition and
utilize a Levenberg - Marquardt algorithm to achieve zero-error decompositions by
optimizing the Givens rotation angles. This model has been successfully applied
both to classical SVD-based tasks and to high-order extension of linear problems.

We have applied the proposed tensor decomposition model to the problem of density
estimation as well as to derivative problems of principal curve fitting and clustering.
Obtained results are better and easier computable than for moment based methods.
We have shown how tensors can be utilized in tasks of data subspace separation via
Generalized PCA where each factor describes separated data set. Robust Nonlinear
PCA had been described in tensor terms and used for missing and noised data that
have allowed us to had a deal with nonlinear data space. Solution of system of
nonlinear equation via tensor methods has shown much better performance compar-
ing with classical Newton’s method. Given results provide us wide field for further
research.
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6.2 Future Work

In this dissertation we have been interested in the basis of non-redundant tensor
model. Proposed conceptions were applied to the state-of-the-art problems in the
fields of data analysis. As further important and possible research we offer the
following goal list:

1. Investigate properties of the proposed geometrical vector frame and prove the
invariance and uniqueness of the offered approach which can be empirically
observed for small values of tensor order and the dimensionality. The most
important part for such a problem is an analytic solution and simple con-
structing algorithm of vector frame. Because proposed vector frame always
covers the unit hypersphere by even number of points (vectors from origin) it
is also important to figure out an approach for odd number of points.

2. Analyze properties of permutation tensors which influence on the final struc-
ture of decomposed tensor. Like for the case of permutation matrices, we
believe that there is a common transformation rule for different permutation
tensors that converts linear combinational coefficients from ones to others.
Strictly speaking the invariance of proposed tensor model depends on both
invariance of vector frame and properties of permutation tensor.

3. Simplify implementation and improve the convergence speed of decomposition
model. Due to non-orthogonality of vector frame in general case, we have to
figure out all combinational coefficients simultaneously in order to decompose
a tensor. A possible approach to get them separately, that means tensor or-
thogonalization, is to extend dimensions of decomposed tensor, like for the case
of KPCA, and perform decomposition in higher dimensions.

4. Expand analysis and application of the non-negative case of non-redundant
tensor decomposition, which describes natural form of data representation and
does not involve nullifying operations. Such an approach is very important in
the fields of image processing and computer vision.

5. Decrease complexity and apply the proposed tensor model to the problems
of density estimation/classification/clustering/dimensionality reduction/com-
pression/independent components analysis/etc. with regard to real higher-
order multidimensional data. Due to complexity of tensor model, since it can
be imagined as multidimensional higher-order polynomial, the most weak point
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of the current tensor models is their applicability just to small data set. There
are plenty of published papers in this field without real numerical results.

6. Reveal the definition, properties, and analytical expression of tensor determi-
nant for higher-order cubical tensors. Our earlier research let us believe in
existing of such an operator. We are sure that tensor determinant will play
the same role in multidimensional higher-order analysis as matrix determinant
does it in the case of linear systems.

7. When all previous challenges are solved we can consider the problem of ten-
sor inversion and methodology, however it sounds unbelievable, for analytic
solution of systems of nonlinear polynomial equations.



Appendix A

Hyperspherical Coordinate System

The vector frame for tensor decomposition can be easily reparameterized in hyper-
sphere coordinate system since vectors form uniformly distributed points on the
unit hypersphere. Hyperspherical coordinate system in n-dimensional Euclidean
space expresses position of point x by (n − 1) angular hyperspherical coordinates
θi, i = 1, . . . , n − 1 and the distance from the origin ρ, which can be thought of as
the radios-vector the hypersphere centred at the origin [102]. Polar and spherical
coordinate systems are particular cases of hyperspherical one for 2 and 3-dimensional
Euclidian spaces, respectively.

The transformation from Cartesian to hyperspherical coordinates for x and θ with
ρ is:

x1 = ρcos(θ1)

x2 = ρsin(θ1)cos(θ2)

x3 = ρsin(θ1)sin(θ2)cos(θ3)
...

xn−1 = ρsin(θ1) · · · sin(θn−2)cos(θn−1)

xn = ρsin(θ1) · · · sin(θn−2)sin(θn−1)

(A.1)
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The transformation from hyperspherical to Cartesian coordinates for θ with ρ and
x is:

θ1 = arctan x2

x1

θ2 = arctan x3√
x2
1+x2

2

...

θn−1 = arctan xn√∑n−1
i=1 x2

i

ρ =
√∑n

i=1 x
2
i

(A.2)

Figure A.1 illustrates relation between Cartesian and hyperspherical coordinate sys-
tems for 3-dimensional Euclidean space.
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Figure A.1: Relation between Cartesian and hyperspherical coordinate systems.



Appendix B

Platonic Solids

In 2-dimensional space any figure limiting a part of a plane can be defined as a set of
line segments . Such a plane figure is called a polygon and consists of finite number
of closed lines [103]. A regular polygon is a convex polygon with equal sides. A
polyhedron is a figure in 3-dimensional space consists of set of polygons. A polyhe-
dron is regular if all its faces are identical and regular polygons. Regular polyhedra
are called "Platonic solids" and are symmetric 3-dimensional convex objects [104].
There are only five convex regular polyhedra (Tetrahedron, Cube, Octahedron, Do-
decahedron, Icosahedron), Figure B.1. Below we present two common analyses that
prove this limit.

Polyhedron is regular when it satisfies rules:

• It is convex.

• All faces are regular polygons.

• Each vertex has the same number of edges.

Each Platonic has its unique Schlafli symbol {p, q} [105], where p defines the number
of edges in a face and q defines the number of edges meeting at a vertex. From Schlafli
symbol we can determine all other information, such as total number of vertices (V ),
edges (E), and faces (F ). Since any edge joins two vertices and has two adjacent
faces we have:

pF = 2E = qV (B.1)
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(a) Tetrahedron (b) Hexahedron (c) Octahedron

(d) Icosahedron (e) Dodecahedron

Figure B.1: Platonic solids.

After Platon, Euler discovered another relationship between these values:

V − E + F = 2. (B.2)

The Schlafli symbols as well as values of V , E, F of the five Platonic solids are given
in the Table B.1.

Table B.1: Platonic solids and their parameters.
Polyhedron Vertices Edges Faces Schlafli symbol
Tetrahedron 4 6 4 {3,3}
Cube 8 12 6 {4,3}
Octahedron 6 12 8 {3,4}
Dodecahedron 20 30 12 {5,3}
Icosahedron 12 30 20 {3,5}

Below we present two analyses of possible regular polyhedra.

Geometric approach. Each vertex of the solid must connect at least three faces.
The sum of the flat angles connected to each vertex must be less than 2π. Because
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each vertex connects regular polygons then maximal angle in the polygon (face) must
be less than 2π/3. Regular polygons with 6 and more vertexes have inner angles
≥ 2 ∗ π/3, so the face of polyhedron can be triangle, square, or pentagon.

Topological approach. Combining two above equations we have:

2E

q
− E +

2E

p
= 2, (B.3)

and after some simplification algebra:

1

q
+

1

p
=

1

2
+

1

E
. (B.4)

As E is always more than p and q we get an inequality:

1

q
+

1

p
>

1

2
. (B.5)

There are only five possibilities for Schlafli symbol {p, q} that satisfy this inequality:
{3, 3}, {4, 3}, {3, 4}, {5, 3}, {3, 5}.



Appendix C

Rotation Matrices and their

Derivatives

Rotation - movement of data points in Euclidean space when at least one point of
data space is stable [106]. We need to distinguish rotation, transformation, and
reflection. Translation does not have any stable data point and just moves all data
points along fixed direction on constant distance. Refection produces mapping of
data points of Euclidean space Rn to itself through fixed Rm data space, where
m < n. We can call any matrix R as a rotation matrix in n-dimensional space if R
is square and orthogonal, and determinant of R is equal to 1:

RT = R−1 and det(R) = 1. (C.1)

In this appendix we outline two the most common realizations of the rotation matrix
as well as their derivative forms. The first implementation is the Euler-type rotation,
where any rotation is a sequence of 2-dimensional one. This operation can be very
easily imagined but it has such disadvantage as complexity. The second approach is
based on matrix exponential. This allows us to implement product and derivation
of such a matrix very easily.

C.1 Euler-type Rotation Matrix

In real applications we meet 2 and 3-dimensional rotations, in general, rotation
matrix for n-dimensional space can be defined as consecutive product of rotational
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matrices in 2-dimensional spaces. A rotational matrix R in 2-dimensional space is:

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
. (C.2)

A rotational matrix R in 3-dimensional space is consecutive product of 2-dimensional
matrices:

R =


cos(θ12) −sin(θ12) 0

sin(θ12) cos(θ12) 0

0 0 1



cos(θ13) 0 −sin(θ13)

0 1 0

sin(θ13) 0 cos(θ13)



1 0 0

0 cos(θ23) −sin(θ23)
0 sin(θ23) cos(θ23)


(C.3)

In general case, (n, n)-dimensional rotation matrix R(θij) in (i, j)-space is:

R(θij) =



1 0 · · · 0

0
. . .

... . .
.

cos(θij) · · · 0 · · · −sin(θij)
... · · · 0 · · · 1 · · · 0 · · ·

...

sin(θij) · · · 0 · · · cos(θij)

. .
. ...

. . . 0

0 · · · 0 1


(C.4)

A rotational matrix R in n-dimensional space is consecutive product of 2-dimensional
matrices:

R =
n−1∏
i=1

n∏
j=i+1

R(θij). (C.5)

Let’s have a vector of rotation angles, θk, k = 1, . . . , n(n − 1)/2, in n-dimensional
space with one-to-one correspondence between k and pair of indexes , (ik, jk) denot-
ing rotation plane. Then the sth partial derivative of R(θk) with respect to angle
θk is ∂sR(θ)/∂sθk = MsR(θ). In this case M is (n, n)-dimensional matrix such
that mik,jk = δik,jk−δjk,ik and all odd and even partial derivatives of rotation matrix
R(θ) are equal to the first and the second derivatives respectively and are alternating
sequences.



Appendix C. Rotation Matrices and thais derivatives 126

C.2 Skew-Symmetric Matrix Exponential

Real real skew-symmetric (n, n)-dimensional matrix Θ is given, we can obtain a
rotation matrix as R(Θ) = eΘ [106]. We can define matrix exponential values using
the power series of eΘ:

eΘ = I+Θ+
1

2
Θ2 +

1

6
Θ3 + · · ·+ 1

k!
Θk + · · · =

∞∑
k=0

1

k!
Θk, (C.6)

where Θ is a skew-symmetric square matrix whose transpose is also its negative,
ΘT = −Θ. Here there is an example of a skew-symmetric (3, 3)-dimensional matrix
Θ:

Θ =


0 θ12 θ13

−θ12 0 θ23

−θ13 −θ23 0

 . (C.7)

For any skew-symmetric Θ, eΘ is always a rotation matrix. In general case of Θ,
to find eΘ we can use the Pade approximation with scaling and squaring [107]. If Θ is
skew-symmetric and non-singular such that Θ = VDVT then eΘ = Vdiag(ediag(D))/V.
As far as V is the orthogonal matrix then V−1 = VT and

R(Θ) = eΘ = eVDVT

= Vdiag(ediag(D))VT . (C.8)

The sth partial derivative of R(Θ) with respect to angle θij is ∂sR(Θ)/∂sθij =

MsR(Θ), where, as for the case of Euler rotation, mik,jk = δik,jk − δjk,ik .
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