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Traditionally, second-order statistics are used as the optimality criterion in almost 

any adaptive system training scenario, supervised or unsupervised, with great success, 

thanks to the pioneering works of Wiener and Widrow. However, recently there have 

been new problems arising that require more than just the second-order statistics. Blind 

deconvolution and independent component analysis are known to necessitate higher order 

statistics or alternative information theoretic criteria. For a couple of years, 

Computational NeuroEngineering Laboratory has been working on similar problems that 

may be solved using information theoretic criteria. Nonparametric algorithms and 

associated adaptation algorithms were proposed for Renyi’s quadratic entropy and 

approximations to Renyi’s quadratic mutual information definitions. These algorithms 

were applied successfully to many practical problems ranging from blind source 

separation to feature reduction for classification.  

x v
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This research aimed to investigate the full potential of information theoretic 

learning while filling in the mathematical gaps in previous work and providing valid and 

efficient simplifications to the associated learning algorithms to convey practicality. To 

this end, an extended entropy and mutual information estimator is introduced for Renyi’s 

definitions of entropy, which encompass those of Shannon’s as special cases. The 

mathematical properties of entropy and the proposed nonparametric estimator are 

investigated in light of the needs of a learning algorithm. Various Renyi’s-entropy-based 

adaptation criteria are proposed for supervised and unsupervised training schemes and 

these are tested in simulations to show superiority over alternatives. Stochastic and 

recursive entropy estimates are introduced for on-line information theoretic data 

processing purposes. Simulation results obtained in various adaptation problems proved 

the effectiveness of these algorithms for on-line information processing. In addition, an 

extension to Fano’s bound is proposed using Renyi’s entropy definition. The extension 

resulted in an upper bound for the classification error probability and a lower bound. In 

terms of theoretical insights, these bounds also verified the intuition that in designing 

optimal classifiers, one needs to maximize the amount of information transferred through 

the classifier. The significance of this work can be summarized in one sentence as 

follows: The provided mathematical and algorithmic tools enable adaptive system 

designers to make full use of the principle of information theoretic learning independent 

of the topology of the adaptive system or the nature of the data. 
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CHAPTER 1 
INTRODUCTION 

 
1.1 Historical Background 

The roots of adaptive systems and filtering lie deep in the early 19th century 

developments by Gauss and his contemporaries on function approximation theory. 

Although these initial attempts to understand the nature of functions (and perhaps to use 

this knowledge for practical problems of the time) provided a profound basis and a firm 

mathematical theory behind the subject, real practical advantages did not become evident 

until the concept of adaptive filters was established around the mid-20th century. 

Wiener’s insightful analysis on adaptive function approximators [Wie49] and especially 

its application to the FIR filter structure to yield what is now known as the Wiener-Hopf 

equations [Hay84] provided a solid understanding of the nature of adaptive filters 

investigated under second-order statistical optimization criteria. The first exciting results 

regarding the applicability of these theoretical results came with the advent of digital 

computers in the 1950s and Widrow’s contemporary work on the basic linear neural 

network structure called the adaptive linear neuron (ADALINE), which led to the well-

known LMS algorithm [Wid85]. The LMS algorithm and its derivatives, for the first 

time, successfully allowed adaptive filters to be applied to engineering problems in real-

time scenarios. As a consequence, the area of adaptive filter research gained wide 

acceptance by the engineering community and flourished in the following years with the 

contributions of numerous researchers. Eventually adaptive systems acquired the ultimate 

 1



2

recognition of the scientific community as valuable engineering tools [Cla98, Goo84, 

Far98, Hay84, Nar89]. 

 These early works, however, were mostly concentrated around the investigation 

of mean-square-error (MSE) and other second-order statistics as optimality criteria, and 

for valid reasons. Since early research mainly concentrated on linear adaptive systems, 

the adoption of second-order optimality measures resulted in quadratic performance 

surfaces, for which the analytical expression of the optimal solution could easily be 

obtained, allowing theoretical analyses of various aspects of the adaptation problem. Also 

initially, the engineering community being mostly content with the performance obtained 

by linear systems trained using second-order criteria, this practice carried over to the 

training of nonlinear adaptive systems. As a consequence of this traditional understanding 

that second-order statistics are sufficient to determine solutions to almost all practical 

engineering problems (a belief that is also backed up by the central limit theorem), for the 

last four decades, most of adaptive systems research rambled on similar lines; whether 

the adaptive system under consideration was linear or nonlinear, MSE for supervised 

training and other second-order criteria for unsupervised adaptation was the focus of 

efforts [Bis95, Dia01, Edm96, Fan01, Far98, Qur85]. 

More recently, on the other hand, especially in the fields of signal processing and 

communications, new problems were encountered that cannot be resolved by the use of 

mere second-order statistics, but rather necessitate the use of higher order statistical 

properties of the random processes involved. The problems most relevant to the scope of 

this work include, but are not limited to, blind source separation (BSS), independent 

component analysis (ICA), blind deconvolution (BD) and equalization (BE), subspace 
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projections and data dimensionality reduction, and feature extraction and ranking 

[Hay00a, Hay00b, Hyv01, Nik93].  

 While these developments are underway in adaptive systems research, 

information theory emerged and flourished independently in the communications area. 

Although the notion of information in the outcome of a random event was introduced 

earlier by Boltzman and Hartley [Gac94, Tit00], Shannon [Sha48, Sha64] was the first to 

define the average information of a random process and to establish a profound theory 

around it with specific applications and implications on digital communications. While 

Shannon never referred to his work as information theory, this appealing new branch of 

mathematics attracted the attention and interest of many researchers, becoming a major 

field of research in itself from theoretical and practical viewpoints [Csi81, Cov91, Fan61, 

Kul68, Ren76, Ren87]. 

 Specifically important in this research are the definitions and contributions of 

Alfred Renyi [Ren76], who showed that Shannon’s definitions of information theoretic 

quantities like entropy and mutual information were in fact special cases of a more 

general family of definitions. These generalized definitions are called Renyi’s entropy 

and Renyi’s mutual information, etc. Although Renyi’s definitions encompass Shannon’s 

definitions as a special case for the family parameter corresponding to 1, because of the 

widespread recognition of Shannon’s work due to its significant implications in 

communications theory, Renyi’s work was not recognized as a useful tool by researchers 

in engineering and other fields until recently; most interest in Renyi’s entropy is in pure 

information theoretical research [Bas78, Cam65, Mit75]. In the 1990s, some interest 

developed in Renyi’s entropy in different fields including pattern recognition [Sah97], 
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and cryptology [Cac97]. In adaptive filtering, Principe and his co-workers at CNEL made 

the initial attempts to break the legacy of Shannon’s entropy [Fis97, Pri00a, Pri00b, 

Xu98, Xu99]. They successfully applied Renyi’s entropy and other derivative optimality 

criteria to problems of blind source separation, dimensionality reduction, feature 

extraction, etc. Although many others used Shannon’s definitions of information theoretic 

criteria for adaptation processes [Bel95, Ber99, Vio95], Principe was the first to 

introduce the terminology information theoretic learning (ITL) into adaptive systems 

literature. In this study, we extend their work, establishing a solid theory behind 

information theoretic learning and demonstrating superior performance in many practical 

applications that concern adaptive signal processing. 

1.2 Brief Overview of State-of-the-Art Preceding the Current Research 

 The CNEL has been working on information theoretic learning for over 5 years 

now. Fisher [Fis97] was the first to investigate blind source separation and subspace 

projections from an information theoretic view point using Renyi’s entropy, together with 

Xu [Xu99]. Although Fisher did not actually use information theoretic quantities for 

adaptation, his cost functions for these problems were derived as a consequence of 

information theoretic analyses. The use of Parzen windowing also appeared in Fisher’s 

dissertation for the first time [Fis97], although the main focus of his work was not 

information theoretic learning. 

 Fisher was mainly interested in subspace projections that preserved most of the 

mutual information between the input vector and a desired reference signal. His approach 

should not be understood as supervised learning, because the aim of this methodology 

was not to match the output of the adaptive subspace projector as close as possible to the 
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reference signal. The reference signal is merely used as a guide to extract the relevant 

information from the input in the context that interests the designer. The architecture used 

is shown in Figure 1-1. This architecture was successfully applied to SAR imagery by 

Fisher to extract the two most informative components from a 64x64 SAR image, where 

the desired output was the orientation of the vehicle in the image [Fis97]. 

 

…x

W

 

I(y,d) 

y

d
 

 

 

Figure 1-1. Topology used in Fisher’s maximally informative subspace projections 

As for the evaluation of mutual information, quadratic approximations were 

proposed. This is mainly because a tool to estimate the actual mutual information 

expression was not available to Fisher at that time. These quadratic approximations to 

mutual information were named QMI-ED (Quadratic Mutual Information – Euclidean 

Distance) and QMI-CS (Quadratic Mutual Information – Cauchy-Schwartz). The 

evaluation of these quantities was made possible by the use of Parzen windowing with 

Gaussian kernels in estimating all necessary probability density functions (pdf). Because 

these measures are designed such that only the integration of the squares of pdfs are 

required, it becomes possible to analytically express the solution to these integrals 

through the exploitation of the Gaussian kernels in Parzen windowing [Pri00a].  

Current use of the integral of the square of a pdf necessitated the assignment of a 

name to this quantity; inspired by the behavior of the nonparametric estimator of this 

quantity based on Parzen windowing and in analogy with the potential fields generated 
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by particles in physics they called it the information potential. The link with information 

theory is seen through the investigation of Renyi’s quadratic (Order 2) entropy of a 

random variable X with pdf  fX (.); notice the argument of the logarithm in Eq. (1.1), the 

definition of Renyi’s quadratic entropy. 

∫
∞

∞−

−= dxxfXH X )(log)( 2
2   (1.1) 

 Motivated by the well-known Bell-Sejnowski algorithm for BSS [Bel95], Fisher, 

Wu, and Xu also applied these ideas to this problem [Fis97, Wu99, Xu99]. Consider the 

BSS topology shown in Figure 1-2, where H is the unknown mixing matrix and W is the 

separation matrix to be adapted for maximum joint output entropy. It is known that, in 

this square system, if the nonlinearities are matched to the cumulative density functions 

(cdf) of the sources, then maximizing the joint entropy at the output of the nonlinearrities 

will guarantee that the signals before the nonlinearities are the independent sources. 
y 

 

Entropy 

H W 
 
x 

    

 s 
 

 

 

Figure 1-2. BSS topology used by Fisher’s and Xu’s algorithms 

 Noticing that the joint entropy is maximized when the joint pdf under 

consideration becomes uniform over its support, Fisher proposed the following criterion 

to be minimized. 

(∑ −=
i

iY yfJ 21)( )   (1.2) 
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In this, the sample index is i and fY (.) is the joint pdf of the output after the nonlinearities 

estimated by Parzen windowing. This cost function is basically the Euclidean distance 

between the estimated pdf and the target uniform density with the integral approximated 

by a summation over the samples [Fis97]. 

 Alternatively, Xu uses Renyi’s quadratic entropy directly. Noticing that in Eq. 

(1.1), maximizing the entropy is equivalent to minimizing the information potential, since 

the logarithm is a monotonic function, Xu estimates the information potential in the usual 

manner and adapts the separation matrix accordingly. 

 Both Fisher and Xu used adaptive kernel sizes to achieve global optimum and 

avoid local optima; they decreased the kernel size (the variance of the Gaussian kernel 

used in Parzen windowing) to a nominal value during the course of training starting from 

a large value [verbal communication with Principe]. They could not, however, determine 

a mathematical reason for this behavior and provided heuristic explanations as to why 

this phenomenon occurred. 

 Another application of quadratic entropy, investigated by Fisher [Fis97], is the 

nonlinear principal component analysis (PCA), where he maximized the output entropy 

of a multi-layer perceptron (MLP) to show that this procedure results in the first 

nonlinear principal component of a double-Gaussian distributed two-dimensional data 

[Pri00a].   

1.3 Contributions of this Thesis to Information Theoretic Learning 

 Before this research had started, a nonparametric estimator for Renyi’s quadratic 

entropy was known and used in applications by CNEL members. This nonparametric 

estimator, as mentioned before, was based on a Parzen window estimate of the pdf using 
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Gaussian kernel functions. My first contribution was to extend this entropy estimator to 

account for any order of Renyi’s entropy and to allow the designer to use alternative 

suitable kernel functions, perhaps to improve performance over the Gaussian kernel 

counterpart [Erd02d]. Using the same idea in the derivation of the estimator for Renyi’s 

entropy, it then becomes possible to estimate Renyi’s mutual information and Renyi’s 

divergence nonparametrically from the samples. It has been shown that the previously 

used quadratic entropy estimator is a special case of this generalized estimator 

corresponding to the entropy order choice of two and kernel function choice of Gaussian. 

As an immediate consequence, the idea of information potential is generalized to order-α 

information potential (depending on the choice of entropy order), leaving the previously 

defined information potential to be the quadratic information potential. Furthermore, we 

investigated the possibility of regarding adaptation from a particle-interaction view point. 

This analysis gave us a generalized family of potential-energy-functions that could be 

used in general for supervised or unsupervised learning. In fact, we show that some 

commonly used adaptation criteria fall into this class of cost functions allowing the 

particle interaction model to be valid for adaptation under these principles.  

 My second contribution was to extend the well-known Fano’s bound for classifier 

error probability in terms of the conditional entropy of the output classes given the input 

classes. This classical inequality uses Shannon’s definition of entropy to arrive at a lower 

bound for the probability of misclassification. Using Renyi’s definition and applying 

Jensen’s inequality, we obtained a family of upper bounds for the probability of error and 

a family of lower bounds, in which Fano’s original bound resided as a special case 

[Erd01a, Erd02e, Erd02f]. This theoretical development complements the theory of 
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maximally informative subspace projections for feature selection, introduced by Fisher

by showing that both lower and upper bounds for the probability of classification erro

depends on the amount of information transferred through the classifier. 

 As a third contribution, this research introduces the minimum error entrop

(MEE) criterion for supervised adaptation. Traditionally, MSE has been the workhorse o

supervised training; this has strong validating reasons behind it, including the fact that th

error power is a sufficient statistic to train linear systems under Gaussian signa

assumptions. It is not sufficient, however, if the objective is to extract all the relevan

information from the given training data. In such situations, it is necessary to consider th

amount of information lost to the error signal and it is logical to minimize thi

information [Erd00a, Erd02c]. This is achieved when the error entropy is minimized, fo

entropy is the average information of a random variable. We investigated th

performance of MEE criterion in supervised training with many examples and cas

studies [Erd02c, Erd02d]. Comparisons with MSE showed improved performance i

extracting more information from the given data. In addition, we studied the structure o

the corresponding performance surface for linear adaptive systems, convergenc

properties in that case, and the general noise rejection capabilities of MEE [Erd01b]. 

 The fourth contribution of this research is the stochastic information gradien

(SIG), which allows on-line entropy manipulation on a sample-by-sample basis for real

time information theoretic adaptation of learning systems. The SIG provides a stochasti

estimate for the gradient of the actual entropy of the signal under consideration and th

idea behind it is identical to that of Widrow’s stochastic gradient for MSE, which i

known as the LMS algorithm. Also, SIG greatly simplifies the computational load
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required to solve for the optimal weight vector in high dimensional and large samp

adaptation situations. Exploring the properties of SIG, we showed the link between

special case of SIG with Hebbian learning, and the cost functions of the form 

where the dot symbolizes derivation with respect to time. Based on this last observatio

for on-line adaptation scenarios, we suggested extensions to the MSE criterion involvin

the squares of time derivatives of the error signal (in continuous-time), in order to for

the adaptive system to yield an instantaneous small error, and to continue exhibiting t

same level of small error over time.  

)([ 2teE &

 Motivated by the promising performance of SIG and the desire to improve 

while maintaining the algorithmic simplicity, we examined ways of updating our entro

estimate sample-by-sample. This led to a recursive entropy estimator and this is the fif

contribution of this study. The gradient of this estimator directly yields a recursi

entropy gradient, which we called the recursive information gradient (RIG). Remarkabl

RIG loses almost nothing from the structural simplicity of SIG, yet it provides a mo

accurate estimate of the entropy gradient based on the acquired samples up to that poi

in time. Also, RIG includes SIG as a special case, corresponding to a forgetting factor 

one (i.e., totally forgetting previous values). 
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CHAPTER 2 
NONPARAMETRIC ESTIMATOR FOR RENYI’S ENTROPY 

 
2.1 Literature Survey on Nonparametric Entropy Estimation 

 The problem of entropy estimation appears in many contexts in a variety of fields 

ranging from basic sciences like biology [Dur98] and physics [Bec93] to engineering 

[Cov91, Hay00a, Sha64]. From a mathematical standpoint, many approaches exist to 

estimate the differential entropy of a continuous random variable [Bei01]. An obvious 

approach, usually preferred when there is confidence that the pdf underlying the samples 

belongs to a known parametric family of pdfs, is to use the samples to estimate the 

parameters of the specific member of this family, perhaps using maximum likelihood 

methods, and then to evaluate the entropy of the specific pdf obtained as a result of this 

procedure. A useful list of explicit Shannon’s entropy expressions for many commonly 

encountered univariate pdfs was compiled by Verdugo Lazo and Rathie [Ver78]. A 

similar list for various multivariate pdfs is presented by Ahmed and Gokhale [Ahm89]. 

This approach, although useful in entropy evaluation tasks and effective when the 

assumed parametric family is accurate, is not competent in adaptation scenarios, where 

the constantly changing pdf of the data under consideration may not lie in a simple 

parametric family. Then, it becomes necessary to nonparametrically estimate the entropy. 

2.1.1 Plug-in Estimates 

 The plug-in entropy estimates are obtained by simply inserting a consistent 

density estimator of the data in place of the actual pdf in the entropy expression. Four 
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types of approaches could be followed when using a plug-in estimate. The first one, 

named integral estimates, evaluates exactly or approximately the infinite integral existing 

in the entropy definition. Renyi’s quadratic entropy estimator (developed and used 

successfully at CNEL) belongs to this family of entropy estimators, with an exact 

evaluation of the integral. An approximate estimate of this type for Shannon’s entropy 

was also proposed [Dmi73]. Joe [Joe89] also considered an approximate integral estimate 

of Shannon’s entropy using a kernel-based pdf estimate; however, he concluded that for 

multivariate cases, the approximate evaluation of the integral becomes complicated. 

Gyorfi and van der Meulen [Gyo87] avoid this problem by substituting a histogram 

estimate for the pdf. 

 The second approach, resubstitution estimates, further includes the approximation 

of the expectation operator in the entropy definition with the sample mean. Ahmad and 

Lin [Ahm76] presented a kernel-based estimate for Shannon’s entropy of this type and 

proved the mean-square consistency of this estimate. Joe [Joe89] also considered a 

similar resubstitution estimate of Shannon’s entropy based on kernel pdf estimates, and 

he concluded that in order to obtain accurate estimates especially in multivariate 

situations, the number of samples required increased rapidly with the dimensionality of 

the data. Other examples of this type of entropy estimates are more closely known to the 

electrical engineering community [Ber00, Bos01, Com94, Vio95, Yan97]. These 

estimates use spectral-estimation based or polynomial expansion type pdf estimates 

substituted for the actual pdf in Shannon’s entropy definition, except for the last one, 

which uses a kernel pdf estimator. In fact, a thorough search of the literature revealed that 

most estimators known to the electrical engineering community concentrate on 
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resubstitution estimates of Shannon’s entropy. Depending on the specific application the 

authors are interested in, these estimates are tailored to suit the computational 

requirements desired from the algorithm. Therefore, it is possible to write out an 

extensive list of application-oriented references with slight differences in their entropy 

estimators. The nonparametric estimator for Renyi’s entropy that we derive in Section 2.2 

is also a member of the resubstitution class and all theoretical results in these references 

might apply to it after some minor modifications. 

 The third approach is called the splitting data estimate, and is similar to the 

resubstitution estimate, except that now the sample set is divided into two parts and one is 

used for density estimation while the other part is used for the sample mean [Gyo87, 

Gyo89, Gyo90].  

Finally, the fourth approach, called cross-validation estimate, uses a leave-one-

out principle in the resubstitution estimate. The entropy estimate is obtained by averaging 

the leave-one-out resubstitution estimates of the data set. Ivanov and Rozhkova [Iva81] 

proposed such an estimator for Shannon’s entropy using a kernel-based pdf estimator. 

2.1.2 Estimates Based on Sample Spacing 

 In this approach, a density estimate is constructed based on the sample 

differences. Specifically in the univariate case, if the samples are ordered from the 

smallest to the largest, one can define the m-spacing between the samples as the 

difference between samples that are separated by m samples in the ordering. This pdf 

estimate can then be substituted in the entropy definition as in the resubstitution 

estimates. Surprisingly, although the m-spacing density estimates might not be consistent, 

their corresponding m-spacing entropy estimates might turn out to be (weakly) consistent 
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[Bec93, Bei85, Hal84, Tar68]. The generalization of these estimates to multivariate cases 

is not trivial, however. 

2.1.3 Estimates Based on Nearest Neighbor Distances 

 For general multivariate densities, the nearest neighbor entropy estimate is 

defined as the sample average of the logarithms of the normalized nearest neighbor 

distances plus a constant, named the Euler constant [Bec93, Koz87]. Kozachenko and 

Leonenko [Koz87], Tsybakov and van der Meulen [Tsy94], and Bickel and Breiman 

[Bic83] provide different forms of consistency for these estimates under mild conditions 

on the underlying densities. 

2.2 Entropy Estimation for Adaptation and Learning 

It is evident from the literature survey that, Shannon’s entropy occupied a great 

deal of research time and drew much of the effort on the topic. Yet, most of the ideas 

about estimating Shannon’s entropy are also applicable to Renyi’s and other definitions 

of this quantity. We are mainly interested in computationally simple entropy estimators 

that are continuous and differentiable in terms of the samples, for our main objective here 

is not to estimate the entropy itself accurately, but to use this estimated quantity in 

optimizing the parameters of an adaptive system. Therefore, we are not strictly bounded 

by the convergence speeds and consistency properties of these estimators, which is 

mainly the concern of mathematical research on the subject. We mentioned in Section 2.1 

that the previous estimator used at CNEL and the new estimator that we define in this 

section, are special cases of the general class of entropy estimation approaches described. 

First, we replicated the derivation of the old estimator for Renyi’s quadratic entropy, and 

then we derived the extended entropy estimator, which works for any order of entropy. 
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2.2.1 Quadratic Entropy Estimator 

The previously used nonparametric estimator for Renyi’s quadratic entropy used 

Parzen windowing with Gaussian kernels in the following manner. Recall the definition 

of quadratic entropy given in Eq. (1.1) for the random variable X. Suppose we have N 

independent and identically distributed (iid) samples {x1,…,xN} from this random 

variable. The Parzen estimate [Par67] of the pdf using an arbitrary kernel function κσ(.) is 

given in Eq. (2.1). This kernel function must be a valid pdf in general and it must be 

continuous and differentiable for our purposes (reasons are discussed later). 

 ∑
=

−=
N

i
iX xx

N
xf

1
)(1)(ˆ

σκ   (2.1)  

Assuming Gaussian kernels, Gσ(.), with standard deviation σ and substituting this 

in the quadratic entropy expression [Pri00a], we get the estimator. 
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The result is easily obtained by noticing that the integral of the product of two Gaussians 

is exactly given by a Gaussian function whose variance is the sum of the variances of the 

two original Gaussian functions. Other kernel functions, however, do not result in such 

convenient evaluation of the integral. Nevertheless, alternative kernels might still be used 

in this estimator. 
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2.2.2 Extended Estimator for Order-α Renyi’s Entropy 

 In the new estimator, there are no restrictions on the choice of entropy order and 

kernel function. Consider the definition of Renyi’s order-α entropy in Eq. (2.3), which 

can also be written with an expectation operator [Ren70]. 

[ )(log
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1)(log
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1)( 1 XfEdxxfXH XXX
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−
= ∫ αα

α αα
]  (2.3) 

Approximating the expectation operator with the sample mean, we get 
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  (2.4) 

Finally substituting the Parzen window estimator in Eq. (2.1) in Eq. (2.4) and rearranging 

terms, we obtain the nonparametric estimator for Renyi’s entropy. 
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Notice that for the specific choices of 2=α  and Gaussian kernels with standard 

deviation 2σ , Eq. (2.5) becomes identical to Eq. (2.2). In fact, for the quadratic entropy 

case, it is possible to make Eq. (2.5) identical to Eq. (2.2) by choosing  

∫
∞

∞−

−⋅−=− dxxxxxxx j
old

i
old

ij
new )()()( κκκ   (2.6) 

where κnew(.) denotes the kernel function used in Eq. (2.5) and κold(.) denotes the kernel 

function used in Eq. (2.2). This result has an interesting implication for the estimation 

variance of quadratic entropy using these two estimators. Noticing that if the exact same 

 



17

kernel function is used in both Eq. (2.2) and Eq. (2.5), the latter has a larger estimation 

variance due to the additional approximation introduced by the sample mean estimation 

of the expectation operator. Remarkably, due to the relation in Eq. (2.6), it is possible to 

completely eliminate this additional variance by selecting a suitable different kernel in 

Eq. (2.5); specifically for the case where a Gaussian kernel is used in Eq. (2.2), this 

corresponds to merely increasing the kernel size by a factor of 2 . 

2.3 Properties of the Nonparametric Entropy Estimator 

The nonparametric estimator in Eq. (2.5) is general purpose and can be used in 

situations where it is required to evaluate an entropy or where it is desired to adapt the 

weights of a learning system based on an entropic performance index. In the following, 

all kernel functions and random variable samples are assumed to be single-dimensional 

unless noted otherwise. The generalization of these results to multi-dimensional cases is 

trivial and the proofs follow similar lines. 

Theorem 2.1. The entropy estimator in Eq. (2.5) is consistent if the Parzen 

windowing and the sample mean are consistent for the actual pdf of the iid samples. 

 Proof. The proof follows immediately from the consistency of the Parzen window 

estimate for the pdf [Par67] and the fact that as N goes to infinity the sample mean 

converges to the expected value (notice, for example, that the sample mean estimate is 

not consistent for infinite-variance pdfs). 

 This theorem is important because it points out the asymptotic limitations of the 

estimator. In adaptation and learning from finite samples, since we rarely have huge data 

sets, it is not critical for our purposes to have a consistent or an inconsistent estimate of 

the entropy, as long as the global optimum lies at the desired solution. 
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 Property 2.1. The kernel size must be a parameter that satisfies the scaling 

property ccxxc /)/()( σσ κκ =  for a positive scaling factor c [Par67]. 

 This regulatory condition guarantees the kernel size affects the width of the kernel 

function linearly. In the analysis of the eigenstructure of the entropy cost function near 

the global optimum and in obtaining scale-invariant entropy-based cost functions, this 

property will become useful. 

Property 2.2. The entropy estimator in Eq. (2.5) is invariant to the mean of the 

underlying density of the samples as is the actual entropy [Erd01b]. 

Proof. Consider two random variables X and X  where mXX +=  with m being a 

real constant. Consider the following on the entropy of X . 
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Let {x1,…,xN} be samples of X, then samples of X  are {x1+m,…,xN +m}. Therefore, the 

entropy estimate of X  is  
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Due to this property of the entropy and its estimator, in supervised learning 

entropy cannot be used to force the mean of the error signal to zero, for example. 

However, in general, since we are interested in the statistical properties of the signals 

other than their means, this is not a problem. 
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Property 2.3. The limit of Renyi’s entropy as 1→α  is Shannon’s entropy. The 

limit of the entropy estimator in Eq. (2.5) as 1→α  is Shannon’s entropy estimated using 

Parzen windowing with sample mean approximation for expectation. 

Proof. Notice that Renyi’s entropy in Eq. (2.3) is discontinuous at 1=α . 

However, when we take the limit of it as this parameter approaches to one, we get 

Shannon’s entropy as shown in Eq. (2.9).  
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The derivation of this result for the estimator in Eq. (2.5) is shown in Eq. (2.10). 
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In terms of adaptation, this means that all the conclusions drawn in this research 

about Renyi’s entropy, its estimator, and training algorithms based on Renyi’s entropy 

apply to Shannon’s definition as well, in the limit, if the entropy order approaches to one. 

 Proposition 2.1. In order to maintain consistency with the scaling property of the 

actual entropy, if the entropy estimate of samples {x1,…,xN} of a random variable X is 
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estimated using a kernel size of σ, the entropy estimate of the samples {cx1,…,cxN} of a 

random variable cX must be estimated using a kernel size of |c|σ.  

 Proof. Consider the Renyi’s entropy of the random variable cX, whose pdf is 

ccxf X /)/(  in terms of the pdf of the random variable X and the scaling coefficient c. 
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Now consider the entropy estimate of the samples {cx1,…,cxN} using the kernel size |c|σ. 
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This property is crucial to maintaining the desirable properties of entropy in 

adaptation when using the nonparametric estimator in place of it. For example, as we will 

see later in Chapter 6, the blind deconvolution problem requires a scale invariant cost 

function. The scaling of the kernel size as described above according to the norm of the 

weight vector will guarantee that the nonparametric estimation of the scale-invariant cost 

function possesses this property as well. 

 Proposition 2.2. When estimating the joint entropy of an n-dimensional random 

vector X from its samples {x1,…,xN}, use a multi-dimensional kernel that is the product of 

single-dimensional kernels. This way, the estimate of the joint entropy and estimate of 

the marginal entropies are consistent. 
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 Proof. Let the random variable Xo be the oth component of X. Consider the use of 

single-dimensional kernels  for each of these components correspondingly. Also 

assume that the multi-dimensional kernel used to estimate the joint pdf of X is 

(.)o
oσκ

(.)Σκ . The 

Parzen estimate of the joint pdf is then given by 
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Similarly, the Parzen estimate of the marginal density of Xo is 
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Without loss of generality, consider the marginal pdf of X1 derived from the estimate of 

the joint pdf in Eq. (2.13). 
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 Now, assuming that the joint kernel is the product of the marginal kernels 

evaluated at the appropriate values, i.e., , we get Eq. (2.16). Thus, 

this choice of the multi-dimensional kernel for joint entropy estimation guarantees 

consistency between the joint and marginal pdf and entropy estimates. This property is, in 

fact, critical for the general pdf estimation problem besides being important in entropy 

estimation.  
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 This important issue should be considered in adaptation scenarios where the 

marginal entropies of multiple signals and their joint entropy are used in the cost function 

simultaneously. It is desirable to have consistency between the marginal and joint entropy 

estimates. 

  Theorem 2.2. If the maximum value of the kernel κσ(ξ) is achieved when ξ = 0, 

then the minimum value of the entropy estimator in Eq. (2.5) is achieved when all 

samples are equal to each other, i.e., x1=…= xN = c [Erd02d]. 

 Proof. By substitution, we find that the entropy estimator takes the value 

)0(log σκ−  when all samples are equal to each other. We need to show that 

)0(log)(1log
1

1

1

1

1
σ

α

σα
κκ

α
−≥










−

− ∑ ∑
=

−

=

N

j

N

i
ij xx

N
   (2.17) 

For 1>α , this is equivalent to showing that  
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Replacing the left hand side of Eq. (2.18) with its upper bound we get Eq. (2.19). Since 

the kernel function is chosen such that its maximum occurs when its argument is zero, we 

obtain the desired result given in Eq. (2.18).  
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The proof for the case 1<α  is similar. It uses the min operator instead of max due to the 

direction of the inequality. 

In supervised training, it is imperative that the cost function achieves its global 

minimum when all the error samples are zero. Minimum error entropy learning using this 

entropy estimator, which will be introduced in Chapter 4, will become a valid supervised 

training approach with this property of the entropy estimator. In addition, the 

unsupervised training scenarios like minimum entropy blind deconvolution, which will 

be discussed in Chapter 6, will benefit from this property of the estimator. 

 Theorem 2.3. If the kernel function κσ(.) is continuous, differentiable, symmetric 

and unimodal, then the global minimum described in Theorem 2.2 of the entropy 

estimator in Eq. (2.5) is smooth, i.e., it has a zero gradient and a positive semi-definite 

Hessian matrix. The Hessian is semi-definite because there is one eigenvector 

corresponding to the direction that only changes the mean of data, along which we know 

the entropy estimator to be constant due to Prop. 2.2. Notice that under the listed 

conditions, the maximum value of the kernel is achieved when its argument is zero. 

 Proof. Let [ T
Nxxx K1= ]  be the data samples collected in a vector for 

notational simplicity. Without loss of generality, consider the data set given by 0=x , 

meaning all samples are zero. With some algebra, the gradient and the Hessian matrix of 

the expression in Eq. (2.5) with respect to x  are found as 

 



24

2

22

ˆ
)/ˆ)(/ˆ(ˆ)/ˆ(

1
1ˆ

ˆ
/ˆ

1
1ˆ

α

ααααα

α

αα

α

α

V
xVxVVxxV

xx
H

V
xV

x
H

lkkl

kl

k

k

∂∂∂∂−∂∂∂
−

=
∂∂

∂

∂∂
−

=
∂
∂

   (2.20) 

where the variable V  is the argument of the logarithm in the final expression in Eq. 

(2.5). Evaluating these expressions at 

α̂

0=x , we get  
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which shows that the gradient vector is zero and that the Hessian matrix is composed of 
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Denoting the diagonal terms by a and the off diagonal terms by b, we can 

determine all the eigenvalue-eigenvector pairs of this matrix to be 

},...]0,...,0,1,0,1[),1/({},]0,...,0,1,1[),1/({},]1,...,1[,0{ TTT NaNNaN −−−−    (2.23) 

Notice that the non-zero eigenvalue has a multiplicity of N-1 and for a kernel 

function as described in the theorem and for N>1 this eigenvalue is positive, since the 

kernel evaluated at zero is positive, the first derivative of the kernel evaluated at zero is 

zero and the second derivative is negative. Thus the Hessian matrix at the global 

minimum of the entropy estimator is positive semi-definite. 
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In adaptation using numerical optimization techniques, it is crucial that the global 

optimum is a smooth point in the weight space with zero gradient and finite-eigenvalue 

Hessian. This last theorem shows that the nonparametric estimator is suitable for entropy 

minimization adaptation scenarios using such approaches. 

Property 2.4. If the kernel function satisfies the conditions in Theorem 2.3, then in 

the limit, as the kernel size tends to infinity, the quadratic entropy estimator approaches 

to the logarithm of a scaled and biased version of the sample variance. 

Proof. Let {x1,…,xN} be the samples of X. We denote the second-order sample 

moment and the sample mean with the following. 
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Since by assumption the kernel size is very large, the pair-wise differences of 

samples will be very small compared to the kernel size, thus allowing the second-order 

Taylor series expansion of the kernel function around zero to be a valid approximation. 

Also, due to the kernel function being symmetric and differentiable, its first order 

derivative at zero will be zero yielding 

2/)0()0(2/)0()0()0()( 22 ξκκξκξκκξκ σσσσσσ ′′+=′′+′+≈    (2.25) 

Substituting this in the quadratic entropy estimator obtained from Eq. (2.5) by 

substituting 2=α , we get Eq. (2.26), where 2
___

2 xx −  is the sample variance. Notice that 

the kernel size affects the scale factor multiplying the sample variance in Eq. (2.26). In 

addition to this, there is a bias depending on the kernel’s center value.  
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Property 2.5. In the case of joint entropy estimation, if the multi-dimensional 

kernel function satisfies  for all orthonormal matrices, R, then the 

entropy estimator in Eq. (2.5) is invariant under rotations as is the actual entropy of a 

random vector X. Notice that the condition on the joint kernel function requires hyper-

spherical symmetry. 

)()( 1ξκξκ −
ΣΣ = R

Proof. Consider two n-dimensional random vectors X and X  related to each other 

with RXX =  where R is an nxn real orthonormal matrix. Then the entropy of X  is 
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Now consider the estimation of the joint entropy of X  from its samples, which 

are given by {Rx1,…,RxN}, where {x1,…,xN} are samples of X. Suppose we use a multi-

dimensional kernel (.)Σκ  that satisfies the required condition. This results in the 

derivation in Eq. (2.28). In adaptation scenarios where the invariance-under-rotations 

property of entropy needs to be exploited, the careful choice of the joint kernel becomes 

important. Property 2.5 describes how to select kernel functions in such situations. 
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Theorem 2.4. , where )()ˆ()(ˆlim XHXHXH
N

ααα ≥=
∞→

X̂  is a random variable 

with the pdf (.)σ*(.) κXf . The equality (in the inequality portion) occurs if and only if 

(iff) the kernel size is zero. This result is also valid on the average for the finite-sample 

case. 

Proof. It is well known that the Parzen window estimate of the pdf of X converges 

consistently to (.)*(.) σκXf . Therefore, the entropy estimator in Eq. (2.5) converges to 

the actual entropy of this pdf. To prove the inequality consider 

    (2.29) ∫ ∫∫
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Using Jensen’s inequality for convex and concave cases, we get Eq. (2.30), where 

we defined the mean-invariant quantity Vα(X) as the integral of the αth power of the pdf 

of X, which is the argument of the log in the definition of Renyi’s entropy given in Eq. 

(2.3). Reorganizing the terms in Eq. (2.30) and using the relationship between entropy 

and information potential, regardless of the value of α and the direction of the inequality, 

we arrive at the conclusion . The fact that these results are also valid 

on the average for the finite-sample case is due to the property  

)()ˆ( XHXH αα ≥

(.)*(.)(.)]ˆ[ σκXX ffE =
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of Parzen windowing, which relates the average pdf estimate to the actual value and the 

kernel function. 

    (2.30)  
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This theorem will be useful in proving asymptotic noise rejection properties of the 

entropy-based adaptation criteria, and showing that for entropy minimization, the 

proposed estimator provides a useful approximation in the form of an upper bound to the 

true entropy of the signal under consideration. 

2.4 Renyi’s Divergence Measure 

Closely related to Shannon’s entropy, Kullback-Leibler divergence is a commonly 

used information theoretic distance measure to measure the divergence between two pdfs 

[Kul68]. For two arbitrary pdfs q(x) and p(x), the K-L divergence of q(x) from p(x) is 

defined as 

∫
∞

∞−

∆
= dx

xp
xqxqpqDKL )(
)(log)();(      (2.31) 

Notice that the K-L divergence is not symmetric with respect to its arguments and its 

minimum value of zero is attained iff the two pdfs are identically equal to each other. 

This divergence measure finds use in Shannon’s mutual information definition and 

applications in many engineering problems that require testing the hypothesis of the 

equality/inequality of two pdfs. 
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It is possible to extend the K-L divergence to a family of distance measures, 

which we will call Renyi’s divergence. The definition of this divergence measure and 

some of its basic properties are given in  

Theorem 2.4. Renyi’s order-α divergence of q(x) from p(x) is defined as 
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and some of its properties are as follows: 

 i. ( 0,,,0); >∀≥ ααD  qppq

 ii. (Dα  iff p(x)0); =pq  = q(x) ℜ∈∀x  

 iii. lim Dα  );();(
1

pqDpq KL=
→α

 Proof. We do the proof of each part separately. 

i. Using Jensen’s inequality on the argument of the logarithm in Eq. (2.32), we get 
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Substituting this result in Eq. (2.32), we obtain the desired inequality for all values of α > 

0. 

ii. Clearly, if q(x) = p(x), then 0);( =pqDα

()( xpxq

. For the reverse direction, suppose we are 

given that . Assume 0);( =pqDα )≠ , so that we can write )()()( xxqxp δ+= , 

where , and ∫
∞

∞−
= 0)(xδ ℜ∈∃x  such that 0)( ≠xδ . Consider the divergence between 

these two pdfs, which is shown in Eq. (2.34). Starting by equating this divergence to zero, 

we obtain  
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which implies that 
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From this last result, we conclude that ℜ∈∀= xx ,0)(δ , which contradicts our initial 

assumption, therefore, we conclude that q(x) = p(x). 

iii. Consider the limit of Eq. (2.32) as 1→α . 
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 Following the same ideas used in deriving the estimator for Renyi’s entropy, we 

can determine a kernel-based resubstitution estimate of Renyi’s order-α divergence. 

Suppose we have the iid samples {  and {  drawn from q(x) and p(x), 

respectively. The nonparametric estimator for Renyi’s divergence obtained with this 

approach is given in Eq. (2.37). Notice that the computational complexity is again O(N

},...,1
q
N

q xx },...,1
p
M

p xx

2), 

the same as the entropy estimator. The ratio of sums, however, complicates the gradient 

expression. 
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 Recall that Shannon’s mutual information between the components of an n-

dimensional random vector X is equal to the K-L divergence of the joint distribution of X 

from the product of the marginal distributions of the components of X [Cov91]. Similarly, 

Renyi’s order-α mutual information is defined as the Renyi’s divergence between the 

same quantities. Letting fX (.) be the joint distribution and  to be the marginal 

density of the o

(.)oXf

th component, Renyi’s mutual information becomes [Ren76] 
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 Once again, it is possible to write a kernel-based resubstitution estimator for 

Renyi’s mutual information by approximating the joint expectation with a sample mean 
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and then replacing the pdfs with their Parzen estimators that use consistent kernels 

between the marginal and joint pdf estimates as mentioned in Proposition 2.2, we get the 

nonparametric mutual information estimator in Eq. (2.40). 
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 This nonparametric mutual information estimator is general purpose and it can be 

used in problems where it is necessary to evaluate the mutual information between sets of 

samples and in adaptation scenarios where optimizing according to the mutual 

information between certain variables is the objective. Due to Theorem 2.4, the limit of 

Eq. (2.40) is an estimate of Shannon’s mutual information between the random variables 

under consideration.  

 Another possibly useful divergence measure between the pdfs q(x) and p(x) is the 

Csiszar divergence defined as [Csi81] 
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= dx

xq
xpgxqpqDg )(
)()();(    (2.41) 

where the function g(.) has to be convex with g(1) = 0. The K-L divergence is also a 

special case of this divergence measure corresponding to the choice g(.) = -log(.). A 

nonparametric resubstitution estimator of the form in Eq. (2.37) could also be derived 

using the same principles for the Csiszar divergence between two pdfs. 

 In general, it is possible to use all the estimators derived in this chapter, given in 

Eq. (2.5), Eq. (2.37), and Eq. (2.40), in evaluation or adaptation situations, where it is 

necessary to operate based on entropy, divergence, or mutual information. 
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 One final note on the trick of replacing the expected value with the sample mean: 

This approach could, in general, be taken to evaluate definite integrals of the form 

 simply by rewriting it as ∫
b

a
dxxg )( 








=∫ )(

)(
)(
)()(

xq
xgEdx

xq
xgxq q

b

a
, where q(x) is chosen 

such that it is a valid pdf with support [a,b] and it is easy generate random samples that 

obey this distribution law. In fact, the equi-interval Riemann sum approximation to this 

definite integral could be regarded as a special case that corresponds to the choice of 

uniform distribution for q(x). The general name for this approach of evaluating definite 

integrals is stochastic integration. 

 



CHAPTER 3 
PARTICLE INTERACTION MODEL FOR LEARNING FROM SAMPLES 

 
3.1 Quadratic Information Potential and Quadratic Information Forces 

 The idea of regarding the samples as information particles was introduced by 

Principe et al. [Pri00a] upon the observation that under minimization or maximization of 

entropy adaptation rule, the gradient of the weight vector comprised of two sub-

quantities: the sensitivity of the output of the adaptive network with respect to its weights 

and the sensitivity of the overall value of the performance index on the values of the 

samples, which seemed to interact with each other through laws that resembled the 

potential fields and their associated forces in physics. Through this analogy, which was 

made possible by the kernel estimator for quadratic entropy they were using, they named 

the samples as information particles and their interaction through the formulation of the 

entropy estimator and the selected kernel function became the main focus of information 

theoretic learning [Pri00a].  

 Recall the quadratic entropy definition they used in Eq. (1.1). Since the logarithm 

is a monotonically increasing function, maximization/minimization of the quadratic 

entropy can be equivalently reduced to minimization/maximization of the argument of 

the log, which is the integral of the square of the pdf under consideration. Let’s denote 

this quantity by V2(X). Remember from Eq. (2.2) that the nonparametric estimator for this 

quantity is given by the following double summation in Eq. (3.1). We consider this 

quantity as a summation of contributions from each particle xj. 

4
 3
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Noting that the derivative of the Gaussian evaluated at zero is zero, the derivative of this 

contribution with respect to the value of this sample is easily evaluated to be  
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Now, we can regard this derivative as a contribution of derivatives due to all other 

samples and denoting the contribution by sample xi with , and the overall 

derivative with respect to x

)|(2 ij
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Principe et al. named these two quantities as the information force on sample xj due to 

sample xi and the total information force acting on sample xj. Due to the differentiation 

relationship between  and V , the latter is called the total information 

potential of particle x

)(2 j
old xF

2
old

)(2 j
old x

j and V , being the sum of all the information potentials of 

the individual information particles, is named as the overall information potential of the 

sample set.  

)(X
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 An illustration of the information forces in single- and multi-dimensional 

situations is provided by Principe et al. [Pri00a] with an explanation of their roles in the 

adaptation of the weights of the learning system for a number of applications. 

3.2 Extension to Order-α Information Potential and Information Forces 

 Recall the definition of Renyi’s order-α entropy given in Eq. (2.3). We will 

simply name the argument of the logarithm as the order-α information potential. Thus, 

for a random variable X with pdf fX (.) the information potential is 

   (3.5) ∫
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∞−

∆
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Its nonparametric estimator is given in Eq. (2.5) as 
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which can be written as a sum of contributions from each sample xj, denoted V  )(ˆ
jxα

 

∑

∑

=

−

=

∆

=











−=

N

j
j

N

i
ijj

xVXV

xx
N

xV

1

1

1

)(ˆ)(ˆ

)(1)(ˆ

αα

α

σαα κ
  (3.7) 

Naturally (in analogy with physical potentials), we determine the order-α information 

forces by simply taking the derivative of these information potentials with respect to the 

particle location (sample value). 
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The total information force acting on particle xj is found to be as in Eq. (3.8) (assuming 

that the kernel’s derivative at zero is zero), where the quadratic information force is 

similar to Eq. (3.4), with the exception that the kernel function need not be specifically 

Gaussian. In Eq. (3.8), the quadratic force is defined as 
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From Eq. (3.8), which is the total information force acting on article xj, and using the 

additivity of quadratic forces in Eq. (3.9) as in Eq. (3.4), we can write out the individual 

contributions of every other sample as 

    (3.10) )|(ˆ)(ˆ)1()|(ˆ
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where we defined 
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Although we considered above only the single-dimensional case, extensions of these 

information potential and information force definitions to multi-dimensional situations is 

trivial. Note that, in choosing multi-dimensional kernel functions, some restrictions apply 

as mentioned in Chapter 2. 

 Notice that the generalized information forces introduce a scaling factor that 

depends on the estimated probability density of the corresponding particle and the 

selected entropy order. Specifically, for 2>α , the scale factor (power of the estimated 

pdf) in Eq. (3.8) becomes a monotonically increasing function of the pdf value, meaning 

that compared to the quadratic case, the forces experienced by those samples with larger 

probability density (in dense regions of the sample space) will be amplified. For 2<α , 
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on the other hand, the opposite will take place, and the forces on sparse regions of the 

data will be amplified. 

 In addition, we notice from Eq. (3.8) that the force becomes zero for the choice of 

α=1.  This does not mean that the force is zero for Shannon’s entropy choice. First of all, 

the information potential as we defined it is constant at 1 for all pdfs and Renyi’s entropy 

is discontinuous at this value of the entropy order; therefore the direct substitution of this 

value in the expressions should be avoided in general. However, a similar analysis of 

information forces and potentials for the Shannon’s entropy case could be carried out 

either using the original definition by Shannon or by considering the limit of the 

derivatives of Renyi’s entropy approaching 1 from above and below. 

3.3 Illustration of Information Forces 

 In this subsection, we will use two numerical examples to show the information 

forces and information potentials in single-dimensional and two-dimensional cases. In the 

first illustration, we consider the single-dimensional case with the kernel function chosen 

to be a Gaussian. In Figure 3-1, the one-dimensional information forces and information 

potential fields are shown for various kernel sizes. The attractive force field of an 

individual particle centered at the origin is plotted in Figure 3-1a. The forces can be made 

repulsive by introducing a negative sign in the definition. This procedure corresponds to 

choosing between minimizing or maximizing the sample entropy. Figure 3-1b shows the 

information potential at any point due to the existence of this particle at the origin as a 

function of distance to the origin. To further investigate the effect of additional samples 

on the potential and force fields, we position three additional randomly located samples. 

The final form of the overall quadratic information force field, which results as the 
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superposition of the individual forces of these four particles, is shown in Figure 3-1c, and 

the overall quadratic information potential at a given location is presented as a function of 

position in Figure 3-1d. All plots include illustrations of their corresponding functions for 

various values of the selected kernel size. Notice that, as a consequence of the 

equivalence with sample variance we showed in Property 2.4, as the kernel size increases, 

the effective force becomes a linear function of distance, and is shown with the label 

MSE in Figure 3-1. For different kernel function choices, different force field definitions 

can be obtained, changing the adaptation dynamics. 
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(c) (d) 
Figure 3-1. Forces and potentials as a function of position for different values of kernel 

size a) force due to a single particle b) potential due to a single particle c) 
overall quadratic force at a given position due to all particles d) total 
quadratic potential at a given position 
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As a second illustration, we show a snapshot of a two-dimensional entropy 

maximization scenario, where the particles are bounded to within a unit square and 

interact under the quadratic force definition with Gaussian kernel choice.  Since the 

objective is to maximize the entropy of the sample ensemble, the forces become 

repulsive. Given a set of randomly spaced samples in the unit square, when the forces 

acting on each sample are evaluated, it becomes evident that the information particles are 

pushed by the other particles in order to move along the direction of maximal entropy. 

The snapshot of the particle locations and the forces experienced by each particle is 

depicted in Figure 3-2. 
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Figure 3-2. A snapshot of the locations of the information particles and the instantaneous 
quadratic information forces acting on them to maximize the joint entropy in 
the two-dimensional unit square  
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If the order-α information potentials were to be used, each information force 

shown in Figure 3-2, would have to be scaled with the corresponding factor that depends 

on the probability density of the particle and the parameter α. 

3.4 Generalized Potential Energy and Particle Interaction Model for Learning 

Traditionally, adaptation is regarded as an optimization process, where a suitable 

pre-defined performance criterion is maximized or minimized. Inspired by the above 

mentioned information particle idea, here we will propose an alternative view; we will 

treat each sample of the training data set as a particle and let these particles interact with 

each other according to the interaction laws that we define. The parameters of the 

adaptive system will then be modified in accordance with the interactions between the 

particles. Our aim is to determine a unifying model to describe the learning process as an 

interaction between particles, where the information particle model is a special case. We 

will, as well, show that even commonly used second-order statistics based adaptation 

criteria could be investigated under the same view of interacting particles.  

3.4.1 Particle Interaction Model 

Suppose we have the samples {z1,…,zN} generated by some adaptive system. For 

simplicity, assume we are dealing with single dimensional random variables; however, 

note that extensions to multi-dimensional situations are trivial. In the particle interaction 

model, we assume that each sample is a particle and a potential field emanates from it. In 

this particle interaction model, the value of each sample becomes the position of the 

corresponding particle. In case of multi-dimensional sample vectors, this is the position 

vector in some coordinate frame. Suppose each particle zi generates a potential energy 

field. Let this potential field be v(ξ); we require this function to be continuous and 
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differentiable, and to satisfy only the even symmetry condition v(ξ) = v(-ξ), although 

physical potential fields (like the gravitational and electrical potentials) usually satisfy a 

spherical symmetry condition. Notice that due to the even symmetry and differentiability, 

the gradient of the potential function at the origin is zero (i.e., the force that a particle 

exerts on itself is zero). In addition, recall from physics that the force applied to a particle 

by another is usually a function of the relative position vector of the affected particle with 

respect to the source particle. With these in mind, we observe that the potential energy of 

particle zj due to particle zi, denoted by V(zj|zi), is V(zj|zi) = v(zj -zi), where the difference 

vector (zj-zi) gives the relative position of particle zj with respect to zi. The total potential 

energy of zj due to all the particles in the training set is then given by 
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We define the interaction force between these particles, in analogy to physics, as 
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From this and the superposition property of forces, we obtain the total force acting on 

particle zj as 
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Notice that, as it should be, the force applied to a particle by itself is 

. Finally, the total potential energy of the sample set is the sum 

(possibly weighted) of the individual potentials of each particle. Each particle could be 

weighed by a factor γ(z

0)0()|( =′= vzzF jj

j) that may or may not depend on the particle’s position. Assuming 
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such a weighting, the total potential energy of the system of particles is found to be as 

given in Eq. (3.15). 
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Assuming that γ(zj)=1 for all samples (no weighting), we can determine the 

sensitivity of the overall potential of the particle system with respect to the position of a 

specific particle zj. This is given by 
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In the adaptation context, where the samples are generated by a parametric adaptive 

system, the sensitivity of the total potential with respect to the weights of the system is 

also of interest. This sensitivity is directly related to the interaction forces between the 

samples as follows 
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3.4.2 Some Special Cases 

Consider for example the potential function choice of  and 

weighting function choice of 

)2/()( 22 Nv ξξ =

1)( =jzγ  (i.e., unweighted) for all samples. Then upon 

direct substitution of these values in Eq. (3.15), we obtain a V(z) definition that equals the 

biased sample variance, i.e., minimization of this potential energy will yield the minimum 

variance solution for the weights of the adaptive system. In general, if we select potential 

functions of the form pξv ξ =)( , where p>1, with no weighting of the particles we 

obtain cost functions of the form  
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which are directly related to the absolute central moments of the random variable Z, for 

which zj’s are samples. Each value of p corresponds to a different choice of the distance 

metric between the particles from the family of Minkowski norms.  

The information potential we mentioned in the preceding sections also fall into 

this same category of energy functions, as they are the main inspiration for this 

generalization. Notice that for the potential function choice v  and 2/)()( NG ξξ σ=

1)( =jzγ  in Eq. (3.15), we obtain the quadratic information potential of Eq. (3.1). 

Additionally, for  and , we obtain Eq. (3.6) from 

Eq. (3.15). In the latter, we introduced the position-dependent weighting factor 

 for each particle. The effect of this scaling was discussed in Section 3.2. 

2/)()( Nv ξκξ σ= )(ˆ)( 2
jZj zfz −= αγ

)(ˆ 2
jZ zf −α

3.5 Backpropagation of Interaction Forces in MLP Training 

In this section, we will derive the backpropagation algorithm for an MLP trained 

supervised under the minimum energy learning (MEL) principle; that is the adaptation of 

the MLP weights using a cost function of the form of Eq. (3.15), which is equivalent to 

adaptation according to the particle interactions defined by the forces in Eq. (3.13). This 

extended algorithm will backpropagate the interaction forces between the particles 

through the layers of the MLP instead of the error, as is the case in the standard MSE 

criterion case. For simplicity, consider the unweighted total potential of the error particles 

as the cost function. Assume that for multi-output situations, we simply sum the 

potentials of the error signals from each output.  
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Consider an MLP that has l layers with mo processing elements (PE) in the oth 

layer. We denote the input vector with layer index zero. Let  be the weight connecting 

the i

o
jiw

th input to the jth output in the oth layer. Let  be the synapse potential of the j)(svo
j

th 

PE at oth layer corresponding to the input sample x(s), where s is the sample index. Let 

(.)ϕ  be the sigmoid nonlinearity of the MLP, same for all PEs, including the output layer. 

Assume v(ξ) is the potential function of choice and we have N training samples. The total 

energy of the system of error particles, given by {e(1),…,e(N)}, is then 
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The derivation of the backpropagation of interaction forces algorithm follows 

similar lines to that of the conventional error backpropagation algorithm [Hay99, 

Rum86]. The total potential energy of the output errors summed over the output PEs, for 

a given sample pair (s|t) is defined as 
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For this MLP, the kth outputs before and after the nonlinearity of the last layer are 

respectively given by 
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Taking the derivative of )|( tsε  with respect to the output layer weights, we obtain Eq. 

(3.22), where (.)ϕ′  is the derivative of the MLP’s sigmoid function and  are the 

sensitivities of the local energy potentials in the network that depend on the interaction 
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forces between the indicated particles; notice that their definitions include 

, i.e., the interaction forces. ))()(()|( tesevtsF −′=
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For the hidden node l-1, we can write, similarly, 
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 The sensitivities of the other hidden layers (if there are more than two) can 

be computed using the same idea, resulting in similar equations. This derivation, and the 

main points of the algorithm can be summarized as follows. In the algorithm below, η is 

the learning rate. Notice that for , the algorithm reduces to the backpropagation 

of error, since the force becomes 

2)( ξξ =v

|)(( eseF j ))()((2))( teset jjj −= . 
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Algorithm 3.1. Let the interaction force acting on sample s due to the potential 

field of sample t be ))()(())(|)(( tesevteseF jjjj −′=  in the jth output node of the MLP. 

These interactions will minimize the energy function in Eq. (3.19). 

1. Evaluate local gradients for the output layer for s,t=1,…,N and j=1,…,ml using 

    (3.24) 
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2. For layer index o going down from l-1 to 1 evaluate the local gradients 
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3. For each layer index o from 1 to l evaluate the weight updates (to minimize V) 
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The energy potential cost functions, in general are insensitive to the mean position 

of the particles, therefore, in applications where the mean of the samples is also desired to 

approach a certain value (for example to zero in supervised training), an external force 

acting on all the particles to draw them in that direction may be introduced. In that case, 

the interaction forces in the definition of the last layer sensitivities in Eq. (3.24) must be 

replaced by the superposition of the interaction force and the external force acting on that 

particle. In the physical analogy, this additional force can be viewed as an external (other 

than the particles themselves) effect. 

Adaptive systems research is traditionally motivated by the optimization of 

suitable cost functions and is centered on the investigation of learning algorithms that 
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achieve the desired optimal solution. In this section, inspired by the idea of information 

theoretic learning through particle interactions introduced by Principe et al. [Pri00a] and 

expound in Section 3.2, we proposed an alternative approach to adaptation and learning. 

This new approach allows us to regard the adaptation process in analogy with interacting 

particles in a force field (also generated by the same particles) in physics. Besides the 

intellectual appeal of this viewpoint provides us for further theoretical study on learning, 

it might be promising in designing real systems that use physical forces to change its state 

and eventually adapt to its environment to need. 

 



CHAPTER 4 
MINIMUM ERROR ENTROPY CRITERION FOR SUPERVISED LEARNING 

 
4.1 Minimum Error Entropy Criterion 

 Supervised learning algorithms traditionally use the MSE criterion as the figure of 

merit, which is a sufficient statistics for the case of linear systems under Gaussian 

residual error assumptions as in the work of Wiener [Far98, Hay84, Wie49]. Although 

the Gaussianity assumption, which is supported by central limit theorem, and second-

order statistics provide successful engineering solutions to most practical problems, it has 

become evident that when dealing with nonlinear systems, this approach needs to be 

refined [Pri00a].  Therefore, criteria that not only consider the second-order statistics but 

that also take into account the higher-order statistical behavior of the systems and signals 

are desired. Recent papers addressed this issue both in the control literature [Fen97] and 

the signal processing / machine learning literature [Cas00, Erd00a, Fis00]. In a statistical 

learning sense, especially for nonlinear signal processing, a more appropriate approach 

would be to constraint directly the information content of signals rather than simply their 

energy, if the designer seeks to achieve the best performance in terms of information 

filtering [Dec96, Kap92, Lin88]. 

 Since entropy is defined as the average information content in a random variable, 

it is only natural to adopt it as the criterion for applications where manipulation of the 

information content of signals is desired or necessary. In fact, the entropy criterion can 

generally be used as an alternative for MSE in supervised adaptation [Hay98]  

4
 9
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The goal in dynamic modeling is to identify the nonlinear mapping that produced 

the given input-output data. This is traditionally achieved in a predictive framework as 

shown in Figure 4-1 [Hay99].  
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Figure 4-1. Time-delay neural network prediction scheme 

Minimization of MSE in the criterion block simply constrains the square 

difference between the original trajectory and the trajectory created by the adaptive 

system (TDNN in this case), which does not guarantee the capturing of all the 

information about the underlying dynamics. Hence, we propose here the minimization of 

the error entropy (MEE) as a more robust criterion for dynamic modeling, and an 

alternative to MSE in other supervised learning applications using nonlinear systems, 

such as nonlinear system identification with neural networks [Erd02c].  

The intuition behind the entropy criterion for supervised learning is conceptually 

straightforward: Given samples from an input-output mapping, in order to extract the 

most information from the data, the information content of the error signal must be 

minimized; hence the error entropy over the training data set must be minimized. In this 

chapter, we will show that minimizing the error entropy is equivalent to minimizing the 

Renyi’s divergence between the probability distributions of the desired and system 

outputs. These distance measures, from an information-geometry  view point, are directly 

related to the divergence of the statistical models in probability spaces [Ama85]. 
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As for the entropy, we will choose Renyi’s definition and use our nonparametric 

estimator as a substitute in finite-sample training scenarios. However, before proceeding 

with the application examples of MEE in supervised training scenarios, we investigate 

some mathematical properties of it. 

4.2 Properties of Minimum Error Entropy Criterion 

 In Chapter 2, when investigating the general properties of the entropy an our 

estimator, we saw that the entropy is invariant under changes in the mean value of the 

pdf. This is not a problem, however. For example, when training a linear-output-layer 

MLP, once the training of all the other weights are completed according to the MEE 

criterion, we can set the output bias of the MLP to match the sample average of the MLP 

output to the sample average of the desired output. In addition, we showed in the same 

section that as the kernel size in the estimator is increased, the entropy estimate 

approaches to the log of a scaled version of the sample variance, thus in this special case 

minimization of error entropy and error variance become identical asymptotically. Also 

we know that the global minimum of the kernel estimator occurs when all the samples 

identically assume the same value, just what we want for the error samples in supervised 

training – all zeros. The conditions of symmetry and differentiability for the kernel 

function for this to occur, however, must be noted when designing the cost function and 

the learning algorithm. 

Theorem 4.1. Minimizing Renyi’s error entropy minimizes the Renyi’s 

divergence between the joint pdfs of the input-desired signals and the input-output 

signals. In the special case of Shannon’s entropy, this reduces to minimizing the K-L 

divergence [Erd02d]. 
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Proof. The error is given as the difference between the desired output and the 

actual output, i.e., . Using this identity, we can relate the pdf of error to the pdf 

of the output as 

yde −=

)( |, fe ywe )|(, xedf wx −= , where the subscript w denotes dependence on 

the optimization parameters, the weight vector of the adaptive system. Minimum error 

entropy problem is formulated as follows. 
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Consider the case 1>α . From now on, we will drop the limits from the integral signs for 

convenience of typing.  
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We recognize this final expression as the argument of the log in the Renyi’s 

divergence measure. Inserting the missing log and the scale factor that depends on the 

entropy order, which does not change the minimization problem since 1>α  and log is 

monotonic, we obtain  
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 A similar derivation may be carried out for the case 1<α , yielding the same 

result. As for the reduction to K-L divergence, taking the limit of Eq. (4.3) as 1→α  
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using L’Hopital’s rule produces the desired result. In fact, starting the derivation from 

Shannon’s entropy definition for the error, one arrives directly at the K-L divergence. For 

interested readers, this derivation is provided in Appendix A. 
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Figure 4-2. Schematic diagram of supervised learning using Renyi’s error entropy as the 

performance index 
 
 Theorem 4.2. Minimum error entropy criterion is asymptotically robust to 

additive zero-mean noise, regardless of the pdf of this noise. 

 Proof. Consider the learning process depicted in Figure 4-2. Suppose that the 

desired signal consists of the superposition of a deterministic part and a zero-mean 

random part, such that vxgd += )( , where g(.) is the unknown function that the adaptive 

system is trying to identify and v is the zero-mean noise with pdf fv(.) independent from x, 

d, and y. Suppose the learning system is a parametric family of functions of the form 

h(x;w) where w is the vector of parameters, called the weight vector. Assume x, d, and y 

are all zero-mean signals without loss of generality.  Let w* be (one of possibly many) 

optimal weight vectors than minimize the error entropy, where the error signal is defined 

as e=d-y. Let *w  be the optimal weight vector that minimizes the entropy of the clean 

error signal that is defined as ),()( wxhxge −= . Notice that we have the identity 

vee += . Since v is an independent noise signal that does not depend on w, the weights 

of the adaptive system, when e  is δ - distributed we have 

 ** ))((minarg))((minarg))((minarg wweHvweHweHw
www

==+== ααα   (4.4) 
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Even if e  is not δ - distributed (which occurs when the model span does not 

include the actual system), due to Theorem 2.4, we can argue that, in general, 

)()( eHveH αα ≥+  and minimizing this upper bound may force the solution to converge 

to a good value, which would be obtained in the noise-free situation. An alternative 

proof, which provides better insights about the process, is in Appendix B. 

Another property of the entropy estimator, which relates directly to the algorithm 

performance in supervised adaptation with MEE is its close relationship with the method 

of convolutional smoothing in global optimization [Rub81]. Convolution smoothing was 

proven effective in practical applications; for instance consider the adaptation of IIR 

filters [Edm96]. The basic idea behind this approach is to convolve the cost function with 

a wide smoothing functional, which eliminates the local minima initially. The width of 

the smoothing functional can then be gradually decreased until a Dirac-δ is obtained, 

which leaves the original cost function. During this course, the optimization parameters 

come to the vicinity of the global optimum and are in the domain of attraction for this 

solution. We can briefly describe the method and the requirements as follows. 

The global convergence theorem for convolution smoothing states that the 

following optimization problems are equivalent 

 0   (4.5) ),(ˆmin)()(min * →==
ℜ⊂∈ℜ⊂∈

ββ xgxgxg
nn DxDx

where the smoothened cost function is defined as 

 )   (4.6) (*)()(ˆ xhxgxg ββ
∆
=

and thus both problems result in the global optimal point  [*x Rub81]. There are 

conditions that the smoothing functional h  has to satisfy. )(xβ
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i.   (4.7) )/()/1()( βββ xhxh n=

ii. )()(lim
0

xxh δβ
β

=
→

  (4.8) 

iii.   (4.9) )()(ˆlim
0

xgxg =
→

β
β

iv.  is a pdf   (4.10) )(xhβ

Condition (iii) guarantees that both  and h  are well-behaved functions. 

Condition (iv) allows the proof techniques from the stochastic optimization literature to 

be applicable. For our purposes, this strict condition is not a necessary, since even if the 

convolving function does not integrate to one, then the same convolution smoothing 

effect will be observed, except there will be a scale factor that multiplies the smoothed 

functional.  The most important constraints on the smoothing function are (i) and (ii). 

)(xg )(xβ

Conjecture 4.1. Given a specific choice of the kernel function (.)σκ , there exists 

a corresponding smoothing functional , which is a solution of (.)βh

 )(*)()(, whwVwV βασα =    (4.11) 

where , ∫= dewefwV e );()( α
α )(ˆlim)( ,, eVwV

N
σασα

∞→
=  and that satisfies the conditions 

(i)-(iv) given above. 

 Support: There are a number of theoretical and experimental observations that 

support this conjecture. First, consider the nonparametric information potential we use for 

the error samples. 
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Notice that the change in kernel size causes dilation in the e-space. Therefore, all 

points, including all local extremes move radially away from the origin when σ is 

increased. The only point that maintains its position is the origin.  From this, we conclude 

that if the span of the function approximator (adaptive system) that is being used covers 

the function being approximated (i.e., the error at the optimal point is zero), then the 

location of the global solution is independent of the kernel size. Also, if the function 

approximator used is a contractive mapping, which is the case in feedforward neural 

networks for example, then the dilation in the e-space must be followed by dilation in the 

weight-space, hence the volume of the domain of attraction of the global optimum is 

increased. 

In addition, consider the asymptotic behavior of the nonparametric information 

potential estimator. Since Parzen windowing is a consistent estimator, as the number of 

samples goes to infinity, the estimated pdf converges to the actual pdf convolved with the 

kernel function that is used [Par67], which also happens in the mean as we mentioned 

before. 

 ∫= deewefwV
e

e
α

σσα κ )](*);([)(,    (4.13) 

where  denotes a convolution with respect to the variable e. Equating (4.13) to the 

convolution of the true information potential V  and the (hypothetical) smoothing 

functional , we obtain the condition Eq. (4.11). Consider the explicit form of this 

equality written in terms of the kernel function and the error pdf. 
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Taking the Laplace transform of both sides with respect to w, we can isolate the 

Laplace transform of  in terms of the transforms of the remaining quantities. The 

Laplace transform of  is guaranteed to exist if the error pdf and the kernel function 

are absolutely integrable functions and 

)(whβ

)(whβ

1≥α , which is the case. We can write this 

function in the transform domain as the following ratio. 
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The right-hand side is a function of s only, since the integration over e from ∞−  to ∞  

eliminates this variable. 

Since  exists,  must be absolutely integrable, therefore, 

. We next observe that as 

)(sH β

0

)(whβ

)(lim =
±∞→

wh
w

β 0→σ , the numerator of Eq. (4.15) converges 

to the denominator, hence the bandwidth of )(ωβH  (considering the Fourier transform) 

increases. An increase in frequency-domain bandwidth is accompanied by a decrease in 

duration of the impulse response in time-domain, thus the width of  decreases as )(whβ

0→σ ; note that there is a nonlinear monotonous relation between β and σ.  

Now that we know the width of  decreases monotonously as )(whβ 0→σ , that it 

is always absolutely integrable, and that it converges to )(wδ  in the limit, we conclude 

that it has to be unimodal, symmetric, and positive for all . Consequently, even if 

 does not integrate to 1, it integrates to some finite value and therefore it is a 

scaled version of a pdf. A scaling factor in the convolution process does not affect the 

nature of the smoothing but only the scale factor of the smoothed performance surface. 

w

)(whβ
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Although it is not easy to solve for the corresponding smoothing function from 

Eq. (4.11), we showed that the solution still satisfies some of the required conditions, 

specifically (ii)-(iv). Furthermore, the dilation in the e-space, presented in Eq. (4.12), 

hints towards the validity of condition (i). However, it has not been possible to verify that 

the first condition is satisfied in general for any mapper, nor it was possible to set forth 

the conditions under which this occurs. Therefore, we propose the existence of a 

smoothing functional corresponding to each kernel choice as a conjecture. Consequently, 

we propose the following methodology to achieve global optimization when using the 

current nonparametric entropy estimator in MEE-training of adaptive systems: Start with 

a large kernel size, and during the adaptation gradually and slowly decrease it towards a 

predetermined suitable value; the local solutions, which would trap the training for those 

same initial conditions when the w-space has not been dilated, will be avoided. Hence, 

global optimization will be achieved still using a gradient descent approach. 

4.3 Simulation Examples on Minimum Error Entropy Criterion 

In the preceding sections, we introduced the concept of MEE training for adaptive 

systems, applicable in supervised learning schemes and investigated some of the 

mathematical properties of the criterion itself and the properties arising from the structure 

of the entropy estimator that we use. In this section, we provide the gradient expression 

for this cost function and present simulation results from numerous applications of this 

gradient in steepest descent training of nonlinear adaptive systems, mainly MLPs. 

Suppose the error samples in a supervised training scenario are generated 

according to the equation e kkk yd −= , where k is the sample index and dk and yk are 

respectively the desired and the actual adaptive system outputs. Let the output of the 
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adaptive system be defined in terms of its input vector xk as , where w 

denotes the dependence of the input-output mapping on the system weight vector. Since 

our aim is to minimize the error entropy, for α>1, we can alternatively maximize the 

order-α information potential. Using our nonparametric estimator for this quantity on the 

N error samples, we can determine the gradient of the information potential of the error 

with respect to the weights of this adaptive system as 

);( wxgy kk =
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where all summations are over the sample index from 1 to N. The above gradient can be 

used for single-output supervised training scenarios. For the case of multiple outputs, the 

cost function may be modified as the sum of marginal error entropies of each outputs, or 

alternatively, the product of the individual information potentials. For a system with d 

outputs, for instance, the corresponding cost function would be 
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where eo denotes the error signal for the oth output of the adaptive system. With this cost 

function, then the gradient has to be modified to 
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 A second approach for multi-output situations is to minimize the joint entropy of 

the error vector, however, as we know the data requirements for accurately estimating a 

statistical quantity in high-dimensional data spaces, in general, requires an exponentially 

increasing number of samples. 
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4.3.1 Prediction of the Mackey-Glass Chaotic Time Series 

 Our first example is the single-step prediction of the well-known Mackey-Glass 

chaotic time series, which often serves as a benchmark data set in testing prediction 

algorithms in the literature, yet recently more difficult-to-predict time series like the 

Lorenz series is becoming popular [Cas01, Dur99, Xiq99]. The Mackey-Glass series has 

a delay-based chaotic behavior and the attractor associated with the given delay amount 

is usually denoted with that number [Kap95]. For our simulations, we will use samples 

drawn at T=1sec intervals from the MG30 attractor whose continuous time dynamics are 

defined by the following continuous-time differential equation. The integration is 

performed using the Runge-Kutta4 method with time-step equal to 0.1sec, and then the 

generated series was down sampled by 10, to get the desired sampling period of 1sec. 

 10)30(1
)30(2.0)(1.0)(

−+

−
+−=

tx
txtxtx&    (4.16) 

In all the following simulations regarding the MG30 data, we used 200 samples for 

training and the 10000 test samples are generated using a different initial condition, thus 

are from a different trajectory on the same attractor.  

 As the aim of our first set of simulations is to compare the generalization 

properties of learning with MSE versus learning with MEE, we train two different sets of 

MLPs on the same data; one of these groups uses MSE as the criterion and the other uses 

MEE. In addition, in order to make sure that the results we obtain are not dependent on 

the specific TDNN architecture we choose and its capabilities, we include 8 different 2-

layer TDNNs in each group whose number of hidden neurons vary from 3 to 10. To 

increase the speed of training for all 16 TDNNs we use the conjugate gradient approach 

[Lue73]. However, in need of avoiding local optimum solutions we take the Monte Carlo 

 



61

approach to select the initial conditions for the weight vectors and use 1000 (uniformly 

distributed) randomly selected sets of weights for each TDNN. After all 16 TDNNs are 

trained starting from all these 1000 initial weight vectors, the optimal weight vectors for 

those TDNNs trained according to the MSE criterion were selected to be the solutions 

obtained from among the 1000 different runs that yield the smallest MSE and similarly 

the optimal weight vectors for those TDNNs trained according to the MEE criterion were 

selected as those that yield the smallest error entropy. Afterwards, these solutions were 

iterated a couple of more epochs in order to test and to guarantee their convergence to the 

minimum; in fact, visual inspection of the learning curves for all TDNNs showed that 

with the conjugate gradient approach, all TDNNs using the MSE criterion converged in 

less than 100 iterations and all TDNNs using the MEE criterion converged in less than 30 

iterations. It must be noted, however, that the computational complexity of the gradient of 

entropy is greater than that of the squared error. The kernel function used to estimate the 

entropy in all simulations was set to a Gaussian with size 01.0=σ  experimentally. In 

addition, the output bias of the linear output neurons are set to match the sample mean of 

the system output to that of the desired output for both MSE and MEE criteria. In all 

these first set of simulations, we use Renyi’s quadratic entropy definition.  

 Our first comparison is between the central moments of the desired and predicted 

MG30 values on the test data [Erd02c]. These results are summarized in Figure 4-3. 

Remember that the MSE trained TDNNs minimize the error variance, which is the 2nd 

central moment, on the training data, however, there is no guarantee that they will exhibit 

smaller variance than the MEE trained TDNNs on the test set. In fact, this is exactly what 

we observe in Figure 4-3. The MEE criterion achieves smaller variance for all sizes of the 
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network except for 6 hidden neurons. For this reason, in the following, we elaborate on 

this special case, where the TDNN has 6 hidden PEs. 
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Figure 4-3. Central moments up to order 6 of the desired output (dashed), the predicted 

MG30 series for MEE-trained (diamonds) and MSE-trained (squares) 
TDNNs versus the number of hidden neurons 

 
 Figure 4-4 shows the performances of MSE and MEE criteria in capturing the 

underlying pdf behind the desired signal. Clearly, the TDNN that is trained using the 

minimum entropy principle extracted more information regarding this objective and 

achieved a better model that represents the underlying statistical structure of the data. 

This is expected as we showed that the MEE principle equivalently tries to match the pdf 

of the adaptive system output to that of the desired signal in the Renyi’s divergence 

sense, where as the MSE criterion merely tries to estimate the conditional expectation of 

the desired output given the input [Bis95].  
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Figure 4-4. Probability density estimates of the 10000-sample MG30 test series (solid) 

and its predictions by MEE-trained (thick dots) and MSE-trained (dotted) 
TDNNs. All pdfs are normalized to zero-mean 

 
 Our second set of simulations is aimed to investigate the effect of entropy order 

on the performance of the final solution obtained. The effect of the kernel size is studied 

as well. For each set of parameters (kernel size and entropy order) we run 100 Monte 

Carlo runs using randomly selected initial weight vectors. At the end of the training, 

which used 200 samples, the information potential of the error on the test set consisting 

of 10000 samples corresponding to each TDNN was evaluated using a Gaussian kernel of 

size  to provide a basis for fair comparison. For the final error signals obtained, 

this value of the kernel size allows the kernels to cover about 10 samples on the average, 

which is a rule of thumb that has been determined at CNEL and experimentally verified 

310−=σ
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by myself for accurate information potential estimations (verbal communication with 

Principe). The results are summarized in Table 4-1 in the form of normalized information 

potentials [Erd02d]. There are a total of twelve trained TDNNs, using the designated 

entropy orders and kernel sizes given in the first column. The performances of these 

TDNNs are then evaluated and compared using four different entropy orders, presented 

in each column. When inspecting these results, the data in each column should be 

compared. Each row corresponds to the performance of the TDNN trained using the 

parameter values designated with each column giving the evaluation of the information 

potential for this data using different entropy orders mentioned in the first row of that 

column. Notice that, regardless of the entropy order used in evaluation (each column), the 

TDNN trained using the quadratic entropy (α = 2) yields the best performance. 

Furthermore, using smaller kernel sizes in training also improved the final performance. 

Table 4-1. Evaluation of the normalized information potential at different entropy orders 
of the error samples for TDNNs trained with different parameters. The normalization 
procedure consists of dividing by the maximum possible theoretical value  

 

parameters
Training

parameters
Evaluation

 
Vα (e)  

α = 1.01 
σ = 10-3

 

Vα (e) 
α = 1.5 
σ = 10-3

 

Vα (e) 
α = 2 

σ = 10-3
 

Vn(e) 
α = 3 

σ = 10-3
 

σ = 0.01 0.976 0.304 0.099 0.012 
σ = 0.1 0.976    0.311 0.104 0.013 α = 1.01 
σ = 1 0.969    0.212 0.047 0.002 
σ = 0.01 0.977    0.321 0.112 0.016 
σ = 0.1 0.977    0.318 0.109 0.015 α = 1.5 
σ = 1 0.976    0.312 0.105 0.014 
σ = 0.01 0.979    0.352 0.135 0.023 
σ = 0.1 0.979 0.352 0.133 0.021 α = 2 
σ = 1 0.978 0.343 0.126 0.019 
σ = 0.01 0.977 0.336 0.124 0.020 
σ = 0.1 0.977 0.330 0.117 0.017 α = 3 
σ = 1 0.976 0.312 0.105 0.014 
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Our third set of simulations investigates the validity of the conjecture on the 

global optimization capabilities of our MEE algorithm. In these simulations, we use the 

quadratic entropy criterion on the MG30 training data again. This time, however, the size 

of the Gaussian kernels is annealed during the training from a large value to a smaller 

one. Once again the Monte Carlo approach is taken with 100 randomly selected initial 

weight vector assignments.  

The results of these experiments are summarized in Figure 4-5 as the pdf 

estimates of the final normalized information potential values (so that the maximum 

value is one) obtained on the training data [Erd02d]. In Figure 4-5a, the distributions of 

the final performances for two experiments (fixed and annealed kernel sizes) are shown. 

In the static kernel case, the kernel size is kept fixed at , whereas the changing 

kernel had an exponentially annealed size , during a training phase of 

200 iterations. For this large static kernel size of , approximately 10% of the 

time the algorithm got trapped in a local maximum of the information potential with a 

normalized value of about 0.1. The algorithm avoided this local optimum in all the runs 

and achieved the global maximum, which has a normalized value of about 0.9, when the 

kernel size is annealed.  

210−=σ

210−

210−

110− →=σ

=σ

In Figure 4-5b, the distributions of the performances for three experiments are 

shown, but now the static kernel has a size of  throughout the training. The 

slow- and fast-annealed kernels, on the other hand, have exponentially decreasing sizes of 

 for a training phase of 500 and 200 iterations, respectively. This 

annealing scheme is the same for all initial conditions. Since the kernel size is smaller 

now, we can expect more local maxima in the normalized information potential surface, 

310−=σ
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but more accurate performance if global maximum is achieved (due to results in Table 4-

1). In this small kernel case with , it is observed that the static kernel gets 

trapped in local maxima quite often (90% of the time), whereas, the fast annealed kernel 

shows some improvement in terms of avoiding local optima (70% of the time achieves 

global optimum), and eventually the slow annealed kernel consistently achieves the 

global maximum (100% of the time).  
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Figure 4-5. Probability distributions of the final normalized information potential values 

obtained on the training set when the kernel size is a) large; static kernel 
(solid), slow annealing (+) b) small; static kernel (solid), fast annealing (+), 
slow annealing (dots) 

 
These experiments showed that, by annealing the kernel size, one is likely to 

improve the algorithm’s chances of avoiding local optimum solutions. However, there is 
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no prescription for how to anneal the kernel size, yet. The exponential annealing scheme 

and the decay rates assumed in the above simulations were determined by trial and error. 

4.3.2 Nonlinear System Identification Using a TDNN 

 The basic postulate behind the whole nonlinear dynamics research is that the 

dynamics of all deterministic nonlinear systems (without pure delays) can be represented 

as a first order multi-dimensional state equation (and perhaps stochastic systems also with 

some modifications). We also know from Kalman’s work on the observability of linear 

dynamical systems and subsequent research on nonlinear systems that the state dynamics 

of any nonlinear set of equations can be replicated using an embedding of the output 

waveform [Tak81]. In fact, this is the idea behind the whole ARMA and nonlinear 

ARMA modeling approach. Consequently, TDNNs, which combine the embedding-in-

time property of the delay-line with the universal approximation capabilities of MLPs 

[Bis95, Cyb89, Hor91], are a perfect match for this task. Therefore, as a second 

application, we investigate the performance of the minimum error entropy (MEE) 

criterion in identification of a nonlinear system using a TDNN. 

 Suppose we have samples from the input uk and the output yk of an unknown 

nonlinear system, where k is the discrete time index. The training set for the TDNN is 

constructed by embedding the input and the output sequences as follows. 

 ( ){ } 1,,,1 −+=−−− NMMkyyyuu k
T

MkkLkk KKK    (4.16) 

In our simulations specifically, the embedding length of the input samples is chosen to be 

7 (L = 6) and the embedding length of the output samples is chosen to be 6 (M=6). A 

two-layer TDNN with 7 hidden PEs is assumed upon suggestion [Pri99]. The unknown 
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nonlinear system that is used to generate the input-output data has the following state 

dynamics and the output mapping.   
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The training set consists of 100=N  input-output pairs as shown in Eq. (4.16) and 

the TDNN is trained starting from 50 randomly selected different initial conditions using 

both MEE (with quadratic entropy and Gaussian kernels) and MSE criteria. The output 

bias is, as usual, set to yield zero error mean over the training data. The performances of 

the optimal weights obtained from the two criteria are then compared on an 

independently generated 10000-sample test set.  

 Figure 4-6 shows the (zero-mean) error pdfs for the two criteria on this test set 

[Erd02c]. The MSE of the training error samples are 0.0676 and 0.0587, and the 

information potential for the same samples are 0.996 and 0.989 for MEE and MSE 

trained weights, respectively. As expected, the MSE is lower for the MSE-trained TDNN 

and information potential is higher for the entropy-trained TDNN in the training set. 

 This case study shows nicely the basic difference between entropy and variance 

minimization. Entropy prefers a larger and more concentrated peak centered at zero error 

with a number of small peaks at larger error values, whereas variance (MSE) prefers a 

wide-distributed error on a smaller range. In fact, this can be deduced by the following 

reasoning. Suppose it is possible to obtain many error distributions with the same 
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variance. Since the Gaussian has the maximum entropy among fixed variance densities 

[Cov91], this error distribution would be the least desirable for the entropy criterion. Also 

the uniform would be among the non-desirable distributions for the error.  The entropy 

would prefer rather spiky distributions, i.e., a number of δ-like concentrated spikes 

having the same variance. This is observed in Figure 4-6. 
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Figure 4-6. Probability density estimate of error values for MEE-trained (solid) and 
MSE-trained (dotted) TDNNs on the nonlinear system identification test 
data 

 
 A comparison of the desired output signal and the actual TDNN outputs using 

MEE-trained weights and MSE-trained weights is depicted in Figure 4-7 to show the 

improved statistical matching when MEE is used. Visual inspection of the pdf estimates 

of these three signals show that the MEE-trained TDNN approximates the pdf of the 
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desired output much better around the most probable regions of the domain, when 

compared to the MSE-trained TDNN. 
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Figure 4-7. Probability density estimates for the desired (solid) and actual TDNN outputs 
using MEE-trained (thick dots) and MSE-trained (dotted) weights 

 
4.3.3 Illustration of Global Optimization in the Generalized XOR Problem 

 This numerical case is designed to provide another experimental demonstration of 

the global optimization property of the entropy-training algorithm we propose. Namely, 

the 5-bit parity problem in the class of generalized XOR problems is considered. In this 

case study, a 5-5-1 MLP with atan nonlinearities in the hidden layer and a linear output 

PE is used. The 5 inputs take the values 1±  according to the considered bit sequence and 

the desired output is again 1± , specifically the XOR value corresponding to the input 

sequence, i.e., the one that makes the number of +1’s even. The training set consists of all 
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possible input sequences, numbering 32. In the static kernel case, the kernel size is set to 

 and the MLP is trained for 1000 iterations starting from 100 random initial 

weight vectors. In the annealed kernel case, the kernel size is annealed down 

exponentially as  in 1000 iterations for the same initial conditions. It has 

been observed that the MLP trained using the annealed kernels achieved global optimum 

in all trials (100% of the time), whereas the MLP trained using the static kernels could 

rarely achieve the global optimum (10% of the time). The results of these experiments are 

summarized in Figure 4-8 [
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Figure 4-8. Results for the XOR problem a) Estimated probability densities of the final 
information potential values for the static kernel (dotted) and the annealed 
kernel (solid) cases b) Annealing of the kernel size versus iterations c) An 
illustration of the desired and the achieved output for the annealed kernel 
case, desired output (solid), MLP output (dotted) (due to perfect match not 
observed) d) An illustration of a local optimum from static kernel case, 
desired output (solid), MLP output (dotted) 

 

 



72

In Figure 4-8a, the probability distribution of the final (normalized) information 

potential values is presented. Clearly, with the annealed kernels, the final information 

potential values are concentrated around the global maximum, whereas with the static 

kernels the algorithm is trapped at local maxima often. Figure 4-8b shows how the kernel 

size is exponentially annealed down in 1000 iterations. Figure 4-8c and Figure 4-8d show 

the MLP outputs with the optimal weights that exactly match the output to the desired 

and a local optimum that produces a low-grade output. 

 
Figure 4-9. The BER versus iterations for MEE (solid) and MSE (dashed) criteria 

 

4.3.4 Application to Nonlinear Channel Equalization for Digital Communications 

 We investigated the performance of the MEE criterion in channel equalization for 

digital communications [San02a]. As expected, we determined that under the linear 

channel model with additive Gaussian noise, the two criteria, i.e., MSE and MEE, 

provided identical solutions for the linear equalizer pointing out experimentally that 

under these circumstances using MSE and the associated LMS algorithm is more 

advantageous due to its relative computational simplicity. On the other hand, we obtained 

 



73

a faster convergence to small bit error rate (BER) values using MEE compared to MSE in 

nonlinear channel equalization with improvement in the distribution of the error samples 

at the output of the nonlinear equalizer, which is also a TDNN [San02a]. Using an online 

batch gradient descent algorithm that uses short sliding window of data to estimate the 

entropy and the associated gradient for weight updates, we train the TDNN to minimize 

the error entropy and the MSE (using LMS) in two different simulations. The results are 

as follows.  

 
Figure 4-10. The error sequences at the output of the nonlinear equalizer for MEE (solid) 

and MSE (dotted) criteria; circles and crosses indicate the bit errors of MSE 
and MEE, respectively 

 
The BER versus iterations plot shown in Figure 4-9 clearly show that the entropy 

trained equalizer is able to extract information from the data faster, i.e., using less 

samples, compared to MSE. Although the final value of the MSE is smaller in this case, 

the final performance of the MEE-trained network can be improved by perhaps 

increasing the length of the data window progressively as the iterations proceed. One 

other possibility to counter this problem of memory length falling short is to usilize a 

recursive estimator and a recursive gradient expression. This issue will be discussed in 
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Chapter 8, where a recursive gradient expression will be presented for use in gradient-

based entropic learning scenarios. 

 The error sequences at the output of these two equalizers, shown in Figure 4-10 

also provide valuable evidence to the basic difference between the preferences of MSE 

and MEE criteria. It can be observed in Figure 4-10 that while minimization of MSE 

results in a wide-spread error distribution, MEE prefers a more peaky concentration of 

samples around zero, while tolerating a few samples to be farther away. This is consistent 

with our expectations about the behavior of the algorithm and the results shown in Figure 

4-6. Of course, this particular behavior is not desirable in terms of minimizing the BER. 

This is also evident from Figure 4-10; we observe that although the equalizer trained 

using entropy achieves a better fit to the inverse of the channel, it has more instances 

corresponding to wrong bit decisions compared with MSE. In that respect, MSE is more 

desirable than entropy. We also provide a fixed-point algorithm for fast adaptation of 

linear equalizers [San02a]. Although the applicability of this algorithm is limited to linear 

systems only, in the following subsection we will elaborate on an approximate algorithm 

to initialize MLPs using the least-squares principle, which could also be used as a sub-

optimal training algorithm itself. In addition, the on-line gradient descent approach that 

has been used in the simulations can be replaced with a more principled stochastic 

gradient for entropy that is to be defined in the following chapters. This gradient 

algorithm will then be called the stochastic information gradient. 

4.3.5 Demonstration of the Noise Rejection Capability of the MEE Criterion 

In Theorem 4.2, we mentioned that the error entropy criterion is (ideally, i.e., 

when  and the parametric adaptive family of functions being trained span the ∞→N
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target system being identified) robust to additive noise in the desired signal. This means, 

if we could obtain analytical expressions of the entropy values for each value of the 

weight vector and minimize these values, then the additive noise present in the desired 

signal would not be able to deviate the estimated system parameters from their 

corresponding actual values. In fact, MSE has the same noise rejection property 

asymptotically (which can be shown easily by demonstrating that under the conditions 

stated in the theorem, the error variance is minimized regardless of the noise variance 

when the adaptive system parameters match those of the unknown system).  
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Figure 4-11. Average distance between the estimated and the actual weight vectors for 

MEE (solid) and MSE (dashed) criteria as a function of SNR using various 
sizes of training sets 

 
In this section, we aim to show the noise rejection capability of the MEE criterion 

in finite-sample situations and compare this performance with that of MSE criteria. For 
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simplicity, we will assume an ADALINE structure for the adaptive system with additive 

independent zero-mean Gaussian noise (this specific choice of the noise pdf has no 

significance) on the desired signal.  

These experiments are repeated for various signal-to-noise-ratio (SNR) values in a 

Monte Carlo fashion. Specifically, for each SNR level, 100 Monte Carlo runs are 

performed using randomly selected training data. The adaptive system parameters are 

optimized through the use of gradient descent procedure for MEE (with 2=α  and 1=σ  

for the Gaussian kernels), and using the Wiener-Hopf equation for MSE (the covariance 

of the input and the cross-covariance of the desired signal and the input vector are 

estimated from the samples). For each run, the distance between the estimated weight 

vector for the model ADALINE and the actual weight vector of the unknown linear 

system (same structure as the adaptive system) is calculated. Then these are averaged 

over the 100 runs for each SNR value. Figure 4-11 shows the average deviation of the 

estimated weight vectors from the actual weight vectors for MEE and MSE as a function 

of SNR, using training set sizes of 100,50,20,10=N . Notice that for small noise power 

(SNR greater than approximately 5dB) MEE outperforms MSE in noise rejection 

consistently for all sizes of data sets. In addition, for high SNR values (greater than 

20dB) MEE is extremely data efficient compared to MSE, because it obtains the same 

level of performance achieved by MSE using less samples. These results indicate that 

MEE is more robust to noise in the desired signal in a finite-sample case and furthermore 

it extracts the information efficiently to obtain a better solution with fewer samples.  

An important issue in learning is the time required to obtain the optimal or an 

acceptable solution. When training using the MEE criterion (or any other criterion 
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including MSE), in order to cut down the training time, it is desirable to initialize the 

adaptive system weights to a set of values that are close to the desired solution. There are 

many methods that are proposed to achieve the problem of reducing the training time. In 

Appendix D, we propose an efficient initialization scheme for MLPs, based on linear 

least squares. This approach can be used to accurately initialize the network weights to 

approximate the optimal solution and then the network training with MEE can proceed. 

4.4 Structural Analysis of MEE Around the Optimal Solution for ADALINE 

Suppose that the adaptive system under consideration in Figure 4-2 is an 

ADALINE structure with a weight vector w. The error samples are e , 

where  is the input vector, formed by feeding the input signal to a tapped delay line for 

the special case of an FIR filter. When the entropy order is specified, minimizing the 

error entropy is equivalent to minimizing or maximizing the information potential for 

k
T

kk xwd −=

kx

1<α  and 1>α , respectively. Recall that the gradient of the information potential 

estimator with respect to the weight vector is simply 
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In this expression, further simplifications are possible through the use of the scaling 

property of the kernel size and the following identity between the derivatives of a width-

σ kernel and a unit-width kernel. 

 )(1)( 2 σ
κ

σ
κσ

xx ′=′    (4.19) 

With these substitutions, the explicit expression for the gradient is easily determined to be 

as in Eq. (4.20). 
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From here on we will use the following notation. 
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In order to maximize the information potential, we update the weights along the 

gradient direction with a certain step size η. 

    (4.22) ))(()()1( nwVnwnw αη ∇+=+

where ∇  denotes the gradient of V  evaluated at w(n).  ))(( nwVα α

To continue with our analysis, we consider the Taylor series expansion truncated 

to the linear term of the gradient around the optimal weight vector . *w
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Notice that truncating the gradient at the linear term corresponds to approximating the 

cost function around the optimal point by a quadratic curve. The Hessian matrix of this 

quadratic performance surface is R/2, where R is given as   
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Now, defining a new weight vector space *www −=  whose origin is translated 

to the optimal solution , we can rewrite the linearized dynamics of the weight *w
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equations in the vicinity of the solution in terms of the step size and the Hessian matrix as 

shown in Eq. (4.25). These are the coupled equations for the translated weights.   

 )(][)1( nwRInw η+=+    (4.25) 

In order to obtain decoupled equations, we rotate the vector space by defining wQv T= , 

Q being the orthonormal matrix consisting of the eigenvectors of R. Thus, the uncoupled 

dynamics for the translated and rotated weights are 

    (4.26) )(][)1( nvInv Λ+=+ η

where  is the diagonal eigenvalue matrix with entries ordered in correspondence with 

the ordering in Q. From this set of equations, we can isolate the dynamics of the weight 

vector along each mode of the matrix R. Specifically, for the i

Λ

th mode, the dynamic 

equation will only depend on the ith eigenvalue of R by 

    (4.27) linvnv iii ,...,1),(]1[)1( =+=+ λη

Note that, since R is the Hessian of the performance surface evaluated at a local 

maximum, its eigenvalues are negative. For a stable dynamics, all of the coefficients in 

the n equations of Eq. (4.27) must be inside the unit circle, that is 11 <+ iλη . This 

results in the following bound for the step size for stability. 

 
ii λ

η
max

10 <<    (4.28)  

This condition is similar to what we obtain for the MSE criterion [Far98, Hay84]; except, 

we consider the eigenvalues of the Hessian matrix of information potential instead of 

those of the covariance matrix (autocorrelation matrix in the FIR filter case) of the input 

vector to the ADALINE. 
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At this point, it also becomes possible to talk about time constants of the modes in 

the neighborhood of the optimum point. We can determine an approximate time constant 

for each individual mode whose dynamic equations are governed by Eq. (4.27). 

Specifically, for the kth mode, we write  

    (4.29) kek
τλη /1)1( −=+

from which the time constant is determined to be 
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The time constants allow us to compare the convergence times of different modes. 

In order to evaluate the overall convergence speed, one must consider the slowest mode, 

which corresponds to the largest time constant, i.e., the largest (smallest in absolute 

value) eigenvalue. Understanding the relationship between the eigenvalues of the Hessian 

matrix in Eq. (4.24) and the two parameters, the kernel size and the entropy order, is 

crucial to maintain the stability of the algorithm following any changes in these 

parameters. One practical case where this relationship becomes important is when we 

adapt the kernel size during the training in connection with Conjecture 4.1. Since in this 

approach, the kernel size is decreased, we need to know how to adapt the step size to 

achieve faster learning in the initial phase of adaptation (by using a larger step size) and 

stable convergence in the final phase (by using a smaller step size). As an example, 

consider the case where we evaluate the quadratic information potential using Gaussian 

kernels. In this case, the Hessian matrix simplifies to 
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Observe from Eq. (4.21) that as σ increases, , therefore,  with 

speed 

0
*

→∆ ji
we −→∆′′ 0)(

*

ji
weκ

( )6−σO . This is faster than the reduction rate of the denominator, which is ( )2−σO , 

hence overall, the eigenvalues of R approach 0 . This means that the valley near the 

global maximum gets wider and one can use a larger step size in steepest ascent, while 

still achieving stable convergence to the optimal solution. In fact, this result can be 

generalized to any kernel function and any α. The dilation effect mentioned in 

Conjecture 4.1 is a direct cause of the increase in eigenvalues towards zero.    

−

The analysis of the eigenvalues for varying α is more complicated. In fact, a 

precise analysis cannot be analytically pursued, but we can still try to predict as to how 

the eigenvalues of the Hessian behave as this parameter is modified. In order to estimate 

the behavior of the eigenvalues under changing α, we will exploit the following well-

known result from linear algebra relating the eigenvalues of a matrix to its trace. For any 

matrix R, whose eigenvalues are given by the set { }iλ , the following identity holds. 

    (4.32) )(Rtrace
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Now consider the general expression of R  given in Eq. (4.24). The trace of R  is 

easily computed to be as given below in Eq. (4.33). The eigenvalues of R are negative 
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and the dominant component, which introduces this negativity, is the term in the last line 

of Eq. (4.33). The negativity arises naturally since we use a differentiable symmetric 

kernel; since at the entropy is small, the error samples are close to each other and the 

second derivative evaluates as a negative coefficient. Now let’s focus on the term which 

involves the (

*w

3− )α -power in the first line of Eq. (4.33). Since all other terms vary 

linearly with α, this term will dominantly affect the behavior of the trace when α is 

varied. Consider the case where σ is small enough such that the small entropy causes the 

kernel evaluations in the brackets to be close to their maximum possible values and the 

sum therefore exceeds one. In that case, the power of the quantity in the brackets will 

increase exponentially with increasing α (for 3>α ), thus regardless of the terms affected 

linearly by α, the overall trace value will decrease (increase in absolute value). 

Consequently, a narrower valley towards the maximum will appear and the upper bound 

on the step size for stability will be reduced. 

α

 On the other hand, if the kernel size is large so that the sum in the brackets is less 

than one, then the ( )3− -power of this quantity will decrease, thus resulting in a wider 

valley towards the maximum in contrast to the previous case (for 3>α ). However, in 

practice we do not want to use a very small or a very large kernel size, as this will 

increase the variance or increase the bias of the Parzen estimation, respectively [Par67]. 

In fact, there is another approach that directly shows how the eigenvalues of R 

will decrease with increasing α and vice versa. Consider the expression in Eq. (4.24) or 

Eq. (4.33) again. Since at the operating point the error entropy is small and the difference 

between error samples is close to zero, the sums involving the derivative of the kernel 

function are approximately zero. Under the conditions mentioned in the previous 
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paragraph, all the terms involving α remain as scalar coefficients that multiply a matrix, 

whose eigenvalues are negative. With the same arguments on how increasing α increases 

these coefficients, we conclude that the eigenvalues of the matrix R will increase in 

absolute value for a small kernel size and decrease for a large kernel size.   

These conclusions are summarized in the following two facts. 

Fact 4.1. Regardless of the entropy order, increasing the kernel size results in a 

wider valley around the optimal solution by decreasing the absolute values of the 

(negative) eigenvalues of the Hessian matrix of the information potential criterion. 

Proof. In the preceding text. 

 

(1) 

(2) 

(a) (b) 
Figure 4-12. Log-absolute-value of the Hessian eigenvalues for the information potential 

(a1 and b1) and entropy (a2 and b2) evaluated at the optimal solution, 
presented as a function of the kernel size (σ) and the entropy order (α). 
There are two eigenvalues since the ADALINE has two weights 

 
Fact 4.2. The effect of entropy order on the eigenvalues of the Hessian depends on 

the value of the kernel size. If the kernel size is small, then increasing the entropy order 
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increases the absolute values of the (negative) eigenvalues of the Hessian of the 

information potential function at the global maximum. This results in a narrower valley. 

If the kernel size is large, the effect is the opposite, i.e., increasing the entropy order 

decreases the absolute value of the eigenvalues of the Hessian of the information 

potential, resulting in a wider valley. This analysis is expected to hold at least for 3>α . 

Proof. In the preceding text.  

We remark that our conclusions in this section do not only apply to the 

eigenvalues of R, but they generalize to how these two parameters affect the volume of 

the region where our quadratic approximation is valid. These results are imperative from 

a practical point of view, because they explain how the structure of the performance 

surface can be manipulated by adjusting these parameters. Besides, they identify the 

procedures to adjust the step size for fast and stable convergence.   

In order to show these results, we provide below a numerical case study, where 

we evaluate the eigenvalues of the Hessian of the information potential for a 2-weight 

ADALINE at its optimal weights for various values of the kernel size and entropy order 

in a supervised training scenario with a set of 20 noiseless training samples. The results 

are shown in Figure 4-12. In the subplots presented in the first row of Figure 4-12 it is 

clearly seen that the behavior of the absolute values of the eigenvalues of the information 

potential is exactly as we expected according to the theoretical analysis above. Note 

however, that the logarithms of the eigenvalues are pictured to account for a wider range 

of values and this is the reason why the values of the two eigenvalues look similar. 

In the second row of Figure 4-12 we also presented the eigenvalues of the actual 

entropy evaluated at the optimal point, for the same values of kernel size and entropy 
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order. Recall that entropy and information potential are related to each other by 

)1/()]([log)( ααα −= eVeH , hence their Hessians are associated to each other by 
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Since the error entropy is minimized (as opposed to the maximization of the information 

potential for 1>α ), the eigenvalues of its Hessian in Eq. (4.34) are positive already.  

In this chapter, we introduced the principle of minimum error entropy training for 

information theoretic supervised learning of adaptive systems. We investigated the 

application of this principle to the training of nonlinear adaptive systems, specifically 

MLPs, in chaotic time-series prediction, nonlinear system identification and classification 

type problems. We showed the basic behavioral distinctions from the traditional MSE 

criterion. In order to cut down the training time in batch mode learning, we proposed an 

initialization algorithm that sets the weights of the MLP nearby the optimal solution. 

 



CHAPTER 5 
APPLICATION OF RENYI’S MUTUAL INFORMATION TO 

INDEPENDENT COMPONENT ANALYSIS  
 

5.1 Brief Overview of Independent Component Analysis 

 Principal components analysis (PCA) is a tool that investigates the second-order 

statistical structure underlying a given random vector. Basically, the purpose of PCA is to 

identify a set of random variables that are uncorrelated with each other and maximize the 

variance [Oja83] that are linear projections of a random vector. Independent Component 

Analysis (ICA) is a generalization of this concept, in which the uncorrelatedness 

objective is further strengthened to independency of the projected random variables 

[Hyv01]. Besides its theoretical appeal, ICA is interesting in that it has found applications 

in signal processing problems under the name of instantaneous, linear blind source 

separation (BSS). The BSS problem seeks to separate a set of unknown source signals 

that are mixed by an unknown mixture. For the special case of an instantaneous and 

linear mixture, the ICA model can be applied to the problem although alternatives exist 

that exploit the time structure of the second-order statistical properties of the source 

signals [Dia01, Wu99]. In this section, we will only consider the ICA model for the BSS 

problem, which requires the conditions about the nature of the mixture mentioned above 

to hold (at least approximately). 

In this respect, a typical BSS system consists of n observations that are linear 

combinations of m mutually independent source signals ( ). Thus, the observation 

vector z, the source vector s, and the full column-rank mixing matrix H form the equation

mn ≥
 86
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z=Hs. In the BSS literature, the square mixture case where the number of measurements 

is equal to the number of sources is the most investigated, because if there are more 

measurements than sources, for instance, PCA may be applied to select the m directions 

in the observation space that preserve most of the signal variability. This procedure may 

also be used to improve the SNR for the observations. In the BSS literature, in order to 

solve the square BSS problem, minimization of the mutual information (MMI) between 

outputs (estimated source signals) is considered to be the natural information theoretic 

criterion [Car98, Hyv99b, Yan97]. In spite of this understanding, two of the most well 

known methods for BSS, i.e., Bell and Sejnowski’s InfoMax algorithm [Bel95], and 

Hyvarinen’s FastICA [Hyv99a], use respectively the maximization of joint output 

entropy and fourth order cumulants (kurtosis). Shannon’s mutual information can be 

written as the sum of Shannon’s marginal entropies minus the joint entropy. One 

difficulty in using Shannon’s MMI is the estimation of the marginal entropies. In order to 

estimate the marginal entropy, Comon and others approximate the output marginal pdfs 

with truncated polynomial expansions [Cho00, Com94, Hyv99b], which naturally 

introduces error in the estimation procedure. There are also parametric approaches to 

BSS, where the designer assumes a specific parametric model for the source distributions 

based on previous knowledge in the problem [Cho00]. A well-known result from 

statistical signal processing theory is that if the designer chooses an accurate parametric 

model for the problem, it will outperform any nonparametric approach, as the ones 

proposed in this chapter. However, it is also well known that the penalty for model 

mismatch is high, so there is an intrinsic compromise on the use of parametric modeling. 

An algorithm proposed by Xu et al. [Xu98] avoids the polynomial expansion by using the 
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nonparametric Parzen windowing with Gaussian kernels to estimate directly Renyi’s 

quadratic joint entropy at the output of the mapper as described in Chapter 2. 

Unfortunately, Xu’s method requires estimation of the n-dimensional joint entropy, and 

non-parametric pdf estimation using Parzen windows looses robustness in high-

dimensional spaces. The algorithm described in this chapter, avoids this shortcoming and 

has proved to be superior to many commonly accepted methods, because it requires less 

data to achieve the same performance level [Hil01a]. The algorithm presented by Hild et 

al. [Hil01a] was also restricted to Renyi’s quadratic mutual information and Gaussian 

kernels in Parzen windowing using the old estimator for the marginal entropies. In this 

chapter, we will also use the generalized entropy estimator to investigate the effect of 

kernel and entropy order choice on the final separation performance.  

 It is necessary at this point to note that almost all of the simulation work on BSS 

presented in this thesis is performed by Kenneth E. Hild II, who is a colleague of mine at 

CNEL. The original idea of using the proposed cost function and the topology was his. 

Together, we proved that both the cost function and the topology are suitable to solve the 

problem. Kenneth prefers using the quadratic entropy estimator. With some modifications 

on his computer code, I completed the simulations that use other entropy orders and 

kernel functions. In any case, most of the credit for the work presented here on BSS 

should go to him. 

5.2 Background for the BSS Algorithm 

 It is well known that an instantaneous, linear mixture can be separated by a spatial 

whitening (sphering) block followed by a pure rotation in n dimensions [Com94]. In fact, 

in general, for all BSS algorithms pre-whitening is suggested to increase convergence 
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speed [Hyv01]. Our algorithm exploits this two-dimensional topology in solving the 

BSS/ICA problem with Renyi’s mutual information. 

 In this approach, the spatial (pre-) whitening matrix is evaluated from the 

observed data; W=QΛ−1/2, where Q is the matrix of eigenvectors of the covariance matrix 

of the observations, and Λ is the corresponding eigenvalue matrix. Applying this 

transformation on the samples of the observation vector, x=Wz, we obtain the whitened 

samples x. The rotation matrix that follows this whitening procedure is adapted according 

to Renyi’s mutual information to produce the outputs y=R(θ)x. Here, θ denotes the set of 

Givens rotation angles that are used to parameterize the rotation matrix [Hil01a]. Now 

recall the following identity that holds for an n-dimensional random vector Y and its 

marginals, Y o [Cov91], which relates the mutual information between the components of 

the random variable to the marginal entropies of these components and the joint entropy. 
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The same equality is not valid for Renyi’s definitions of these quantities because Renyi’s 

entropy lacks this additivity property of Shannon’s entropy. Nevertheless, we will show 

that we can slightly modify Renyi’s mutual information expression such that it preserves 

the global minimum of the mutual information. Recall from Eq. (2.39) that Renyi’s 

mutual information for an n-dimensional random variable Y is defined as 
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However, the sum of Renyi’s marginal entropies minus the joint entropy results in a ratio 

of integrals. 

 



90

 

∫ ∏

∫
∑ ∞

∞− =

∞

∞−

= −
=−

dyyf

df

HyH
n

o

o
Y

Y
o

n

o
o

α

α

αα α
)(

y)y(

log
1

1)y()(

1

1
  (5.3) 

Although this is not identical to Eq. (5.2), it is very similar in structure. In addition, Eq. 

(5.2) and Eq. (5.3) are both non-negative and they both evaluate to zero if and only if the 

joint pdf can be written as the product of the marginal densities, i.e., when the 

components of Y are mutually independent. This can be seen easily by letting the joint 

density, which is the integrand in the numerator, to be equal to the product of marginal 

densities, which is the integrand in the denominator. In that case, the argument of the 

logarithm in Eq. (5.3) becomes unity, hence the minimum value of zero is achieved, and 

thus the sources are separated. On the other hand, if the right hand side in Eq. (5.3) 

becomes zero, the argument of the logarithm becomes unity, thus the numerator is equal 

to the denominator. For this to occur between a joint distribution and its marginals, it is 

necessary for the marginal random variables to be independent. Having proved that the 

expression in Eq. (5.3) is a valid criterion for measuring independence (that is its global 

minimum occurs when its arguments are independent), we adopt it as the cost function 

instead of the actual mutual information, given in Eq. (5.2).   

Since only the rotation matrix in the separating topology is adapted to minimize 

Eq. (5.3) and since Renyi’s joint entropy is invariant to rotations (see Property 2.5), we 

can remove this term and reduce the cost function to Eq. (5.4) which mimics the cost 

functions of Comon and Yang [Com94, Yan97] with Renyi’s entropy substituted for 

Shannon’s. In order to estimate the marginal entropies of each output Yo, we will use our 

nonparametric estimator. 
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The Givens rotation parameter vector θ consists of n(n-1)/2 parameters θij, j>i, 

where each parameter represents the amount of Givens rotation in the corresponding i-j 

plane. The overall rotation matrix is the product of the individual in-plane rotation 

matrices 
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In Eq. (5.5), all products are performed sequentially from the right (or left). The 

important point is to perform these operations in the same order and from the same side 

when evaluating the gradient expression. The Givens rotation in the i-j plane is defined as 

an identity matrix whose (i,i)th, (i,j)th, (j,i)th, and (j,j)th entries, as in a rotation in two-

dimensions, are modified to read cosθij, -sinθij, sinθij, and cosθij, respectively.   

5.3 Adaptation Algorithm for the Rotation Matrix 

 The batch mode adaptation algorithm for the rotation matrix, which is 

parameterized in terms of Givens rotations, can be summarized as follows. 

Algorithm 5.1. Batch mode BSS algorithm using Renyi’s entropy. 

1. Whiten all observation samples {  using W to produce the samples 

.  

},...,1 Nzz

},...,{ 1 Nxx

2. Initialize (randomly) the Givens rotation angles . nijniij ,...,1,1,...,1, +=−=θ

3. Compute the rotation matrix using Eq. (5.5) and evaluate the output samples using it. 

4. Until the algorithm converges repeat the following steepest descent procedure 

a. Evaluate the gradient of the cost function , using ∑ =
= n

o
oYHJ 1 )(ˆ)( αθ
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where for any matrix A, Ao denotes the oth row of that matrix and  denotes the 

derivative of the specific Givens rotation matrix (in the i-j plane) with respect to 

its parameter 

ijR′

ijθ . 

b. Update the Givens angles using 
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 The algorithm above is for the separation of real-valued signals from real-valued 

mixtures. In order to generalize it to the case of complex-valued mixtures, the Givens 

matrices must be modified by incorporating imaginary parts to the rotation angles to 

account for rotations in the imaginary portions of the complex-valued vector space. 

5.4 Simulations for Batch Mode BSS Using Renyi’s Entropy 

The whitening-rotation scheme has a very significant advantage. We observed 

experimentally that when this topology is used, with a large number of samples, there are 

no local minima of the cost function. Consider a 2-source separation problem, for 

instance. The rotation matrix consists of a single parameter, which can assume values in 

the interval [0,2π). As far as separation is concerned, there are four equivalent solutions, 
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which correspond to two permutations of the sources and the two possible signs for each 

source. The value of the cost function is periodic with π/2 over the rotation angle θ, and 

most often is a very smooth function (sinusoidal like), which is easy to search using 

descent based numerical optimization techniques. 

Numerous simulations were performed with this new BSS algorithm using 

different α and smooth kernels on synthetic and audio data instantaneous mixtures. In 

order to compare the results from different algorithms, we used a signal-to-distortion 

ratio (SDR), which is defined as 
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where q=RWH is the overall mixing+separation matrix and qi is the ith row of q. This 

criterion effectively measures the distance of q from an identity matrix and is invariant to 

permutations and scaling. 

We first start with an investigation of the effect of α on the separation of 

instantaneous mixtures, when the source kurtosis values span the range of super- and sub-

Gaussian signals. Although our nonparametric method in principle can separate signals 

independent of their kurtoses (since the pdf is estimated at the output directly), a question 

of paramount importance is ‘what value of entropy order should one use for different 

source densities in order to achieve optimal performance?’ supposing that we have some 

knowledge on this aspect of the problem. In search of the answer to this question, a series 

of Monte Carlo simulations are performed (10 for each), using source distributions of 

different kurtosis values. In all these simulations, the two sources are assumed to have the 

same generalized Gaussian density, which is given by ])[/(exp()( υυ
υ υ xExCx −⋅=G . 
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The parameter υ  controls the kurtosis of the density and this family includes 

distributions ranging from Laplacian )1( =υ  to uniform ( )∞→υ . Gaussian distribution 

is a special case corresponding to ( )2=υ , which leads to the classification of densities as 

super-Gaussian and sub-Gaussian for ( )2<υ  and ( )2>υ , respectively. For a given 

kurtosis value the training data set is generated from the corresponding generalized 

Gaussian density and a random mixing matrix is selected. Then the separation is 

performed using various entropy orders (tracing the interval from 1.2 to 8 in steps of 0.4) 

and Gaussian kernels. The Gaussian kernel size was set at 0.25, and the adaptation using 

Algorithm 5.1 was run until a convergence of the SDR within a 0.1dB band was achieved 

(although in practice this cannot be used as the stopping criterion), which usually 

occurred in less than 50 iterations with a step size of 0.2.  

)1=υ

)2.1=υ

)5.1=υ

)4( =υ

)5=υ

)6=υ

Table 5-1. Optimal entropy order versus source density kurtosis 

Kurtosis of sources Optimal entropy order 

0.8 (  6.4 

0.5 (  5.2 
Super-

Gaussian 
Sources 

0.2 (  2 

-0.8  1.2 

-0.9 (  1.6 
Sub-

Gaussian 
Sources 

-1.0 (  1.2 

 
According to these simulations, the optimal entropy orders for the corresponding 

kurtosis value of the source densities are determined and are presented in Table 5-1. 

These results indicate that, for super-Gaussian sources, entropy orders greater than or 

equal to 2 should be preferred, whereas for sub-Gaussian sources, entropy orders smaller 

than 2, perhaps closer to 1 or even smaller than 1, should be preferred. These results are 

 



95

in conformity with our expectations from the analysis of the information forces in 

Chapter 3. As we saw in that analysis, entropy orders larger than 2 emphasize samples in 

concentrated regions of data, whereas smaller orders emphasize the samples in sparse 

regions of data. If the mixtures belong to different kurtosis classes, then the quadratic 

entropy can be used as it puts equal emphasis on all data points regardless of their 

probability density. This effect is very different from some of the available algorithms 

where the BSS algorithms diverge if the kurtoses of the sources are misestimated [Bel95, 

Hyv99a, Hyv99b]. Another interesting aspect of this simulation is that it seems to imply 

that Shannon information definition ( 1→α ) is not particularly appropriate for separating 

super-Gaussian sources, although it might be useful for sub-Gaussian sources [Erd02b].  
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Figure 5-1. Evolution of the signal-to-distortion ratio during the iterations for two sources 

for different choices of entropy order and kernel function 
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The next question addresses the performance of Algorithm 5.1 for a realistic 

source such as speech. Figure 5-1 shows the evolution of the SDR values as a function of 

number of iterations in a 2-audio-source problem for different choices of the kernel 

function and the parameter α. These plots clearly show that for both kernels, a better 

separation is achieved when α=5 is used. Also, we observe that the solutions generated 

using the Gaussian kernel are better than those generated with the Cauchy kernel, which 

hints at the possibility of determining an optimal kernel choice for a given data set. There 

is no significant deterioration of performance when α changes from 5 to 2, since both 

provide SDRs larger than 30 dB (20 dB, corresponding to a 100-to-1 SDR, is considered 

an acceptable separation performance). We also see that for very large α values 

performance deteriorates due to the smoothing effect in the kernel.  

For a final comparison, we show the SDR plots in Figure 5-2 for our BSS 

algorithm with α =2 and Gaussian kernels, the FastICA (FICA) [Hyv99a] with the 

symmetric approach and the cubic nonlinearity, Infomax [Bel95] with Amari’s natural 

gradient [Ama96], and Comon’s minimization of mutual information (MMI) using an 

instantaneous mixture of 10 audio sources [Erd02b]. The sources consist of one music 

piece, four female and five male speakers. Spatial pre-whitening is used for each method, 

and the mixing matrix entries were chosen from a uniform density on [-1,1]. The numbers 

in parentheses are the number of data samples used to train each algorithm. It is clearly 

seen from the figure, that the MRMI method achieves better performance, although it 

uses a smaller data set. The improved data efficiency of the MRMI method is discussed 

and showed in greater detail by Hild et al. [Hil01a]. We attribute it to the fact that our 

method directly estimates the entropy and captures the information in the samples. 
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Figure 5-2. SDR versus iterations for our algorithm (MRMI), Infomax, FICA, Comon’s 

MMI using the designated number of samples for the separation of 10 audio 
sources 

 
Although the MRMI method converges in fewer iterations than the others do, 

keep in mind that it has O(N2) computational complexity per update as compared to O(N) 

for the other two methods.  Yang and Amari’s MMI algorithm was also applied to this 

problem, however, we were never able to achieve an acceptable separation level; 

therefore the corresponding results are not included in the figure. 

 



CHAPTER 6 
APPLICATION OF RENYI’S ENTROPY TO BLIND DECONVOLTION  

AND BLIND EQUALIZATION 
 

6.1 Brief Overview of Blind Deconvolution and Blind Equalization 

 For the sake of simplicity, we consider here the discrete-time processes. Suppose 

we have the result of the convolution of two discrete-time sequences sn and hn, and let 

this new sequence be denoted by xn, i.e., xn=hn*sn. In a realistic context, these two 

sequences could be the input signal to a linear time-invariant (LTI) channel and the 

impulse response of that channel. Suppose that we know neither the channel’s impulse 

response nor the input sequence; except we could have some knowledge on the statistical 

properties of the input sequence and we have the output measurements xn. In the classical 

literature, the problem of determining the input sequence only using this given 

information (up to an uncertainty in the sign, amplitude and the delay) is referred to as 

blind deconvolution and the problem of determining the channel impulse response’s 

inverse is referred to as blind equalization [Hay94, Hay00b]. In time, as the interest of 

researchers shifted towards the application of this methodology to the blind equalization 

of digital communication channels, this term started specifically referring to digital blind 

equalization [Hay94, Hay00b, Nik93] and blind deconvolution fused with blind source 

separation (convolutive mixtures) and started being referred to as multi-channel blind 

deconvolution [Chi01, Jan00]. It is also known that, in essence, the two problems, blind 

deconvolution and blind equalization, are equivalent since convolution is a commutative 

operator [Hay94, Hay00b].  

9
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Throughout this dissertation, influenced by the recent nomenclature in the blind 

adaptation techniques literature, we will use the name blind deconvolution (BD) to 

describe the problem of determining the unknown input signal to an unknown channel 

and we will refer to the process of equalizing a digital communication channel as blind 

equalization (BE). 

 

Criterion

wn 
xn  

hn 
sn yn 

 

 

Figure 6-1. Typical blind deconvolution/equalization scheme with an appropriate 
criterion. The channel impulse response hn and the input signal sn are 
unknown 

 
Typically, the blind deconvolution problem is represented by the block diagram 

given in Figure 6-1. Usually the equalizer wn is parameterized as an FIR filter and a 

suitable criterion is determined depending on the assumptions on the statistical behavior 

of the input signal. Although in reality the measurement samples, xn, may be corrupted by 

additive noise, we do not consider that case in our simulations. However, we will briefly 

mention the theoretical expectations of the proposed algorithms’ robustness to noise. 

There are some technical issues in the choice of the equalizer structure for various 

possibilities of the pole-zero locations of the unknown channel. First of all, notice that if 

the channel is a minimum/maximum-phase filter, then knowledge of the power spectral 

density (PSD) of the input signal is sufficient to determine the unique solution to the 

blind deconvolution problem; just evaluate the PSD of the measured xn and divide it by 

the PSD of the input signal to get an estimate of the magnitude-squared frequency 

response of the channel. Then using the knowledge that it is minimum- or maximum-
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phase, one can determine easily the phase response also, thus completing the frequency 

domain representation of the channel [Hay94]. More important are the restrictions that 

the structure of the channel filter imposes on the structure of the equalizer. Explicitly, if 

the channel is minimum-phase, then a stable and causal inverse exists. If the channel is 

maximum-phase, then a stable and anti-causal inverse exists. If the channel is neither 

minimum- nor maximum-phase, then the stable inverse is non-causal (non-anti-causal 

also). Since, in general, it is not possible to know the relative locations of the zeros and 

the poles of the unknown channel filter with respect to the unit circle, the designer is 

forced to assume the worst case and use a non-causal FIR (in both directions) equalizer 

filter structure. The realistic requirement that the solution must be obtained in finite time 

(perhaps pre-specified) also limits the extent of the FIR filter in both the advance and 

delay directions. Typically the equalizer filter is chosen an FIR with tap weights w-

L,…,wL; i.e., with equal length in both directions, although not necessary. This structural 

issue, however, seems to over-occupy most of the researchers proposing blind 

deconvolution algorithms [Ben80, Hay94]. In reality, the choice of the criterion has 

nothing to do with this structural issue. Besides, the performance of the algorithm does 

not vary much once the FIR filter length L is chosen sufficienty large such that the causal 

and anti-causal portions of the equalizer impulse response can accurately approximate the 

ideal stable inverse filter (i.e., has most of the energy in the available taps). 

As for the choice of the criterion, many possibilities exist depending on the 

assumptions on the input signal’s statistical structure. Donoho summarized the well-

known approach of entropy minimization to solve this problem [Don81]. Minimum 

entropy deconvolution assumes that the source signal is a non-Gaussian distributed wide-
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sense-stationary (WSS), white process. Since at the time, effective entropy estimators 

were not available, the methods summarized by Donoho and contemporaries usually 

adopted higher order moments, which mimic the properties of entropy, of the signals 

under investigation, e.g. the kurtosis. In some cases, the designer may have knowledge 

about some certain statistics of the input signal and this information may be used to 

obtain better deconvolution results. For example, if the source probability density 

function (pdf) is known and if the source signal samples are assumed to be iid, then the 

maximum entropy approach may be used [Bel95]. 

To summarize, there are mainly two approaches that make use of the entropy as 

the adaptation criterion: minimum entropy deconvolution and maximum entropy 

deconvolution. Both approaches assume that the samples sn are iid and the equalizer 

structure is chosen such that it can successfully (even if approximately) invert the channel 

filter. In the former approach, the topology shown in Figure 6.1 is used where the 

criterion is the entropy of the output of the equalizer. Due to the Benveniste-Goursat-

Ruget theorem [Ben80], the entropy of the output of the equalizer is minimized if and 

only if the overall filter, hn*wn, is an impulse (with arbitrary delay and scale). The main 

intuition behind this approach is that, as the overall filter departs from an impulse, the 

output distribution approaches a Gaussian density. It is known that under fixed variance, 

Gaussian density has the maximum entropy and thus entropy can be used as a 

Gaussianity measure, i.e., minimizing entropy under the fixed variance constraint 

maximizes non-Gaussianity. In fact, basic ICA algorithms like our MRMI in Chapter 5, 

Comon’s MMI and Hyvarinen’s FastICA can also be regarded in this context as 

maximizing the average non-Gaussianity of the outputs by minimizing the sum of output 
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marginal entropies or kurtoses [Hyv01]. In the latter approach (maximum entropy 

deconvolution), it is necessary to have an accurate estimate of the pdf of the source 

signal. From this pdf, the cdf of the source is determined and this function is introduced 

in Figure 6.1 as a nonlinear mapping on the output of the equalizer. As described by Bell 

and Sejnowski [Bel95], when the entropy after this nonlinearity is maximized, the 

distribution approaches to a uniform density on the interval [0,1]. This forces the pdf of 

the signal before the nonlinearity to approach that of the source signal and once again due 

to the Benveniste-Goursat-Ruget theorem the overall filter approaches an impulse 

function. 

The existence of the nonlinearity limits the number of solutions to two (if the 

source pdf is even symmetric) for each possible delay amount, in the maximum entropy 

deconvolution scheme, corresponding to opposite sign weight vectors for the equalizer. 

In the minimum entropy scheme, however, there are infinitely many solutions for the 

optimal weight vector that lie on a line passing through the origin. Different solutions on 

the line correspond to different positive and negative scaling factors of the unit norm 

solution. Since the scale factor is an indeterminacy in the blind deconvolution problem, 

this does not pose any trouble, except when one tries to impose the constant variance 

constraint by constraining the weight vector to have unit norm at all times. There are two 

ways to achieve this. The commonly used approach in such situations is to normalize the 

weight vector after each weight update (see Oja’s rule for PCA for example) [Oja83, 

Hay99]. The second approach is to express the weight vector in spherical coordinates and 

parameterize the (2L+1)-length weight vector in terms of 2L directional angles and a unit 

norm. For example, in the 3-tap equalizer case, the unit norm weight vector would be 
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written in terms of the two directional angles as [ . 

The adaptation would then be carried over these angles; however, this will introduce 

trigonometric evaluation requirements on the algorithm, which may not always be 

desirable. 

T]sincossincoscos 22121 θθθθθ

A second approach in the minimum entropy deconvolution approach is to use a 

scale invariant cost function, so that the performance evaluations of two weight vectors 

that are co-linear but different in norm and sign yield the same value, thus not prefer one 

over the other. In the following sections, we will give an example of such an entropy-

based scale-invariant cost function and use it in training an equalizer. In the following 

sections of this chapter, we will only consider the minimum entropy approach, however, 

we emphasize that the estimator we proposed for Renyi’s entropy can easily and 

successfully be applied to the blind deconvolution problem in the maximum entropy 

sense as we described above. 

6.2 Minimum Entropy Deconvolution Using Renyi’s Entropy 

 In this section, we will provide a motivation for using Renyi’s entropy as a 

criterion for minimum entropy blind deconvolution. As an initial step, consider the 

following theorem, which gives the relationship between the entropies of linearly 

combined random variables. 

Theorem 6.1. Let S1 and S2 be two independent random variables with pdfs  

and , respectively. Let H

(.)
1Sp

(.)
2Sp α(.) denote the order-α Renyi’s entropy for a continuous 

random variable. If a1 and a2 are two real coefficients in Y=a1S1+a2S2, then  

 ii aSHYH log)()( +≥ αα ,     i=1,2  (6.1) 

Proof. Since S1 and S2 are independent, the pdf of Y is given by 
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Recall the definition of Renyi’s entropy for Y and consider the following identity. 
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Using Jensen’s inequality for convex and concave cases, we get 
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Reorganizing the terms in the last inequality and using the relationship between entropy 

and information potential, regardless of the value of α and the direction of the inequality, 

we arrive at the conclusion ii aSHYH log)()( +≥ αα ,     i=1,2. 

An immediate extension of this theorem is obtained by increasing the number of 

random variables in the linear combination to n. 

Corollary 6.1. If Y=a1S1+…+anSn, with iid Si~pS(.), then the following inequality 

holds for the entropies of S and Y. 

 naa
n

SHYH ...log1)()( 1+≥ αα   (6.5) 
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where equality the two entropies occur iff ijia δ=  , where δ denotes the Kronecker-delta 

function. 

Proof. It is trivial to generalize the result in Theorem 6.1 to n random variables 

using mathematical induction. Thus, for the case where all n random variables are 

identically distributed we get n inequalities. 
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Adding these inequalities, we get the desired result. The necessary and sufficient 

condition for the equality of entropies is obvious from the formulation. If ijia δ= , then 

Y=S, therefore the entropies are equal. If ijia δ≠ , then due to Theorem 6.1, entropy of Y 

is greater than the entropy of S (assuming normalized coefficients). Notice that this 

corollary does not necessarily guarantee that the entropy of Y is lgreater than the entropy 

of S, because when the absolute value of the product of the gains is less than one, the 

logarithm brings in a negative component. Through complicated algebra, which we omit 

here, we were able to show that in the vicinity of a combination where only one of the 

gains is close to one and all the others are close to zero, these terms lose their significance 

and the inequality is mostly dominated by the two entropy terms. 

Notice that the blind deconvolution problem is structurally very similar to the 

situation presented in the above corollary. In that context, the coefficients ai of the linear 

combination are replaced by the impulse response coefficients of the overall filter hn*wn. 

In addition, the random variables S and Y are replaced by the source signal and the 

deconvolving filter (equalizer) output signal, respectively. Especially, when close to the 
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ideal solution, i.e., when hn*wn is close to an impulse, the second term in Corollary 6.1 

will approach rapidly to zero and the two entropy values will converge as the two signals 

Y and S converge to each other. 

We mentioned in the previous section that in the minimum entropy approach to 

blind deconvolution, there are two possible methods to avoid the adaptation being 

dominated by the norm of the weight vector (i.e., equalizer tap weights). We will take 

here the second approach where the weight vector is not constrained but the cost function 

is made scale invariant. 

The entropy of a random variable is not scale invariant. In order to solve the blind 

deconvolution problem using unconstrained optimization techniques and without having 

to normalize the weights at the end of every iteration, we need to modify this cost 

function by introducing appropriate terms to make it scale invariant. For this purpose, 

consider the following modified cost function. 

Fact 6.1. The modified cost function 

 [ )(log
2
1)()( YVarYHYJ −= α ]   (6.7) 

is scale invariant. That is )()( YJaYJ = , ℜ∈∀a . 

Proof. It is trivial to show by a simple change of variables in the integral that for 

Renyi’s entropy (as for Shannon’s entropy), we have the following identity between the 

entropies of two scaled random variables. 

 aYHaYH log)()( += αα   (6.8) 

where we can replace alog  with . We also know that for variance  2log)2/1( a

   (6.9) )()( 2 YVaraaYVar =

 



107

Combining these two identities, the terms with a cancel out and we get the desired result. 

In practice, we will use our nonparametric estimator in place of the actual entropy 

expression in the cost function given in Eq. (6.7). The sample variance estimators already 

satisfy the scaling property of the variance given in Eq. (6.9), however, we saw that in 

order for the entropy estimator to satisfy the scaling property of entropy given in Eq. 

(6.8), we need to scale up the kernel size with the same ratio as the scaling of the norm of 

the weight vector (assuming WSS observations). Therefore, we may determine a suitable 

kernel size (performance does not critically depend on this choice as long as the selected 

kernel size is not very small or very large) corresponding to a unit norm weight vector 

and initialize the weight vector to be unit norm. Then, during the course of adaptation, we 

can scale up/down the kernel size according to the new norm of the weight vector. 

In Chapter 2, we established that for smooth, symmetric, unimodal kernel 

functions, the global minima of the nonparametric entropy estimator and the actual 

entropy coincide and furthermore, this global minimum of the estimator is smooth, i.e., 

has zero gradient and a positive semi-definite Hessian. This property of the estimator 

allows gradient and Hessian based optimization procedures to safely converge to the 

desired optimum point in adaptation.  

In addition, Theorem 2.4 allows us to minimize the estimated entropy of the of the 

data in place of the actual entropy in blind deconvolution, asymptotically (and on the 

average) the nonparametric estimator results in a larger entropy estimate, we will be 

minimizing an upper bound for a quantity that we wish to minimize. 

 Practically, since the deconvolving filter wn is a causal FIR filter, after the 

addition of a sufficiently long delay line (length L) due to reasons about the non-
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minimum phase situation mentioned before, one can express its output as a linear 

combination of the input samples at consecutive time steps as 

    (6.10) k
T

k Xwy =

where the weight vector  consists of the FIR impulse response 

coefficients and  consists of the most recent values of the input signal 

to the filter.  

T
Lwww ][ 20K=

T
Lkx ]2−kk xX [= K

As for the variance term in Eq. (6.7), under the assumption that the source signal 

is zero-mean WSS and the unknown channel is linear time-invariant, we can write  
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Substituting Eq. (2.5) and Eq. (6.11) in Eq. (6.7), we get the nonparametric estimate of 

the cost function as 
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where Var(X) dropped out because it does not depend on the weights of the adaptive 

filter. Now, using Eq. (6.10), the gradient of the cost function in Eq. (6.12) with respect 

to the weight vector is obtained as 
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where (.)σκ ′  is the derivative of the kernel function with respect to its argument. Given 

N samples of Xk, the adaptive filter may be trained to converge to the inverse of the 
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channel. The gradient in Eq. (6.13) may be used in both off-line and on-line training to 

minimize Eq. (6.12). Choosing a sufficiently small window length of N (depending on the 

computational requirements), which may be sliding or non-overlapping, it is possible to 

estimate the source signal on-line.  

 As for the optimization techniques that can be applied to obtain the optimal 

solution, simple gradient descent, conjugate-gradient, Levenberg-Marquardt, or other 

approaches may be taken [Lue73]. If the kernel size is chosen sufficiently large (usually, 

a kernel width that covers about 10 samples on the average yields good results), then the 

performance surface is reasonably simple to search and based on numerous simulations, 

we conjecture that there does not exist local minima. In fact, in all previous problems, it 

was observed that as long as the kernel size is chosen in a moderate value range (as 

prescribed above), its precise value is not crucial to the final performance of the adaptive 

system. An important property of the proposed estimator that deserves mentioning at this 

point is its close relationship with the global optimization method of convolution 

smoothing mentioned in Chapter 4.  

6.3 Simulations on Minimum Entropy Deconvolution 

In order to test the performance of the proposed blind deconvolution algorithm, 

we performed a series of Monte Carlo runs using different entropy orders and batch-sizes. 

In the Monte-Carlo runs, a random minimum-phase 15-tap FIR filter is chosen for the 

unknown channel impulse response, and the length of the deconvolving filter is set to that 

of the ideal inverse filter. For various values of N and α, 100 random-choice (both for 

Cauchy distributed data samples and deconvolver initial weights) simulations are run for 

each combination of (N,α). The results of these Monte Carlo simulations are summarized 
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in Table 6-1 and Table 6-2, where the average and standard deviations of both signal-to-

interference-ratio (SIR) and convergence time (Tc) are given. 

The SIR of a single run is defined as the average of the SIR values of the last 100 

iterations after convergence of that simulation (since due to the constant step size, the 

performance rattles slightly after convergence). The SIR value at a given iteration is 

computed as the ratio of the power of the maximum component of the overall filter to the 

power of the other components, i.e., if we let an=hn*wn be the overall filter where wn is 

the current estimate of the deconvolving filter, we evaluate 
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Note that under the assumption of WSS source signals, the power of the observed signal 

is time-invariant; therefore, the overall filter weights can equivalently be used to 

determine the signal-to-interference ratio. The convergence time is defined as the largest 

iteration index smaller than the maximum number of iterations minus 100, such that the 

SIR value is less than or equal to the minimum SIR value attained in the last 100 

iterations.  

Notice that, regardless of the entropy order and batch size, an average 

deconvolution performance above 20dB was attained. As expected, with increased batch 

size, the SIR improved, although slightly. In addition, convergence was mostly achieved 

within 60 to 70 iterations (note that this number may depend on the step size selected in 

the gradient descent algorithm). For the specific source distribution, increasing the 

entropy order seems to decrease the average SIR slightly, but decreases the standard 

deviation. This conclusion, however, cannot be carried out to general data distributions, 
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yet. In order to determine how the entropy order affects the performance (which we 

expect to be insignificantly small for most situations) more theoretical and experimental 

study is required. 

Table 6-1. E[SIR]  std[SIR] in dB over 100 Monte Carlo runs for each combination of 
batch size and entropy order after convergence 

±

 α = 1.01 α = 2 α = 3 

N = 50 21.25 ± 1.55 20.49 ± 1.15 20.45 ± 1.09 

N = 75 21.45 ± 1.45 21.18 ± 1.08 21.09 ± 1.15 

N = 100 22.14 ± 1.33 21.99 ± 1.04 21.93 ± 1.05 

N = 200 22.81 ± 1.72 22.49 ± 1.11 22.30 ± 1.17 

N = 300 22.70 ± 1.81 22.68 ± 1.20 22.65 ± 1.11 

N = 400 23.04 ± 1.84 22.45 ± 1.48 22.53 ± 1.58 

N = 500 23.27 ± 2.50 22.71 ± 1.65 22.87 ± 1.75 

 
Table 6-2. E[Tc]  std[T± c] in iterations over 100 Monte Carlo runs for each combination 

 α = 1.01 α = 2 α = 3 

N = 50 72 ± 22 62 ± 30 62 ± 29 

N = 75 66 ± 25 64 ± 27 62 ± 29 

N = 100 65 ± 24 67 ± 28 67 ± 30 

N = 200 68 ± 25 61 ± 27 62 ± 28 

N = 300 68 ± 24 64 ± 29 64 ± 30 

N = 400 70 ± 23 62 ± 29 60 ± 28 

N = 500 67 ± 25 63 ± 26 64 ± 28 
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6.4 Constant Modulus Blind Equalization Using Renyi’s Entropy 

 The techniques presented above, namely minimum/maximum entropy 

deconvolution approaches are useful in cases where the source is a continuous random 

variable. In digital communications, the transmitted sequence (i.e., the source signal) 

consists of a known finite set of equiprobable symbols, leading to a discrete probability 

mass function. In blind equalization of digital communication channels, this additional 

information may be and is being used. Specifically, in situations where the modulation 

scheme is based on phase shift keying like BPSK, QPSK, or M-PSK, a family of 

algorithms known as the constant modulus algorithm (CMA) belonging to the techniques 

known as Godard-type algorithms is used [God80, Hay94, Hay00b, Tre83]. The main 

idea behind this technique is to use the knowledge that the source symbols, which are 

complex-valued, have a constant magnitude and, therefore one can adapt the equalizer 

weights to minimize the error between the output symbol moduli and the known constant 

modulus of the source symbols. When this error criterion is taken to be MSE, one obtains 

the commonly used forms of the CMA algorithm [Hay00b]. Motivated by the CM-

principle and inspired by our minimum error entropy algorithm, Santamaria et al. has 

recently proposed an extension to the family of CMA [San02b]. In their paper, basically 

they replace the MSE criterion in the CMA approach with the MEE criterion applied to 

the square of the modulus of the equalizer output symbols. They normalize the weight 

vector after each update by setting the center-tap to one and compare the performance of 

the entropy-based CMA with its MSE-based counterpart to arrive at conclusions in favor 

of the entropy-based algorithm. In this section, we will present the formulation for this 

blind equalization algorithm. In order to avoid the requirement of weight scaling at every 
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iteration, we will make use of the scale invariant form given in Eq. (6.7). Finally, we will 

present simulation results from the blind equalization of BPSK and QPSK symbol 

sequences using this algorithm. 

 Suppose the channel under consideration is an LTI, FIR filter with complex tap-

weights in general, since we use the baseband representation for the transmitted signal. 

Let sk be the (complex-valued) symbol transmitted at time k and let nk be the zero-mean 

additive white Gaussian noise (AWGN) acting on the received signal. Then the received 

signal at time k is given by the convolution of the channel impulse response and the input 

symbol sequence plus the additive noise. 
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The output of our FIR equalizer (assuming minimum-phase channel and causal equalizer 

without loss of generality) is similarly given by 
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k, xk, and yk are complex-valued in general. 

 In the Godard-type CM algorithms, the equalizer weight vector is optimized to 

minimize the error between |  and . In this context, one 

could also minimize the entropy of this error, leading to the following family of cost 

functions. 
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Since entropy is invariant to the mean of its argument pdf, the computation of Rp is not 

necessary in Eq. (6.17) and  could alternatively be minimized. 

Finally, in order to make this a scale invariant cost function, we introduce the logarithm 

of the variance of the random variable of interest to obtain finally 

)|(|)( pp yHwJ αα =

 ]|[|log
2
1)|(|)( ppp yVaryHwJ −= αα    (6.18) 

 Once again, we will substitute our entropy estimator in Eq. (6.18) together with 

the sample variance estimate to obtain the nonparametric estimator for this cost function, 

assuming that a sample batch size of B is used. For further consideration, we will assume 

that the family parameter p = 2. 
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Noting that the gradient of the modulus of the equalizer output with respect to the weight 

vector can be expressed simply as (notice that the actual gradient is the transpose of what 

is presented below) 
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we can easily determine the gradient of Eq. (6.19) with respect to the weight vector to be 

as in Eq. (6.21). Notice that everything necessary to evaluate the second term of the 

gradient in Eq. (6.21) already needs to be computed to evaluate the first term. Therefore, 

the introduction of this term contributes O(B) number of additions and a few additional 
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multiplication and divisions to the computational complexity of the gradient, which has 

already a complexity of O(B2) due to the double summations of the first term.  
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 The gradient expression in Eq. (6.21) can be used for both off-line and on-line 

blind equalization. In the on-line case, the batch size B can be chosen to be a suitably 

large number that does not exceed the allocated computational resources for this task. 

Two approaches may be followed: In the sliding window approach, the data batch of size 

B can be updated with every new incoming sample by discarding the oldest data point 

and in the non-overlapping windows approach for every batch a new set of B samples can 

be taken. In any case, the algorithm that trains the weights using standard gradient 

descent will converge to the optimal solution on the average. 

 We investigated the performance of this algorithm on the blind deconvolution of 

BPSK and QPSK modulation schemes. For practicality, the batch size must be chosen to 

be small, however, this caused the sample estimate of the variance term in the cost 

function to be inadequate for a robust adaptation process. Therefore, we performed 

training without this additional term. As an illustration of the results we obtained, we 

present the convergence plots of a length five equalizer, where the unknown channel is an 
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all-pole system with four real poles at {0.1,0.3,0.5,0.7} and the modulation scheme is 

QPSK. In the implementation of this IIR channel, we truncated the impulse response after 

index 27 because the energy concentrated in the remaining terms was insignificant. The 

following figure summarizes these results. 

 
Figure 6-2. A sample from the simulations with entropy-based constant modulus blind 

equalization algorithm for QPSK modulation. Each row of subfigures 
corresponds to SNR levels of 10dB, 15dB, and 20dB, respectively. Each 
column of subfigures shows signal constellations before equalization, after 
equalization and SIR versus iterations 

 
 Notice that as the signal-to-noise ratio (SNR) measured at the receiver input 

increases the accuracy of the blind equalization algorithm also improves, as expected. 

The SIR measure used in the third column of subfigures is the negative of the commonly 

used inter-symbol interference (ISI) performance measure for equalizers. Although, in all 
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the tried noise levels, the equalizer learned the inverse of the channel in the range of 

20dB to 40dB on the average, the additive noise is not targeted intentionally. However, 

constant modulus algorithms, in general, are experimentally shown to converge to the 

vicinity of the minimum MSE solution [Hay00b]. Therefore, we can expect that the 

entropy-based CMA also achieves some level of noise reduction. This expectation is also 

supported by the asymptotic noise rejection capability of the MEE criterion. 

 Santamaria et al. also investigated, although not thoroughly, the effect of entropy 

order and batch size on the performance of this algorithm. Their results indicated that 

these considerations were insignificant and little performance change has been observed 

[San02b].  

 In this chapter, we described briefly the blind deconvolution problem and 

proposed the use of Renyi’s entropy in solving this problem using two approaches, 

namely minimum and maximum entropy deconvolution. We outlined the principles for 

the maximum entropy deconvolution algorithm and presented a general-purpose 

minimum entropy deconvolution algorithm. Investigations of this algorithm in solving 

blind deconvolution problems with continuous- and discrete-valued source signals 

showed its effectiveness. 

 



CHAPTER 7 
STOCHASTIC INFORMATION GRADIENT 

 
7.1 Stochastic Approximation to the Gradient of Entropy 

 In the preceding chapters, we presented a nonparametric estimator for Renyi’s 

entropy, based on Parzen windowing and the resubstitution technique. Successful 

applications of this estimator to numerous adaptation problems were showed. In all these 

applications, we used a batch of training data points when evaluating the weight updates 

at each iteration, regardless of whether the training progressed off-line or on-line. In real-

time on-line adaptation processes, the computational complexity of the learning 

algorithm must be reasonably feasible for practical implementation. In the first years of 

adaptive filtering with digital computers the same problem was encountered and 

addressed by researchers. Widrow’s stochastic gradient for the MSE criterion for the 

training of FIR filters, which led to the celebrated LMS algorithm, has proven extremely 

effective and efficient; subsequently this algorithm not only survived the decades, but it 

has also become possibly the most popular adaptation algorithm in the literature and in 

practice [Far98, Hay84, Hay96, Wid85]. In order for practical applicability of the 

proposed algorithm, which is O(N2) complexity for N samples, in real-time adaptation 

scenarios, we are compelled to determine a simplification to the weight updates when 

training the adaptive system under a performance measure based on entropy, specifically 

our estimator. To this end, we will assume the strategy used by Widrow when he was 

deriving the stochastic gradient for the MSE criterion. The details of our derivation for 

1
  18
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the stochastic gradient for entropy, which we will name as the stochastic information 

gradient (SIG) are presented in this chapter, along with successful applications in various 

learning scenarios. 

7.1.1 Stochastic Gradient for Shannon’s Entropy 

Recall Shannon’s entropy for a random variable Y with pdf fY(y) [Cov91, Sha64] 

 [ ])(log)(log)()( YfEdyyfyfYH YYYYS −=−= ∫
∞

∞−

  (7.1) 

As in the nonparametric estimator for Renyi’s entropy, we can estimate the unknown pdf 

of the variable under consideration from its samples, {y1,…,yN} using Parzen windowing. 
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Similar to Eq. (2.5), replacing the expectation in Eq. (7.1) with the sample mean and 

substituting the Parzen pdf estimate, one could obtain a nonparametric estimate of 

Shannon’s entropy.  

 As in Widrow’s approach in deriving LMS, where he dropped the expectation 

operator in the theoretical MSE definition and approximated this quantity with the 

instantaneous value of the error-square, we will drop the expectation from the definition 

of Shannon’s entropy and use the most current sample of Y in the pdf to obtain the 

following stochastic estimate for entropy: . In 

this, y

)(log)](log[)( kYYYS yfYfEYH −≈−=

k denotes the most recent sample of Y at time step k. Since, in practice, the pdf of Y 

is unknown, we will use the estimate in Eq. (7.2) evaluated over the most recent L 

samples of Y, resulting in the following instantaneous estimate of the pdf evaluated at yk. 
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Thus the stochastic estimate of Shannon’s entropy at time k becomes 
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It can easily and clearly be seen that the expected value of Eq. (7.4) satisfies 
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where  is Shannon’s entropy estimated using Parzen windows. Now that we have 

a stochastic estimate of entropy at every time instant, we can easily determine its 

gradient. Assuming that the samples are generated by an adaptive system with weight 

vector w, this stochastic entropy gradient is found to be 
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where the length L of the sliding window could be selected in consideration with the 

length of the duration where the samples can be assumed iid (notice that in practice the 

whole estimation process depends on the samples being iid, which is most likely not the 

case in adaptation; specifically either the independence or the identicalness portion of the 

assumption may become invalid; however all simulations proved that this violation of the 

assumptions does not cause problems in practice as the nonparametric estimator itself 

starts behaving as a suitable finite-sample case cost function in all applications). The 

expression in Eq. (7.6) is called the stochastic information gradient. The trade-off here in 

selecting L is between tracking capability and misadjustment. Clearly, the expected value 

of this gradient is equal to the actual gradient of Shannon’s entropy estimated by Parzen 

windowing, as a direct consequence Eq. (7.5), assuming that the derivation can be 
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interchanged with the expectation operator. This SIG was successfully used in solving 

BSS and BD problems; these applications will be discussed in the following sections. 

7.1.2 Stochastic Gradient for Order-α Information Potential 

 A similar approach could be taken in order to determine a stochastic gradient for 

the information potential, thus Renyi’s entropy. Recall that, we defined the information 

potential of a random variable Y as 

   (7.7) )]([)()( 1 YfEdyyfYV YYY
−

∞

∞−

== ∫ αα
α

Once again, dropping the expectation and stochastically approximating the value of this 

operation with the instantaneous value of its argument, we obtain V . 

Now, substituting the Parzen window estimate for the pdf, we obtain the stochastic 

estimate for order-α information potential as 
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Consequently, the stochastic gradient is easily determined to be 
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Clearly, the expected value of both Eq. (7.8) and Eq. (7.9), due to the same reasoning as 

in the previous section, equal their corresponding nonparametric estimates using the 

whole data set. Recalling that Renyi’s entropy is defined as )1/()]([log)( ααα −= YVYH  

and that its gradient with respect to the weights is given in terms of the information 
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potential and its gradient by )]()1/[(]/)([/)( YVwYVwYH ααα α ⋅−∂∂=∂∂ , we substitute 

Eq. (7.8) and Eq. (7.9) in this to obtain the stochastic gradient for Renyi’s entropy. 
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Interestingly, in the stochastic gradient for Renyi’s entropy, the entropy order disappears 

and the resulting gradient expressions turn out to be identical to that of Shannon’s 

entropy. This should not confuse us; in fact, we know that ideally when compared, the 

entropies of two arbitrary pdfs are ordered in the same way whether Shannon’s or 

Renyi’s definition is used. Therefore, (asymptotically speaking) it is only natural for the 

gradients to point towards the same direction, converging to the same optimal solution. 

This SIG is successfully used by Erdogmus and Principe [Erd01b, Erd01c] to solve 

supervised adaptation problems using the MEE criterion. 

7.1.3 Alternative Stochastic Gradient Expressions 

 Although we considered approximating the pdf using a window of L samples and 

reducing the expectation to a single value evaluation of its argument, we could have 
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taken other approaches. For example, we could approximate the expectation with a 

sample mean over the most recent L samples, while estimating the pdf using only one 

sample from the past. In that case, the stochastic Shannon’s entropy estimate would be 
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In this case, the stochastic gradient would become 
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For this approach, we would determine the stochastic information potential estimate and 

its gradient to be as follows. 
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Substituting these to determine the stochastic gradient for Renyi’s entropy, we obtain 
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This SIG has been used successfully by Hild et al. [Hil01b, Hil02] to solve the BSS 

problem on-line. This application will be discussed in the following sections in more 

detail with simulation results. 

 Obviously, the main advantage of all the SIG expressions is to decrease the 

complexity of the summations from O(N2) to O(L), where N is the total number of 
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samples in the training data. Despite this tremendous reduction of complexity, the 

performance of SIG-based learning algorithms are virtually comparable with those of the 

batch-mode algorithms that use the whole training set in every update computation. 

However, convergence to a unique solution without any fluctuations should not be 

expected; as in any stochastic gradient algorithm, SIG results in some misadjustment and 

variation about the optimal solution. Conversely, this rattling effect of SIG could be 

advantageous in some situations; it could help the algorithm to escape from the domain of 

attraction of any small local optima to result in global optimization, in surfaces where any 

such sub-optimal solutions might exist. 

7.2 Relationship Between SIG and Hebbian Learning 

 Consider an extreme special case of the stochastic gradient given in Eq. (7.6), 

where the window length L is taken as one. Denoting the gradient of an output sample yk 

with respect to the weight vector (i.e., the sensitivity) by , which is a 

function of the corresponding input x

wyxS kkw ∂∂= /)(

k, we obtain this special-case SIG as 
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where  is, in general, a nonlinear function defined by the selected 

kernel function. For the specific choices of Gaussian kernels and an ADALINE structure 

( ) for which the output is a linear combination of the input components, Eq. 

(7.17) further reduces to the simple form given in Eq. (7.18) (writing the gradient as a 

column vector). 
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We notice that this update rule (the gradient multiplied by a learning rate) resembles the 

classical Hebbian updates (given by ykxk in this context) in the neural networks literature 

[Hay99], where the Hebbian rule stated as “in Hebbian learning, the weight connecting a 

neuron to another is incremented proportional to the product of the input to the neuron 

and its output”. It is well known that Hebbian updates manipulate the correlation 

(maximize or minimize depending on the sign of the updates) between the output signal 

and the inputs and maximize (or minimize) the output variance. We derived Eq. (7.18), 

however, starting from the entropy of the output, and showed that on the average these 

updates maximize (or minimize) the entropy. It is remarkable that switching from 

Hebbian updates applied to instantaneous values of the input and output samples to 

Hebbian rule applied to the instantaneous increments of the signals, it is possible to 

switch between manipulation of variance and entropy. 

 In fact, the special case of Gaussian kernels is not the only one to obey Hebb’s 

original description of the process. Hebb’s rule states: “When an axon of cell A is near 

enough to excite cell B or repeatedly or consistently takes part in firing it, some growth 

or metabolic change takes place in one or both cells such that A’s efficiency, as one of 

the cells firing B, is increased” [Heb49]. According to this, the product of the input and 

the output is not the only configuration that is possible. Notice that the function g(.) 

satisfies  when unimodal, symmetric and differentiable kernels are 

used. Thus, all updates of the form g(y

)())(( xsignxgsign =

k)xk would be feasible Hebbian updates as well. In 

the context of instantaneous increments, this would become )()( 11 −− −⋅− kkkk xxyyg , 

which is the update rule we would obtain for the ADALINE structure for an arbitrary 

choice of the kernel function (the regular limitations mentioned above apply). 
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 Thus, we conclude that when Hebbian learning is applied to the instantaneous 

differential increments of the output and the input of the ADALINE instead of the 

instantaneous values of these quantities, the neuron implements information learning 

rather than merely correlation learning. 

 In order to show the performance of Eq. (7.17) in determining the maximum 

entropy direction of a given data set, we present here two simulations. For this purpose, 

we use Gaussian and Cauchy kernels given by 
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After each update, the weight vector of the ADALINE is normalized to prevent from 

diverging; when the weight is normalized, the previous output is also modified 

accordingly for consistency. In the first example, 100 samples from a 2-dimensional joint 

Gaussian distribution are generated. The learning rates for Gaussian and Cauchy kernels 

are selected to be 10-5 and 10-3, respectively. Both kernel sizes are chosen as σ = 0.1. 
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Figure 7-1. Finding the maximum entropy direction with SIG a) Data samples and the 

derived directions using both kernels b) Convergence of the angles to the true 
value determined from the theoretical covariance matrix 

(a) (b) 
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 Figure 7-1a shows the samples generated along with the final estimated directions 

using the two different kernel functions. Figure 7-1b shows the angle of the weight vector 

converging to the ideal solution, which corresponds to the 1st principal component in this 

case (since the data is Gaussian, maximum entropy and maximum variance directions 

coincide). The choice of kernel size and learning rate are important in that they affect the 

convergence time and the magnitude of the fluctuations around the solution. 

 Our second example we use 50 samples generated from a random vector with 

independent components, where the x-component is uniformly distributed and the y-

component is Gaussian. The covariance matrix of the data is normalized to identity, thus 

PCA algorithms are unable to deduce any maximal variance direction. On the other hand, 

using the maximum entropy approach, we can determine the line that maximizes the 

entropy of the projections (i.e., the direction of maximum uncertainty).  
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Figure 7-2. Convergence to maximum entropy direction from different initial conditions 

a) Estimated entropy vs. direction b) Convergence to the maximum-entropy 
direction from different initial conditions for the weight vector 

 
 Figure 7-2a shows the estimated entropy of the projections versus the direction of 

the projected line and Figure 7-2b shows the convergence of the weights from different 

initial conditions. We remark that, in this example, as the number of samples increase, the 

estimated distributions will converge to the actual uniform-Gaussian distributions. Hence, 
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asymptotically, the estimated direction will converge to π/2, i.e., the Gaussian direction, 

since Gaussian has the largest entropy among fixed variance distributions [Cov91]. 

 There are two main conclusions of this section. The first is the possibility that 

biological neuron assemblies may as well be utilizing entropy rather than mere 

correlation as the common interpretation of Hebb’s Law states; under this hypothesis, 

Hebbian learning is no longer synonymous with correlation/variance-based learning. The 

second is that, with a simple modification of the classical Hebbian update, it becomes 

possible to train artificial neural networks for the optimization of entropy, and perhaps 

other information theoretic quantities. The proposed formulation has two advantages: It is 

computationally very simple, specifically on the same order of complexity with the 

traditional Hebbian learning rule and secondly it extracts more than only the second-order 

statistical information from the samples. 

7.3 Applications of SIG to Supervised and Unsupervised Learning Schemes 

 The SIG expressions we presented in the preceding sections can be used in many 

contexts of adaptation, where entropy is an integral part of the cost function. In this 

section, we will show the performance of these stochastic gradients in determining the 

solutions of blind deconvolution and blind source separation problems on-line. 

 In our first case study, we will consider the maximum entropy blind 

deconvolution scheme that has been described in Chapter 6. In this scheme, recall that we 

assume we know the pdf of an iid sequence of input samples to an unknown channel from 

which we get our observations. The deconvolver consists of an FIR filter followed by a 

nonlinearity that is matched to the cdf of the source signal. In our example, for 

convenience we use a minimum-phase FIR channel (50taps), whose ideal inverse is a 
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two-tap causal FIR. The distribution of the input signal is Cauchy. We use the SIG in Eq. 

(7.6) with L=10 and Gaussian kernels and a learning rate of η =10-3. Defining the SIR as 

in Chapter 6 (i.e., the power of the maximum component of the overall filter impulse 

response divided by the total power of all the other residual components), we run a 

simulation whose results are presented in Figure 7-3. Notice that after 104 samples, the 

algorithm achieves an average SIR of 25-30dB. Fine-tuning the window length and the 

learning rate, the solution may be improved. 
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Figure 7-3. SIR versus samples for the on-line maximum entropy blind deconvolution 

scheme using SIG 
 

Our second case study is on MEE learning in linear adaptive systems (ADALINE) 

using SIG. For this purpose, we performed two simulations using different input-output 

data sets. In the first training set, the purpose is to learn the weight vector of a 2-tap FIR 
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filter which will be used to predict the next sample in a sequence generated by sampling 

the signal ttttx 60sin340sin220sin)( ++=  at 100Hz. The training data consists of 32 

input-output pairs, which corresponds to one period of the signal, that is shown to the 

adaptive FIR filter repeatedly for 150 epochs. 
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Figure 7-4. Weight tracks for SIG (solid) and LMS (dotted) on the contour plot of the 
error entropy cost function for the sinusoid-prediction example 

 
 For comparison, the FIR filter is trained both using SIG (step size 0.1) and LMS 

(step size (0.001). With these choices, the convergence of both algorithms is achieved 

within the given number of iterations. Figure 7-4 depicts the convergence of both 

algorithms to the optimal solution starting from five different initial conditions of the 

weight vector. For fixed convergence time, SIG is observed to converge smoother than 

LMS, however, such a strong conclusion about the misadjustment of the final solution 
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cannot be inferred just by investigating a few simulations; a deeper theoretical 

investigation is necessary [Erd01c]. 
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Figure 7-5. Weight tracks for SIG (solid) and LMS (dotted) on the contour plot of the 
error entropy cost function for the frequency-doubling example 

 
The second example is the frequency-doubling problem, where a 2-tap FIR filter 

is trained to output a sinusoid with double the frequency of the one at its input. The 

motivation for this data set is to investigate the behavior of SIG and the structure of the 

MEE surface in a situation where we know the optimal solution has large approximation 

errors. Once again, the FIR filter is trained using both SIG and LMS algorithms starting 

from five initial conditions. The convergence of the weight tracks to the optimal solution 

is shown in Figure 7-5. The two small equilevel loops on either edge of the performance 
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surface are local maxima, and there is only one local minimum of the entropy, which 

corresponds to the optimal solution. In this example, the training set size was 20 and the 

data was presented to the algorithm for 1000 epochs repeatedly [Erd01c]. 

 
Figure 7-6. SDR versus number of samples seen by the MeRMaId and MeRMaId –SIG 

algorithms. Each iteration of MeRMaId is considered as 200 samples seen 
 

Our third case study is on blind source separation and it aims to show the 

effectiveness of SIG in solving this problem. Consider the BSS topology and criterion we 

suggested in Chapter 5. The topology consisted of a whitening stage followed by Givens 

rotations, whose angles were optimized according to the minimize sum of output marginal 

entropies principle. In this example, we will assume that the ideal spatial whitening 

matrix is known a priori (that spheres the whole training data set). This way, we will 

have the opportunity to study the performance of only SIG, not influenced by the 

performance of the specific on-line whitening scheme that would be used otherwise. In 
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addition, we will use the SIG expression given in Eq. (7.16) with entropy order equal to 

two, for a change. As the performance measure, we will use the SDR measure defined in 

Chapter 5. In this set of simulations, there are 10 mixtures of 10 audio sources, which 

comprise of five male speakers, four female speakers, and a piece from a symphony. The 

mixing coefficients were chosen uniformly in the interval [-1,1]. In the first set of results, 

we compare the performance of MeRMaId-SIG with the batch-mode MeRMaId (notice 

that by this time, we changed the name of our BSS algorithm from MRMI to MeRMaId). 

In the SIG approach, the window length was set to L=200, and the batch mode training, 3 

different randomly selected sets of 200 samples were used to train the Givens angles. The 

results are shown in Figure 7-6 [Hil01b]. 

 Notice that the performance of the batch approach may be susceptible to the 

particular set of selected training samples. On the other hand, SIG, with its computational 

simplicity, allows us to train a network in a reasonable amount of time using larger data 

sets. The trade-off here is between final average performance and the magnitude of 

fluctuations around this solution, as clearly seen from Figure 7-6. Another set of results, 

aimed to compare the performance of our MeRMaId-SIG algorithm with other on-line 

BSS algorithms that are considered benchmarks in the field. The experimental set-up is 

designed to be consistent with a real-time operation, where each algorithm will see each 

data sample once, use it to compute weight updates, and discard it. In this comparison, 

we do not include Comon’s MMI and Hyvarinen’s FastICA, because they are essentially 

batch algorithms. Although some modifications could be made towards using them in on-

line schemes, their performances would not be comparable. We, therefore, limit the 

comparison to Bell-Sejnowski’s InfoMax and Yang’s MMI algorithms (both use Amari’s 
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natural gradient [Ama96, Ama98]). The signals to be separated are two audio sources, 

selected from the group of 10 mentioned above. At 16.384 KHz, the length of the data 

shown below is about 8.5 seconds. The first 0.5 seconds of both recordings is silence 

(some noise), therefore adaptation does not immediately occur. 

 
Figure 7-7. Comparison of MeRMaId-SIG with InfoMax and Yang’s MMI algorithms in 

on-line BSS with real recorded audio signals. The SDR values were averaged 
over 20 Monte Carlo runs using different randomly selected mixing matrices 

 
 All three algorithms used the ideal pre-whitening, and as clearly seen, only our 

SIG-based algorithm was able to converge to the solution fast and accurately. Yang’s 

MMI attained performances as large as 40 dB, but this consistently took much more than 

the 8.5 seconds shown in the above plot. Larger step sizes for InfoMax and Yang’s MMI 

resulted in instability [Hil01b]. The fast convergence of MeRMaId-SIG in this kind of 

on-line situations makes it a favorable alternative. 
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Figure 7-8. Demonstration of the tracking capability of SIG in an on-line BSS situation 

with time-varying mixture. The ideal solutions and the estimated values are 
presented for stepwise and linearly varying mixtures 

 

 
Figure 7-9. Illustration of the geometry for a two-source two-measurement case, where 

the speakers are the sources and the two ears of the listener are the 
measurements 

 
 As a final example in this case study, we show the tracking capability of 

MeRMaId-SIG in a time-varying mixture situation. Figure 7-8 shows some results from 

different scenarios where the rotation portion of the mixture was varied stepwise or 

linearly at different slopes. The two sources were selected from the 10 audio recordings. 

 In our last case study, we again perform on-line BSS in a time-varying mixture 

situation. This time, the variation of the mixture is based on a simplistic spherical wave 
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propagation model for the sound. As simple analogy, consider a listener (with two ears as 

the sensors that are separated by 1/6m) who has to separate the speeches of two speakers 

nearby, as shown in Figure 7-9. Our simple model assumes that all speech signals arrive 

at both sensors simultaneously (so that the mixture is instantaneous) and that the entries 

of the mixing matrix are determined by the attenuation of the amplitude of the sound 

waves inversely proportional to the distance traveled by the wave. Under these 

assumptions, a time-varying mixture occurs when the speakers move around [Hil02]. 

 
Figure 7-10. The SDR versus time in on-line time-varying BSS using MeRMaId-SIG, 

InfoMax, and Yang’s MMI, supported by SIPEX-G for pre-whitening. The 
asterix at 6.3 seconds show the instant where the mixing matrix becomes 
singular 

 
 In these simulations, not only the rotation portion of the mixing matrix is changed 

(or equivalently we do not assume that the ideal whitening matrix is known). The 

whitening is also performed on-line with a fast and robust PCA algorithm, which we 
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introduced recently and named as SIPEX-G for simultaneous principal component 

extraction using a gradient approach [Erd02g]. The details of this algorithm are provided 

in Appendix C. In our first example, we consider a situation where one of the speakers is 

at a distance of 1m directly in front of the listener and the second speaker is moving 

counterclockwise at 1m/s on a circle 2m away from the listener, starting from directly in 

front of the listener. For comparison, we also provide the performance plots for InfoMax 

and Yang’s MMI algorithms, also pre-whitened using the SIPEX-G algorithm. These 

results are presented in Figure 7-10. Notice that when the second speaker is directly in 

front of the listener or directly behind, the mixing matrix will become singular, therefore 

at these positions we expect all algorithms to perform poorly as there is no unique 

solution to the problem. 

 In these simulations, the step size for all algorithms were optimized to maximize 

the SDR performance index and a window length of L=200 samples was used for SIG. 

Clearly observed from these results, our SIG algorithm achieves a very good solution 

with over 20 dB signal to distortion ratio in this two-dimensional on-line time-varying 

BSS problem [Hil02]. In order to test the tracking limits of SIG in this problem, we 

increase the speed of the second speaker to 5m/s, which will cause 8 points of singularity 

to occur within the 10.7 seconds shown in the results (we could call these scenarios as the 

bad-cop good-cop interrogation scenario). The results of MeRMaId-SIG tracking the 

mixing matrix successfully in this difficult situation is presented in Figure 7-11. As 

expected, at the points of singularity, the performance of the algorithm degrades, but then 

recovers quickly once the mixture becomes invertible again [Hil02]. This completes our 

demonstration of the performance of SIG in on-line adaptation problems. Perhaps, the 
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number of these examples could be extended to many more applications where any type 

of entropy-based performance index could be used. To sum up, SIG is a very useful tool, 

whose benefits in the domain of information theoretic learning are equivalent to those of 

LMS in mean-square learning. 

 
Figure 7-11. The SDR versus time in on-line BSS using MeRMaId-SIG for a very fast 

changing mixture. SIPEX-G is used for pre-whitening the data on-line 
 

7.4 Extensions to MSE for On-Line Adaptation Based on Observations on SIG 

 The previous sections of this chapter were devoted to the development and 

investigation of SIG from an information theoretic learning point-of-view. In this section, 

we will point out a possible connection between a special case of SIG with second-order 

criteria in on-line adaptation and based on this observation, we will propose some 

extensions to the traditional approaches. We start by revisiting the special case SIG 

expression for an ADALINE structure that corresponded to the choice of Gaussian 
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kernels and L=2, given in Eq. (7.18). This drastically simplified SIG expression is 

repeated here as Eq. (7.20). 
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We will now try to arrive at a similar expression starting from a second-order cost 

function, not defined on the error, but its time derivative. The traditional MSE criterion in 

adaptive filtering and on-line learning is given by . Consider a cost function 

of the form , where the over-dot represents derivation with respect to time. As 

always, in order to derive a stochastic gradient for this cost function, we will drop the 

expectation. Suppose we are to train an ADALINE in a supervised manner using this 

latter criterion that penalizes large derivatives of the error. Letting d(t) be the desired 

response and x(t) be the input vector, we get the error signal as e(t)=d(t)-w

2/)]([ 2 teE

2/)]([ 2 teE &

Tx(t). Using all 

these, we can write the stochastic steepest descent algorithm for the weights in 

continuous time as 
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Assuming that the step size is small (therefore  is small), we can approximately write 

, which leads to 
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 Suppose that we implement this learning algorithm in discrete time using a first 

order backward difference for the derivatives and a time step of T. Then, the weight 

update equation for the weights at step k becomes  
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This is essentially the same form in Eq. (7.20), modified for the minimization of error 

entropy (notice that there are two additional sign changes due to minimization of entropy 

and the definition of error with a negative sign on the weights). Intuitively, we can reason 

that the derivative of a signal is related to its entropy. For deterministic signals, if we 

assume that time is a uniform random variable, then the pdf of the signal can be regarded 

as being uniform (on very short time intervals where the linear approximation is valid) 

and the entropy of this pdf is proportional to the slope of the signal at the time of 

consideration. Therefore, it is natural that a cost function defined on the derivative of the 

signal and minimized using the stochastic gradient, which is a localization in time, gives 

essentially the same update rule as a cost function defined on the entropy of the signal. 

These comments, however, should not be taken as rigorous mathematical statements. 

Although the treatment of deterministic signals as being stochastic for the purposes of 

evaluating second-order statistical quantities is rather well established in the literature, 

determining such strong links between information theoretic quantities like entropy and 

deterministic signals is yet to be developed. These observations can only provide us some 

insight towards achieving this association. Nevertheless, encouraged by this immediate 

result, we propose that such relations may be possible in the future. 

 In on-line system identification of a possibly time-varying dynamical system, it is 

logical to assume that a performance index that not only targets minimizing the 

instantaneous value of the squared-error (or any positive function that grows with error 

values departing from zero), but also considers the time-course of the error signal; in 

particular, we could talk about a criterion that tries to minimize the instantaneous error 
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while trying to smoothen the deviation of the error from time instant to time instant. In 

general, to achieve the purpose in continuous time adaptation, we could assume 

instantaneous performance measures of the form , 

which are stochastic approximations to . 

Especially, if a cost function of order one (meaning up to first derivative of error is 

considered), we could use the derivation above in discrete-time updates of the weight 

vector of our adaptive system. Specifically for a linear system, these updates would be 
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assuming that all constants are integrated into the variable λ1. This type of updates will 

try to decrease the error as long as the unknown system stays fixed, and furthermore, they 

will try to maintain the level of performance should an abrupt change occur in the system 

that we are trying to model. 

 In order to achieve faster convergence to the solution of these cost functions, RLS 

type algorithms could be developed. In fact, while discussing on this possibility, we came 

up with such an algorithm. The following derivation is due to Yadunandana N. Rao, who 

is a colleague at CNEL.  

 Suppose, the cost function  is assumed, where 

the error samples are generated by the ADALINE system from e . After 

some algebra, it is possible to show that, this cost function could be equivalently 

expressed as 

])[(][)( 2
1

2
−−+= kkk eeEeEwJ λ

k k
T

k xwd −=

    (7.25) )2)0((2)0( 11 PwwRwPwRwwJ TT
d

TT
d −++−+= &γλγ

where we defined 
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Taking the gradient and equating to zero yields the surprising result that the solution is in 

the same form as the Wiener solution. 
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Letting )( 1RRQ λ+=  and V )( 1PP λ+= , we obtain the following recursions 
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At this point, we make use of the Sherman-Morrison-Woodbury identity, which is 
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and C=I2x2. With these definitions, we get 
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Therefore, the recursion for Q is simply 
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In order to obtain the optimal weights, we need the inverse of Q(k) at each step. 

    (7.33) )1(])1([)1()1()( 111
22
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x

Notice that the inversion is over a 2x2 matrix, which is extremely simple. For V(k), we 

could simply use the sample mean recursive update. V(k) is explicitly given by (assuming 

WSS input and desired signals) 

 ])21[()( 11 kkkkkk xdxdxdEkV −− −−+= λλλ    (7.34) 

The overall complexity of this algorithm is O(N2), which is the same as the classical RLS 

algorithm.  

 Another interesting and promising idea is to use on line supervised adaptation 

rules that adapt the weight vector on a sample-by-sample basis while maintaining a pre-

specified dynamics for the error signal (consider for example a first order dynamics 

defined by ek=λek-1). One such update algorithm is derived and discussed in Appendix E. 

 Although these extensions involving the derivatives of the error signal to the 

traditional MSE criterion could theoretically be useful in on-line training of adaptive 

filters under noiseless conditions, how they will behave under noisy situations is a 

primary issue of interest. Further theoretical and experimental research must be 

conducted on this issue to determine the applicability of these criteria and to determine 

any possible gains they might introduce. 

 



CHAPTER 8 
RECURSIVE ENTROPY ESTIMATOR AND ITS RECURSIVE GRADIENT 

 
8.1 Derivation of the Recursive Entropy Estimator 

 In evaluating the statistical properties of a signal on-line, a recursive formula is 

very useful. For traditional second-order statistical quantities, there are established 

recursive estimators. Such a recursive equation to estimate entropy on-line and update 

samples recursively with every incoming sample would be a valuable tool for entropic 

signal processing. 

 In this chapter, we will propose two such recursive formulas for our 

nonparametric quadratic entropy estimator. We will specifically consider the second-

order entropy, because an analytically simple derivation with the approach that we will 

undertake has only been possible for this quantity only. However, we are confident that, 

in the future, it will be possible to determine recursive estimators for other orders of 

Renyi’s entropy. 

 In the following derivation, we will concentrate on the quadratic information 

potential. Once we have a recursive estimate of this quantity, recall that we could easily 

obtain the corresponding estimate of Renyi’s quadratic entropy using the relationship 

. Consider the quadratic information potential estimator evaluated 

using (k+1) samples of the random variable X, which will be denoted by V  (we will 

drop the subscript ‘

)(log)( 22 XVXH −=

1
ˆ

+k

2’ for quadratic from the notation for convenience). In Eq. (8.1), we 

reorganize terms to get a recursion on its previous value obtained using k samples.

1
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  (8.1) 

 Notice that this is an exact recursion for the nonparametric quadratic information 

potential estimator, which updates the estimate with each incoming sample, thus it will be 

called the exact recursive entropy estimator. However, it still requires memory to store 

all previous values. We would rather have a recursion that does not require the storage of 

all previously obtained samples. To solve this problem, we will have to use a different 

strategy; instead of trying to recursively estimate the information potential, we will 

recursively update the pdf estimate. For convenience in comparing the alternative 

recursive estimator, which will be presented below, with the exact recursion in Eq. (8.1), 

we introduce a time-varying forgetting factor λ, defined as  in Eq. 

(8.1) to obtain the following recursion. Notice that Eq. (8.2) is still an exact recursion for 

the information potential estimate. 
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 As mentioned above, consider now a recursive update of the pdf estimate with 

every new sample. The initial pdf estimate could be initialized to a kernel centered at the 

first sample, i.e., )()( 11 xxxf −= σκ . 

 )()()1()( 11 ++ −+−= kkk xxxfxf σλκλ   (8.3) 
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Using the definition of information potential, V , we notice that )]([)( 1 XfEX XX
−= α

α

 
)]([)()1(

)]()()1[()]([)(

1

111

+

+++

−+−=

−+−==

kXk

kkXkXk

xXEXV
xXXfEXfEXV

σ

σ

κλλ
λκλ

  (8.4) 

One possibility to approximate the expectation in the last line of Eq. (8.4) is to use the 

sample mean using a window of samples from the past. Although this would necessitate 

the storage of these samples, since the window length will be fixed, it is not as big of a 

problem as it was in the exact recursion case. Using a window length of L, the recursive 

estimator for quadratic information potential with a forgetting factor of λ becomes 
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We will call this the forgetting recursive entropy estimator. By comparing the two 

recursions in Eq. (8.2) and Eq. (8.5), we notice that asymptotically they converge to the 

same value, should the window length L in Eq. (8.5) be set to k and the forgetting factor 

to . To see this result, consider the following limit as the number of 

samples approach infinity. 
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The convergence to zero of the terms involving a division by k is obvious; for the terms 

with λ, as k approaches infinity, the difference between the two recursions will be 

multiplied by (1-λ), which is smaller than one for all k values (although it approaches to 1 

asymptotically). Thus, we conclude that under these special selections of the parameters 

the two recursions asymptotically converge to the same value. Of course, using a 
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dynamic window length is not something we would do, since the alternative approach 

used to obtain Eq. (8.5) was used to avoid this in the first place.  

 These recursive estimates could be used in on-line entropy evaluation of signals 

for various uses in signal processing; specifically the recursion in Eq. (8.5) could be used 

to track the entropy of a nonstationary signal and reveal any abrupt pdf changes in the 

signal (assuming that the pdf change is accompanied by a change in entropy). This, for 

example, could find applications in time-series segmentation. Perhaps, combined with 

other statistical properties of the signal, it could also provide a segmentation criterion 

even for pdfs that share the same entropy value. 

8.2 The Recursive Information Gradient 

 The recursive entropy estimate in Eq. (8.5) is useful for evaluation purposes; 

however, more important for our purposes of information theoretic learning, its derivative 

is valuable as it could be used in gradient-based adaptation algorithms. Due to this, we 

calculate the derivative of Eq. (8.5) with respect to the weight vector of a hypothetical 

adaptive system that led to the generation of the samples xk of the random variable X. 

 Substituting the recursive information potential estimator in Eq. (8.5) into the 

quadratic Renyi’s entropy expression, 11 log ++ −= kk VH , we obtain the following 

recursive gradient for entropy 
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We name this expression the recursive information gradient (RIG). Interestingly (it is 

clear actually if you think about it), SIG in Eq. (7.6) and Eq. (7.11) becomes a special 
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case of RIG corresponding to the specific selection of λ=1. Therefore, we expect RIG to 

perform the tasks that SIG has completed successfully with even a better performance; 

explicitly, RIG would provide a smoother estimate of the gradient than SIG, thus result in 

a smoother convergence to the optimal solution if not faster. Then, of course, there is the 

intrinsic trade-off in choosing the forgetting factor between tracking capability in 

nonstationary environments and the final misadjustment after convergence. 

 One important point in implementing RIG is that the recursion of the gradient is a 

valid approximation only if the step size used is sufficiently small so that the two 

gradients 1/ +∂∂ kk wV  and kk wV ∂∂ /  are close to each other. Even though the actual 

gradient recursion should use the former, which is the gradient with respect to the 

weights evaluated at the last value of the weight vector, the recursion in Eq. (8.7) uses the 

latter, which is the gradient from the previous time step. 

8.3 Illustration of the Performance of the Recursive Estimators 

 In this section, we show the accuracy of the recursive entropy estimators and 

study the effects of the free parameters on various performance aspects of the estimates. 

First, we start by demonstrating the convergent properties of both estimators to the true 

entropy value of the pdf underlying the data that is being presented. In these simulations, 

we used 5000 samples generated by zero-mean, unit-variance uniform, Laplacian, and 

Gaussian distributions. For these density functions, both the recursion in Eq. (8.1) and the 

recursion in Eq. (8.5) are evaluated over the samples. The estimated entropy values using 

a Gaussian kernel with size 01.0=σ  and the actual entropy of the true pdf of the data are 

shown in Figure 8-1. For the recursion in Eq. (8.5), the forgetting factor is selected to be 

0.005 and the window length is chosen as 100. 
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Figure 8-1. Actual entropy and its exact and forgetting recursive estimates for uniform, 

Laplacian and Gaussian densities 
 
 In our second set of simulations, we investigate the effect of the forgetting factor 

on the convergence time and the convergence accuracy (variance after convergence) of 

the forgetting estimator in Eq. (8.5). For this purpose, we used this recursion on a 

uniform density for 10000 iterations. Three different values are used for the forgetting 

factor: 0.001, 0.003, and 0.01. The convergence plots of the estimates are shown in 

Figure 8-2. Starting from the same initial estimate, the three recursions converge after 

approximately 8000, 2500, and 1000 iterations. As expected, the faster the convergence, 

the larger the estimation variance. When we evaluate the variances of the estimated 

entropy values over the last 1000 samples of each convergence curve, we see that larger 

forgetting factors result in larger variance; the variances are respectively, 1.1x10-4, 

9.5x10-4, and 2.7x10-3. In these runs, we used L=100 and 01.0=σ . This result conforms 

to the well-known general behavior of the forgetting factor in recursive estimates. There 

 



150

is an intrinsic trade-off between speed and variance, which the designer must consider in 

selecting the forgetting factor. 
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Figure 8-2. Comparison of the convergence properties of the forgetting estimator for 

different values of the forgetting factor 
 
 Our third set of simulations study the effect of the window length that is 

computed in the sample, which approximates the expectation operator. For this purpose, 

we fixed the forgetting factor to 0.002, and the kernel size to 0.01 in Eq. (8.5). Three 

values of L are tried; 10, 100, and 1000. The results of the recursive estimation using 

these three different window lengths are shown in Figure 8-3. As expected, the speed of 

convergence is not affected by the variations in this parameter. Only, the estimation 

variance after convergence is greatly affected. Specifically, the variance of the estimates 

for these three cases over the last 1000 iterations of the recursion are 6.7x10-3, 7.1x10-4, 

and 2.2x10-5. This conforms with the general behavior of the sample mean approximation 

to expectation: The more samples used, the smaller the variance gets. 
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Figure 8-3. Comparison of the convergence properties of the forgetting estimator for 

different values of the window length 
 
 Our fourth set of simulations investigate the effect of kernel size on the variance 

and bias of the forgetting recursive estimator. As we know, Parzen windowing has a bias 

that increases with larger kernel sizes, whereas its variance increases with smaller kernel 

sizes. In accordance with this property of Parzen windowing, we expect our non-

parametric estimator to exhibit similar behavior under the variations of kernel size. The 

convergence plots of the recursions for various values of the kernel size are shown for a 

uniformly distributed data set in Figure 8-4. In all runs, the forgetting factor was fixed to 

0.002 and the window length was taken as 100. For the kernel size values of 0.001, 0.01, 

0.1, and 1, the bias over the last 1000 samples of the recursion turned out to be 5.1x10-2, 

2.2x10-2, 1.3x10-2, and 2.4x10-1; the variances were also computed and found to be 

3.9x10-3, 1.6x10-4, 2.9x10-5, and 3.4x10-5. As expected, the smallest kernel size resulted 

in the largest variance and the largest kernel size resulted in the largest bias. 
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Figure 8-4. Comparison of the convergence properties of the forgetting estimator for 

different values of the kernel size 
 
 Our fifth simulation shows the tracking capability of the forgetting estimator in 

Eq. (8.5). For this simulation, we used a forgetting factor of 0.002, a window length of 

100, and a base kernel size of 0.01. The recursion is initialized to the entropy of the 

kernel function. In order to enhance the differences between the entropies of the uniform, 

Laplacian, and Gaussian pdfs, we scaled their standard deviations by the coefficients 1, 5, 

and 0.2 respectively. At the switching instant, the kernel size of the estimator is also 

scaled up or down from the base kernel size given above at the same ratio with the 

standard deviation. Although in a practical situation, we would not know the instant of 

switching between pdfs and scales, we could still predict the standard deviation of the 

samples with a forgetting recursion and use this value as a measure for modifying the 

kernel size. This procedure, however, is beyond the scope of our discussion in this 

example, therefore, we make use of the true scale factors.  
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Figure 8-5. Tracking the entropy of a signal with (step-wise) time-varying pdf 
 
 In order to address the issue of performance under the situation where the actual 

value of the scale factor is unknown, we performed an additional simulation using the 

proposed approach and the recursive sample variance estimator 

   (8.8) 2
1 )var()1()var( kkk xxx λλ +−=+

assuming the same forgetting factor value of 0.002 for both the variance and the entropy 

recursions. The base kernel size is set to 0.01 and the window length is again 100. The 

algorithm is presented with a sequence of 30000 random samples generated by zero-mean 

uniform, Laplacian, and Gaussian distributions with standard deviations 10, 1, and 30 

respectively. The initial scale factor estimate (i.e., the estimate of the standard deviation 

of the pdf underlying the samples) is set to 1. We observe from Figure 8-6 that even 

though the scale estimates are not accurate, the entropy estimates converge towards the 

actual entropy value and as soon as the scale factor estimate converges, the difference 
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between the two entropy estimates that use the estimated and actual values of the scale 

factors drop back to zero. 
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(b) (a) 

(c) (d) 
Figure 8-6. Comparison of entropy estimates using the actual and estimated values of the 

scale factor a) entropy estimate using the estimated scale factor b) scale 
factor estimate c) entropy estimate using the actual scale factor d) difference 
between the two entropy estimates using the actual and estimated values of 
the scale factor 

 
 In this chapter, we introduced two recursive estimators for entropy that produce 

updated estimates after processing each new sample. One of these estimators is an exact 

recursive formulation of the batch mode quadratic entropy estimator, suitable for 

stationary signals, and the second one uses a forgetting factor, which makes it suitable for 

nonstationary signals and tracking changes in entropy. We studied the performance of 

these estimators in terms of convergence speed and accuracy, analyzing the effects of the 

free design parameters like the forgetting factor, window length and kernel size on the 

speed and final estimation variance and bias. Simulations showed the usefulness of these 
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recursive estimators for on-line entropy estimation in various applications of signal 

processing. In addition, we calculated the gradient of the forgetting recursive estimator 

and showed that SIG is a special case of this recursive entropy gradient, which we called 

RIG, corresponding to a forgetting factor of 1. 

 



CHAPTER 9 
EXTENSION TO FANO’S BOUND USING RENYI’S ENTROPY 

 
9.1 Introduction 

 Fano’s bound is a well-known inequality in the information theory literature 

[Fan61]. It is essential to the proofs of key theorems [Cov91]. Applied to a classifier, by 

providing a lower bound for classification error probability, it is useful in terms of giving 

an indication of attainable performance. In addition, it provides some insights as to how 

the process of information transfer progresses in this setting, linking classification 

performance with information theory. In fact, this is one of the outstanding advantages of 

information theory, the abstract level of investigation and analysis. Linsker’s infomax 

principle progresses along similar lines. As a principle for self-organization, infomax 

states that an optimal system must transfer as much information as possible from its input 

to its output, i.e., maximize the mutual information between its input and output [Lin88]. 

Fano’s bound entails similar conclusions about the structure of optimal classifiers; these 

must maximize the mutual information between actual and decision classes to minimize 

the probability of error [Tor00]. 

 The question of determining optimal features has been one of the major focal 

points in pattern recognition research, and information theory has played a central role in 

this quest [Fu70, Fuk72]. It has been established that information is not preserved in 

subspace projections, yet maximization of information across the mapping is essential in 

this process [Dec96]. Fisher and Torkkola recently used this approach to train 

6 
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neural networks directly from samples for optimal feature extraction using the 

nonparametric estimator for the quadratic Renyi’s entropy [Fis97, Tor00]. In all of these, 

Fano’s bound appears as the central-piece because it relates classification error to 

conditional entropy. Although Fano’s lower bound for the probability of error in 

classification is a valuable indicator of attainable performance, the goal in statistical 

pattern recognition and machine learning is to minimize the probability of error [Rip96], 

or possibly an upper bound for the error probability as in structural risk minimization 

[Vap95]. Therefore, a family of lower and upper bounds would encompass the 

advantages of both; identify the limitations and indicate the possible generalization 

performance simultaneously. 

Fano’s inequality is derived utilizing Shannon’s entropy definition [Fan61]. 

Motivated by Shannon’s brilliant work [Sha48, Sha64], researchers concentrated their 

efforts on information theory. Renyi was able to also formulate the theory of information 

starting from four basic postulates [Ren70]. His definitions of information theoretic 

quantities like entropy and mutual information encompassed Shannon’s definitions as 

special cases. Inspired by Fano’s bound, many researchers also proposed modifications, 

generalizations, or alternative information theoretic inequalities, mainly with applications 

to communication theory [Bas78, Fed94, Gal68, Han94, Poo95]. The recent work of 

Feder and Merhav is especially important as it provides a lower and an upper bound for 

the minimal probability of error in estimating the value of a discrete random variable 

[Fed94]. Their bounds show the association between the probability of value-prediction 

error and Shannon’s entropy, and Renyi’s entropy of order infinity as well. Han and 

Verdu’s generalization to Fano’s bound, again using Renyi’s entropy of order infinity is 
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theoretically appealing and also useful in proving a generalized source-channel separation 

theorem [Han94]. Yet, the bounds presented in these works do not explicitly consider the 

classification process, thus do not make use of the confusion matrix of the classifier 

under consideration. Nevertheless, motivated by these works that extend on classical 

results utilizing Renyi’s alternative definition of information, we developed a family of 

lower and upper bounds, using Renyi’s definitions of information theoretic quantities. 

For this, the free parameter in Renyi’s definitions was exploited along with Jensen’s 

inequality for convex and concave functions.  

9.2 Entropy and Mutual Information for Discrete Random Variables 

In the development of the aforementioned bounds, we will use several 

information theoretic quantities as defined by Shannon and Renyi. These are the joint 

entropy, (average) conditional entropy, and (average) mutual information. We use the 

random variable M to denote the actual class (input space) and W to denote the decided 

class (output space) when applying these arguments to classifiers with a known confusion 

matrix and priors. The random variable E, which takes the values e or c, is used to denote 

the events of wrong and correct classification with probabilities {pe,1-pe} 

9.2.1 Shannon’s Definitions 

For a discrete random variable M, whose probability mass function (pmf) is 

, Shannon’s entropy is given by [{ } cN
kkmp 1)( = Sha48] 

   (9.1)  ∑
=

−=
cN

k
kkS mpmpMH

1
)(log)()(

Based on this definition, the joint entropy, mutual information, and conditional entropy 

are defined as 
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where  

   (9.3) ∑
=

−=
cN

j
kjkjkS mwpmwpmWH

1
)|(log)|()|(

and p(mk,wj) and p(mk|wj) are respectively the joint probability mass function and the 

conditional probability mass function of M given W, respectively. Shannon’s mutual 

information is equal to the Kullback-Leibler divergence [Kul68] between the joint 

distribution and the product of marginal distributions, and it satisfies the following 

property [Fan61]. 

 )|()(),( MWHWHWMI SSS −=   (9.4) 

9.2.2 Renyi’s Definitions 

Renyi’s entropy for M is given by [Ren70] 

 ∑
=−

=
cN

k
kmpMH

1
)(log

1
1)( α

α α
  (9.5) 

where α is a real positive constant different from 1, as in the continuous random variable 

definition. The (average) mutual information and (average) conditional entropy 

formulations are consequently found to be as given in Eq. (9.6). These definitions are 

based on the original entropy definition and derived using basic postulates about 

information. 
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where  
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j
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1
)|(log
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1)|( α

α α
  (9.7) 

The entropy order α in Renyi’s definitions will be helpful in the following 

sections, when we apply Jensen’s inequality to obtain the lower and upper bounds for the 

probability of error. In order to perceive the effect of α on the value of entropy, consider 

the following fact: Renyi’s entropy is a monotonically decreasing function of α whose 

values range from logNc to –log(maxk p(mk)) as it is varied from zero to infinity. It could 

be shown easily using L’Hopital’s rule that the limit of Renyi’s entropy (and mutual 

information) for discrete random variables approach Shannon’s definitions as α goes to 1. 

9.3 Fano’s Bound on Misclassification Probability 

Fano’s inequality determines a lower bound for the probability of classification 

error in terms of the information transferred through the classifier. More specifically, 

consider a classifier for which the actual classes, denoted by M, have prior probabilities 

 and the decided classes, denoted by W, have the conditional probabilities 

p(w

{ } cN
kkmp 1)( =

j| mk). Fano’s bound for the probability of classification error, in accordance with the 

definitions of the previous section and in terms of the conditional entropy, is then given 

by [Fan61]  
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where the special notation hS(pe) = -pelogpe –(1-p )log(1-pe) is used for binary Shannon’s 

entropy. Notice that this original bound, as it appears in Fano’s derivation has the 

probability, has the probability of error appearing on both sides of the inequality. Also the 

denominator prevents the application of this bound to two-class situations. To account for 

these problems, the binary entropy of pe is replaced by its maximum possible value, 

log22=1, and the denominator is replaced with the larger logNc. In addition, the 

conditional entropy is replaced by the sum of marginal entropy and mutual information 

terms in accordance with Eq. (9.4). After all these modifications, the commonly 

presented version of Fano’s bound in the literature is [Tor00] 

e
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9.4 Bounds Using Renyi’s Entropy and Mutual Information 

We applied Jensen’s inequality on Renyi’s definition of conditional entropy, joint 

entropy and mutual information to obtain the following lower and upper bounds for the 

probability of error [Erd01a, Erd02e, Erd02f]. Since Renyi’s mutual information and 

conditional entropy do not share the identity in Eq. (9.4), these bounds had to be 

separately derived, starting from their corresponding basic definitions. For convenience, 

we provide the derivation for the bound that uses the conditional entropy below. The 

derivations of the bounds using the joint entropy and the mutual information are given in 

Appendix D. In this derivation, we will use the well-known Jensen’s inequality, which 

has found application in the derivation of many theoretically useful bounds. This 

inequality is described below for convenience. 
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Jensen’s Inequality: Assume that  is a convex function (if concave reverse 

inequality), and , then for 

)(xg

],[ bax ∈ 0,1 >=∑ kwk kw , we have the inequality 

( ) ∑∑ ≤ kk kk xwg )kk xgw ( . 

For later use in the derivation, we also write the conditional probability of error 

given a specific input class as 

    (9.10)  
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Using Jensen’s inequality, and Eq. (9.10), we obtain two inequalities for 1>α  

and 1<α  cases. 
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Recall that for an (Nc-1)-point entropy we have the following upper bound, which is the 

entropy of a uniform probability distribution.  
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equality being achieved only for a uniform distribution. Hence, for 1>α , from Eq. (9.12) 

and Eq. (9.13) we obtain 

 )1log()|()|()|( −+≤ ckkSk NmepmeHmWHα    (9.14) 

Finally, using Baye's rule on the conditional distributions and entropies we get the lower 

bound for pe. 

 )1log()()|( −+≤ ceS NpeHMWHα    (9.15) 

For 1<α , from Eq. (9.12) we have  
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where the ‘conditional entropy given an error is made in classification and actual class 

was mk’ is 
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Finally, combining these results and fusing Fano’s special case into the lower bound, we 

obtain the following interval for classification error probability. 
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 Following a similar approach (described in Appendix F), we obtain the following 

bounds expressed in terms of the joint entropy and the mutual information. 
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Notice that in all three cases, the lower bounds for α =1 corresponds to Fano’s bound 

through equality Eq. (9.4). The term in the denominator of the upper bound is the entropy 

of the conditional distribution given the actual class and that the classifier makes an error. 

 From a theoretical point of view, these bounds are interesting as they indicate how 

the information transfer through the classifier relates to its performance. Since the family 

parameter of Renyi’s definition does not affect the location of minimum and maximum 

points of the entropy and mutual information, it is safely concluded, for example, from 

Eq. (9.20) that, as the mutual information between the input and the output of the 

classifier is increased its probability of error decreases. Consequently, this result also 

provides a theoretical basis for utilizing mutual information for feature extraction.  

The denominators of the upper bounds also offer an interesting insight about the 

success of the classification process. As these entropy terms are maximized, the upper 

bounds become tighter. This happens when the corresponding distribution is uniform; 

that is when the distribution of probabilities over the erroneous classes is uniform. This 

conclusion conforms the observations of Feder and Merhav [Fed94]. They also noted that 

in a prediction process, their upper bound is tightest when the probabilities are distributed 

uniformly over the wrong values. 

Recall that Renyi’s entropy is a monotonously decreasing function of the entropy 

order. Therefore, it is clear that the lower bound in Eq. (9.18) attains its tightest (i.e., 

greatest) value for Shannon’s entropy, which is exactly the Fano’s bound. Determining 

the tightest upper bound is not as easy. The optimal value of the entropy order is 
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determined by the balance between the decrease in the numerator and the increase in the 

denominator. However, our simulations with several simple examples point out that the 

tightest value for the upper bounds may as well be attained for values of entropy order 

approaching to 1. These simulation results will be presented below. 

One issue to be solved in these bound expressions (also an issue for the original 

bound by Fano) is to eliminate the binary entropy of the probability of error from the 

bounds; otherwise, the probability of error appears in both sides of the inequalities. For 

theoretical use, this may not cause any problems (as evident from the wide use of Fano’s 

bound in various proofs in information theory). From a practical point of view, however, 

this situation must be corrected. We investigated ways of achieving this objective 

[Erd02e, Erd02f], however, the obtained bounds were extremely loose compared to the 

original bounds. Therefore, we do not present these modified bounds here. We could use 

the bounds as they appear in Eqs. (9.18)-(9.20) by nonparametrically estimating the 

confusion matrix and the prior probabilities (perhaps by simply counting samples). On 

the other hand, the information used in this approach is already sufficient to estimate 

directly the probability of error itself. Therefore, we suggest using the estimated bounds 

as a confirmation of the estimated probability of error. They may also provide confidence 

intervals on the calculated value. For a practical application of this procedure, however, 

further work and analysis of the bounds estimated from a finite number of samples is 

necessary [Erd02f]. 

9.5 Numerical Illustrations of the Bounds 

In this section, we show the performance of the bounds in a number of different 

numerical case studies. These studies are aimed to show the basic conclusions drawn in 
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the preceding sections about these extended Fano’s bounds. In addition, we will present a 

comparison of these bounds and the Feder & Merhav bound applied to misclassification 

probability through one of the examples. 

 
Figure 9-1. Family of lower and upper bounds for probability of error evaluated for 

different values of the free parameter 
 
Our first example is a simple 3-class situation designed to test the basic properties 

of the bounds. For this example, the confusion matrix of our hypothetical classifier is 

given by 

    (9.21) 
















−−
−−

−−
=

ee

ee

ee

MW

pp
pp

pp
P

1
1

1

|

εε
εε

εε

whose ijth entry denotes the conditional probability of decision on class-i given the input 

class-j. Each column represents the distribution of the probabilities among the possible 

output classes and the diagonal entries correspond to the probabilities of correct 

classification given a specific input class. The structure of this confusion matrix 

  



167

guarantees that the overall probability of error is fixed at pe, which is selected to be 0.2 in 

the following examples. By varying the free variable ε in the interval [0, pe/2], it is 

possible to study the performance of the bounds in terms of tightness. The lower and 

upper bounds of Eq. (9.18) evaluated for various values of the family parameter (entropy 

order) are shown in Figure 9-1 as a function of ε. We observe that the family of lower 

bounds achieves its tightest value for Fano’s bound, whereas the upper bounds become 

tighter as the entropy order approaches one. One other interesting observation is that, the 

upper bounds remain virtually flat over a wide range of ε suggesting that this bound is as 

tight for a broad variety of classifiers as it is for the optimum situation where the 

probability mass distribution among the wrong output classes is uniform. If the upper 

bound is evaluated for β=1, then it reduces to exactly the probability of error, pe. 

 In the same setting, we compare the three different versions of the bounds given 

in Eqs. (9.18)-(9.20). This time, however, we use two sets of prior probabilities to see the 

effect of this change on the bounds. The results shown in Figure 9-2 clearly show that the 

bounds that use the conditional entropy and the mutual information are not susceptible to 

changes in class priors, whereas in the case of uniform priors the bound using the joint 

entropy also achieves the same level of performance with the other two. 

 For a comparison with the Feder & Merhav bound, we use the same example once 

again. The upper bound uses version Eq. (9.18) with entropy order 0.995, where as for 

the lower bound, Fano’s bound is used. The class priors are selected to be uniform. 

Figure 9-3 depicts these bounds as a function of ε for three different values of the 

probability of error. Notice that the relative performances of the bounds remain constant. 

The plot also includes our (loose) modified upper bound [Erd02f]. 
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Figure 9-2. Bounds evaluated using different versions (conditional entropy, joint entropy, 

and mutual information) for different choices of the prior probabilities 
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Figure 9-3. Probability of error – constant with respect to ε (dotted), original Fano’s 

lower (∆) and Renyi’s upper ( ∇ ) bounds, Feder & Merhav’s upper (o) and 
lower ( ) bounds, and the modified Renyi’s upper bound (dotted) vs ε 
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As a second example, we evaluate the bounds for an oversimplified QPSK digital 

communication scheme over an AWGN channel. The energy per transmitted bit is Eb and 

the PSD for the additive white Gaussian noise is N0/2. In this problem, it is possible to 

evaluate the exact values for average bit error rate pe and all the conditional and prior 

probabilities necessary to evaluate the bounds in terms of Q-functions. The confusion 

matrix for this case is 

    (9.22) 
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where ( )01 /2 NEQQ b= . The prior probabilities for each symbol are assumed to be 

uniformly distributed. The probability of error and the bounds are shown in Figure 9-4. 

For the upper bound, we used entropy order 0.995 in Eq. (9.18). 

 
Figure 9-4. Probability of error and its bounds versus bit-energy-to-noise ratio for QPSK 
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 The loss in the denominator of the upper bound increases with increasing number 

of classes. In order to show this, we extend the previous QPSK modulation scheme to a 

16-QAM modulation scheme. Assuming the same AWGN channel model, it is possible 

to write out analytically the 16x16 confusion matrix in terms of Q-functions. For 

convenience, the 16-QAM constellation is also shown besides the probability of error and 

its bounds versus the bit-energy-to-noise ratio plot in Figure 9-5. In this example, we 

observe that, the upper bound becomes looser compared to the QPSK case.   
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Figure 9-5. Blind equalization of QAM signals a) 16-QAM constellation; centers of 

classes in two-dimensional input space b) Probability of error and its bounds 
versus bit-energy-to-noise ratio for 16-QAM 

 
Finally, we show on the QPSK example, the estimation accuracy for the bounds 

when a finite number of samples are used to estimate the confusion matrix and the prior 

probabilities instead of the ideal Q-function expressions. By using only a small number of 

samples, it is possible to get highly accurate estimates of the bounds. In the example 

below, the average of 1000 Monte Carlo runs, each with 500 randomly selected samples 

(approximately 125 from each symbol) is presented. As expected, as the bit-energy-to 

noise-power-ratio increases the estimates become more accurate. Figure 9-6 shows the 

bias and the standard deviation of the upper bound and the probability of error estimates.  
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Figure 9-6. Bias and standard deviations in estimating the upper bound and the 
probability of error for the QPSK example using 500 symbols as a function 
of bit-energy-to-noise-power ratio 

 
 Fano’s bound is a widely appreciated inequality that has applications in the proofs 

of many key theorems in information theory. From a pattern recognition point of view, it 

is significant in that, it represents the strong connection between classification 

performance and information. In order to improve our pattern recognition (and in relation 

to this, feature extraction) capabilities, it is imperative to understand how the information 

propagation through the classifiers and feature extractors affect the overall performance. 

Fano’s bound provides the attainable limits for performance. However, the bounds we 

derived in this chapter provide upper bounds for the probability of classification error, 

which is an important result to evaluate the generalization capabilities. The key 

conclusion of this chapter is that, by training classifiers to maximize the mutual 

information between its input and decision classes, it is possible to decrease the 

probability of error, since both the lower and the upper bound decrease in this situation. 

However, the entropy of the decisions and the entropy of the wrong decisions is 

important in determining the final performance. 

  



CHAPTER 10 
CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 
10.1 Summary of Theoretical Results and Their Practical Implications 

 Adaptive systems are an integral part of signal processing. Adaptive and learning 

systems also play an important role in many engineering solutions to difficult problems. 

For decades, second-order statistical criteria had mostly shaped our conception of 

optimality; this approach flourished mainly because theoretical analysis of second-order 

performance criteria combined with linear systems is simple. On the other hand, as new 

engineering problems arose, it became evident that sometimes more than only second-

order statistics is either necessary of preferable. Shannon’s information theory is probably 

the most celebrated alternative to second-order statistics in various fields of engineering. 

Since the aim of information theory is to quantify the information content of events and 

signals, it also provides an intellectually appealing insight and an intuitive understanding 

to the problems encountered. Shannon’s information theoretic quantities like entropy 

(discrete and differential) and mutual information has already been used by researchers in 

many contexts of signal processing and even adaptation and learning. However, these 

attempts were mostly application oriented, and tried to take advantage of the adaptive 

system topology to simplify or eliminate the direct evaluation of the information theoretic 

quantities. Some approaches, which tried polynomial expansion estimates of the 

probability distributions involved in the information theoretic performance measures, 

suffered from the robustness and data efficiency point-of-view. 

1 
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 The terminology information theoretic learning was introduced by Principe et al. 

to signify the optimization of an adaptive system from a finite number of training samples 

using various information theoretic criteria. Their nonparametric estimator for the 

quadratic information potential  (as they named it) worked pretty well with many 

different types of data in various different types of problems. However, their work 

required the support of a mathematical theory motivating and unifying their approaches 

and observations. This research had started with this motivation and successfully filled in 

the gaps in the theory behind the experimental observations of Principe et al.  

 A brief overview of the state-of-the-art at the beginning of this research had 

already been presented in Chapter 1 with appropriate references to previous works of 

many other researchers, who motivated the use of information theoretic criteria in 

adaptive system training.  

In Chapter 2, the general problem of entropy estimation was addressed; a brief 

literature survey was portrayed in the form of a unifying perspective that collects various 

different approaches under appropriate descriptive titles. Following the historical 

background on entropy estimation, we presented an extended nonparametric estimator for 

Renyi’s entropy (which also covers Shannon’s entropy) that reduced to the quadratic 

entropy estimator for the specific choice of Gaussian kernels, already proposed by 

Principe et al.  Chapter 2 continued to elaborate on the mathematical properties of the 

extended entropy estimator setting forth the conditions for the choice of the kernel 

functions and founding the necessary theoretical block that would enable the use of itself 

in the following signal processing and adaptation scenarios. The approach taken in the 

derivation of the entropy estimator was then extended to the nonparametric estimation of 
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Renyi’s divergence (which includes the Kullback-Leibler divergence as a special case), 

therefore the estimation of Renyi’s mutual information. The quadratic information 

potential estimator had very interesting properties and a strong analogy to interacting 

particle in physics, as have been noticed earlier by Principe et al.   

In Chapter 3, we elaborated on this connection between the generalized 

information potential (corresponding to different orders of Renyi’s entropy) extending the 

definition of information force to other orders and establishing their relationship with 

their quadratic counterparts. This investigation revealed invaluable insights on the 

mechanism of information theoretic learning and further inspired us to redefine the 

principle of minimum or maximum energy learning starting from the basic principles of 

potential fields, forces and interacting particles. In this point-of-view, we introduced the 

idea of regarding the training samples as particles that emanate a pre-defined potential 

field, thus affect the dynamics of the others. We showed that the information potential 

and the information forces, and the traditional mean-square and other higher-order 

moments-based criteria, could all be expressed as special cases of this principle, 

corresponding to different choices of the potential function. Encouraged by the strong 

link, a backpropagation-of-forces algorithm that would enable efficient implementation 

of this learning principle in multiplayer perceptrons was introduced as a generalization to 

the well-known backpropagation-of-errors algorithm.  

In Chapter 4, we showed the strengths of the proposed entropy estimator and the 

use of entropy in general for supervised adaptation of learning systems. This chapter 

introduced the concept of minimum error entropy learning to the field of supervised 

training, an area that is dominated by the mean-square-error criterion. We established the 
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applicability of the error-entropy criterion in these problems and showed its usefulness in 

a variety of data sets and problems ranging from chaotic time-series prediction to 

nonlinear system identification. An interesting relationship between the nonparametric 

entropy cost function and convolution smoothing of global optimization had emerged 

from the formulation and was tested in simulations. Although a full proof that shows 

there is a one-to-one correspondence between the two approaches has not yet been 

discovered (nor a proof that disproves), results (obtained by myself and other students 

applying the same cost function to other problems) encourage the further investigation of 

this issue. Besides many successful applications of the minimum error entropy criterion 

to supervised learning, Chapter 4 included an effective initialization algorithm for 

multilayer perceptrons (for use with this criterion) and an analysis of the eigenstructure of 

the error entropy criterion in the vicinity of the optimal solution. 

Chapter 5 was devoted to the application of Renyi’s entropy and the associated 

nonparametric estimator to the problem of independent component analysis. We 

proposed an effective criterion to solve this problem, which was tested in instantaneous, 

linear blind source separation scenarios against benchmark algorithms including FastICA 

and InfoMax. Monte Carlo simulations pointed out that the proposed algorithm was more 

robust and data efficient than the competing algorithms. An analysis of the performance 

of the algorithm for various entropy order selections showed that for super-Gaussian 

signals entropy orders greater than two, for sub-Gaussian signals entropy orders smaller 

than two could be preferred to improve performance slightly.  

Application of the proposed entropy estimator to blind deconvolution and blind 

equalization was treated in Chapter 6. After a brief discussion and description of the blind 
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deconvolution problem, we showed how the proposed estimator could be used in solving 

this problem (along with theoretical motivations for Renyi’s entropy) and presented a 

series of successful simulations for blind deconvolution and equalization. The blind 

equalization example concentrated on a digital communications QPSK-modulation 

scheme and used an alternative cost function similar to that of the constant-modulus 

principle, but inspired by the minimum error entropy approach.  

All applications considered this far used the batch-mode training approach and 

due to the O(N2) complexity of the estimator with respect to the number of samples, this 

exhibited a significant problem in terms of the computational time required to complete 

the training tasks. In order to tackle this problem, we followed Widrow’s lead as in his 

derivation of the LMS algorithm, and motivated by the stochastic gradient idea, we 

derived two alternative stochastic gradient expressions for Renyi’s (and Shannon’s) 

entropy in Chapter 7. We established an interesting link between Hebbian learning and 

the stochastic information gradient, as we named it, calling attention to the possibility of 

an information theoretic learning process persisting in biological adaptive systems. We 

showed the entropy maximization capability of the stochastic gradient in a simple 

constructed problem and showed successful applications to supervised learning (using the 

minimum error entropy principle), blind source separation, and blind deconvolution. 

Comparisons with other on-line blind source separation algorithms revealed the 

superiority of the stochastic information gradient. Finally in this chapter, we showed that 

this stochastic gradient is not only associated with entropy, but is also related to the 

derivative of the signal under consideration (when the argument of the entropy is 

deterministic). This motivated us to propose an extension to the traditional mean-square-

  



177

error criterion for on-line supervised adaptation problems. This approach incorporates the 

first and possibly higher order derivatives of the error signal into the cost function trying 

to account for time-varying environments. We also provided an RLS-type algorithm to 

train linear adaptive systems under the extended criterion, which includes the first order 

derivative of the error.  

Chapter 8 was mainly motivated by the success of the stochastic information 

gradient and aimed to improve its performance by smoothing its learning curve. In order 

to achieve this goal, we derived two recursive nonparametric quadratic entropy 

estimators, one an exact recursion that provides the exact estimate given by the batch 

estimator, and one a forgetting recursion that incorporates the advantages of a forgetting 

factor for successful entropy tracking in nonstationary environments. The gradient of the 

latter is named the recursive information gradient and the stochastic information gradient 

is shown to be a special case of this corresponding to zero memory (as expected). In this 

chapter, we also investigated the affect of the three design parameters, namely the 

forgetting factor, the kernel size and the window length, on the convergence properties of 

the recursive entropy estimator through simulations. These simulations were also 

successful demonstrations of the tracking capabilities and the accuracy of the recursive 

estimators.  

Finally in Chapter 9, although not directly related to the previous chapters of the 

dissertation, we presented an extension to Fano’s bound, a well-known result in 

information theory that links classification performance to the amount of information 

transferred through the classifier. This extension, based on Renyi’s definitions of entropy 

and mutual information, provided an upper bound and a lower bound (of which the 
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Fano’s bound was the tightest) for the misclassification probability of a given classifier. 

These bounds proved the common intuition (accepted rather heuristically) in the pattern 

recognition community, which states that any feature extraction or classification process 

must transmit as much information as possible from its input space to its output space. 

We also showed the application of the bounds to a number of classifiers and comparisons 

to other similar bounds derived using Renyi’s entropy. 

10.2 Future Research Directions 

 All these aspects of the current research contribute to the general mathematical 

theory of information theoretic learning, a terminology that we use to describe the 

nonparametric optimization of adaptive system parameters through the use of information 

theoretic performance criteria. We recognize that the theory of learning is mostly 

concentrated around asymptotic results, which are valid if the number of samples 

approach infinity. On the other hand, a theory of learning from finite number of samples 

(as in structural risk minimization in pattern recognition) is yet to evolve. Although 

asymptotic results are necessary to identify the usefulness of the proposed learning 

approaches, algorithms, topologies, and criteria that extract the most possible information 

relevant to the desired solution from a given set of finite training samples is really what’s 

necessary for our purposes. This last statement summarizes our long-term intentions. As a 

short-term research objective to advance the state-of-the-art of information theoretic 

learning, I would suggest the following: 

• Explore the relationship between the proposed minimum error entropy criterion 
and convolution smoothing. This might provide a valuable general-purpose global 
information theoretic optimization algorithm to train (supervised or unsupervised) 
nonlinear adaptive systems for a variety of applications. Global optimization of 
adaptive system weights is an important issue. 
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• Investigate various choices of the potential function in the minimum/maximum 
energy training principle (corresponds to different choices of the kernel function 
in the information theoretic learning special case). Try determining optimal 
choices for various applications and data types. 

 
• Investigate noise and outlier rejection capabilities of entropy and other 

information theoretic performance indices in the finite sample situation. This is 
imperative for successful generalization of trained networks. 

 
• Investigate extensions/fusion of the criteria and topologies presented for blind 

source separation and blind deconvolution problems to solve the generalized 
convolutional mixture case in blind source separation. Extension to instantaneous 
nonlinear blind source separation is trivial as long as we know the desired source 
pdfs. The idea is similar to the maximum entropy blind deconvolution approach. 

 
• Investigate the possibility of obtaining recursive estimates for other entropy 

orders. Compare performances and determine gains of using these alternative 
entropy orders. (These should be similar to our conclusions on the relationships 
between different orders of information forces.) 

 
• Investigate the extended criteria involving the derivatives of the error signal under 

noisy situations. Determine in detail the advantages and disadvantages of this 
configuration for adapting filters on-line. 

 
• Investigate the possibility of using the extended bounds as a means of providing 

confidence intervals for classification error probability. 

  



APPENDIX A 
SHANNON’S ERROR ENTROPY AND KULLBACK-LEIBLER DIVERGENCE 

 
 The derivation that is presented in this appendix is due to Dr. Craig Fancourt. He 

had used this as part of a proof that shows minimum error entropy is related to the K-L 

divergence, therefore is a maximum likelihood approach. Suppose that the output of a 

linear or nonlinear nonlinear adaptive system is expressed as the sum of a deterministic 

part and a probabilistic error 

     (A.1) exfd += )(

where x is the input to the adaptive system f(.), and d is the desired output. Let  

be the actual joint density of the input and the desired signals. Let 

),( dxpxd

),(~
, xp wxd d  be the 

approximation to the actual joint density (given by the joint density of the input and the 

system output) for a given set of weights w. Then, notice that we have the following 

identities: 

 )()|(~),(~
,, xpxdpdxp wxdwxd =     (A.2) 

 ))(()|(~
,, xfdpxdp wewxd −=     (A.3) 

where pe,w(.) is the error distribution for a given weight matrix. Minimizing Shannon’s 

error entropy is 

     (A.4) ∫−= deepepeH weweS
w

)(log)()(min ,,

Substituting Eq. (A.3) in Eq. (A.4), we see that this is equivalent to (switching to 

expectation from integrals) 

1 
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We can add terms that are constant in terms of the system weights. 
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 We recognize this last as the K-L divergence between the actual and the 

approximated joint pdfs. Thus, we conclude that minimizing Shannon’s definition of the 

entropy of error is equivalent to minimizing the divergence between the joint pdfs of 

input-desired and input-output signals. 

  



APPENDIX B 
PROOF FOR NOISE REJECTION OF ERROR ENTROPY FOR ADALINE 

 
Assume that a clean desired signal is generated by );( *wxgd = , where g(.;w) is 

the adaptive function approximator, and the noisy desired signal is obtained from this 

signal with nd +=d . Let the adaptive system output be  for an arbitrary set 

of weights in w. Also let 

);( wxgy =

)(ηnp  be the zero-mean noise pdf for n and )(ξxp  be the pdf 

of the input signal x. Suppose that the conditional pdf of d  given x is );|( *
| wp xd ξδ  

and the noise is independent from the input. Then the conditional pdf of noisy desired 

given the input is 

 )(*);|();|( *
|

*
| δξδξδ nxdxd pwpwp =     (B.1) 

The error is defined as 

     (B.2) nwwxmnwxgwxgydwwxe +=+−=−=
∆

),;()];();([),;( ***

For an ADALINE structure, the mapping g is given by , therefore 

. The pdf of m becomes 

xwwxg T=);(

xwwwwxm T)(),;( ** −=

 );|(),;|( *
|

*
| wwpwwp xdxm −= ξµξµ     (B.3) 

Using this, we write the conditional pdf of the error as 

     (B.4) )(*),;|(),;|( *
|

*
| εξεξε nxmxe pwwpwwp =

The probability of error is written as the product of this conditional pdf and the input pdf. 
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Notice that if w=w* the error distribution becomes )()(*)()( εεεδε nne ppp == , 

thus the error entropy is equal to the noise entropy. Otherwise, the error probability is a 

convolution of the noise pdf with some other pdf that depends on the current weight 

vector and the optimal weight vector. In that case, we know that the entropy of the error 

will be greater than the entropy of noise. Are there any other weight vectors that may lead 

to a δ -distributed error? In the ADALINE case, as long as the number of training 

samples is greater than or equal to the number of weights, the answer is ‘no’, because the 

weight vector that yields zero error over all samples is determined as the solution to a 

linear system of equations, and these have unique solutions. This proves that the actual 

weight vector w* is the only global minimum of the minimum error entropy criterion, 

even in the case of noisy desired signal. 

  



APPENDIX C 
SIMULTANEOUS PRINCIPAL COMPONENT EXTRACTION 

 
 In this appendix, we will present a brief overview of the SIPEX-G algorithm. 

SIPEX-G is a fast, robust, and accurate PCA algorithm that uses Givens rotations to 

parameterize the PCA weight matrix, for which we know the optimal solution is 

orthonormal. This way, the algorithm guarantees that, at every step, the eigenvector 

estimates are automatically orthonormal, which prevents loosing valuable time and 

information trying to achieve this property in the weight matrix. The cost function being 

maximized or minimized is expressed as a combination of the input covariance matrix 

and the current estimate of the PCA weight matrix to provide accuracy and speed of 

convergence. Below, we briefly describe the algorithm. 

1. Initialize Givens angles, Θ = [θpq]. 

2. Use the first N>n samples of the input data to obtain an unbiased estimate to the 

covariance matrix Σ .  x

 ∑
=−

=
N

k

T
kkx xx

nN
R

1

1     (C.1) 

3. If the input is WSS, use Eq. (C.2), else use a Eq. (C.3) with a fixed forgetting factor. 
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     (C.3) T
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4. Evaluate the gradient of the cost function with respect to the Givens angles from  
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5. Update the Givens angles using gradient ascent. 

 
Θ∂

∂
+Θ=+Θ

Jkk η)()1(     (C.5) 

6. Go back to step 3 and continue until convergence or as long as new samples continue 

to arrive. 

Detailed discussions on the validity of the cost function and the topology and 

discussions on the computational complexity of the algorithm are omitted here. Monte 

Carlo simulation results that show the superiority of SIPEX-G over its gradient-based 

competitors like Sanger’s rule, APEX, and LMSER are also provided [Erd02g]. 

  



APPENDIX D 
INITIALIZATION ALGORITHM FOR MLPS BASED ON LEAST SQUARES 

 
 In batch mode supervised training of nonlinear systems, due to the O(N2) 

complexity of the entropy estimator, gradient calculations may require excessive 

computation time. In order to avoid lengthy training periods, it is necessary to devise a 

methodology to increase learning speed or to initialize the weights of the adaptive system 

as near as possible to their optimal values. Especially for the training of MLPs, these two 

approaches have been extensively exploited by researchers. The studies on the first 

approach led to the following well-known solutions to the problem of prolonged learning 

time: the momentum term [Vog88], adaptive step sizes [Jac88], Amari’s natural gradient 

[Ama98], conjugate gradient, which we used in the simulations of the previous section 

[Mol93, Wat87], exact evaluation of the Hessian [Bis92, Bun93], pseudo-Newton 

methods [Bar92, Bat92, Fan01, Hag94, Web88, Wat87], random perturbations to the 

weight updates (inspired by stochastic annealing) [Sty90], genetic algorithms [Ben94], 

stochastic annealing [Por95]. On the good initialization of the weight vector, there has 

also been some research performed. These include Nguyen and Widrow’s approach that 

assigns each hidden neuron a portion of the range of the output [Ngu90], Drago and 

Ridella’s statistically controlled initialization that aims to prevent saturation of the PEs 

[Dra92], and heuristic least-squares initialization approaches [Bie93, Yam97], and 

Castillo et al.’s least-square initialization algorithm for a single-layered nonlinear 

network whose output nonlinearities are also optimized during the training process 
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[Cas01]. The least squares initialization algorithm that we will provide here can be used 

to accurately initialize a general L-layer MLP with mathematical precision up to the first 

order of the Taylor series expansion of the nonlinear portions of the network. We will 

name this approach the backpropagation of the desired response as it will be clear in the 

algorithm that the desired output for the last layer of the MLP is translated back to the 

preceding layers in a mathematically rigorous fashion. In the following subsections, we 

will present the derivation for the principled least squares initialization of MLPs, and 

numerous simulations to verify the performance of this initialization algorithm including 

chaotic time-series prediction, nonlinear system identification, and classification type 

training data sets. Although, for analytical reasons, we will use the MSE criterion and try 

to initialize the weight vector to approximately minimize this criterion, the solution 

generated by the algorithm could also be used to initialize MLPs that are to be trained 

according to the MEE principle as experience showed that the optimal solutions of the 

two criteria are geometrically close to each other in many cases. 

D.1 Backpropagating the Desired Signal Through the Layers 

Considering the MLP architecture shown in Figure D-1, we notice that there are 

two parts to backpropagating the desired signal through the layers. Each layer consists of 

a linear weight matrix and an additive bias term followed by a pre-selected nonlinear 

mapping, usually chosen to be a sigmoid-type function. For our purposes, the existence of 

the inverse of this function at every value of its range is necessary. Sigmoid functions, 

being monotonously increasing, satisfy this requirement. In the following, we designate 

the output of the lth layer of the MLP by zl before the nonlinearity and yl after the 

nonlinearity. The weight matrix and the bias vector of each layer are designated by Wl 
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and bl, respectively. The input to the MLP is called x. Also, nl is the number of neurons in 

the corresponding layer and n0 is the number of inputs. In addition, let N be the number 

of training samples given in the form ( )L
tt dx , , where L is the number of layers in the 

MLP. Finally, we denote by dl the desired response for the output of the lth layer after the 

nonlinearity and by ld  the desired response for the output before the nonlinearity. 

1−Ly1y1z11,bW LL bW , LyLz  
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Figure D-1. The MLP structure and variable notations 

 We will derive the backpropagation of the desired signal algorithm in two parts in 

accordance with the network structure. These will be the backpropagation through a 

linear set of weights and the backpropagation through a nonlinearity. 

First, we investigate backpropagation through the nonlinearities. Consider a 

single-layer nonlinear network for which the equations z=Wx+b and y=f(z) define the 

forward flow of signals, where W,b,f denote the weight matrix, the bias vector, and the 

output nonlinearity, respectively. Suppose the weighted MSE for a vector output y is the 

chosen optimization criterion and d is the desired response. Let H  be the weighting 

matrix in the criterion. Then Lemma D.1 describes the backpropagation of the desired 

response through the output nonlinearity.  

Lemma D.1. Let ndzy ℜ∈,,,

f ,

d  be the desired and actual outputs, 

 be the weights, and  be the nonlinearity, its 

inverse and its derivative. Minimization of the weighted MSE between d and y at the 

1, nxnxm bW ℜ∈ℜ∈ nnff ℜ→ℜ′− :,1
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output of the nonlinearity is equivalent (up to first order) to minimizing a weighted MSE 

between z and )(1 dfd −= , where the inverse function is evaluated at each entry 

separately.  In the latter, each error sample is also weighted according to the value of the 

derivative of the nonlinearity at the corresponding operating point.  Mathematically, this 

is given by 

 )]*).(()*).([(min)]()[(min
,,

εε dfHdfEydHydE T
bW

T
bW

′′≈−−     (D.1) 

where ‘.* ’ denotes the element-wise Hadamard product of the vectors )(df ′  and 

zd −=ε . 

Proof. Using the fact that y=f(z) and )(dfd = , we can write 

 [ ] [ ]))()(())()((min)()(min
,,

zfdfHzfdfEydHydE T
bW

T
bW

−−=−−     (D.2) 

Let )(1 dfd −=  be the desired response we seek for z and zd −=ε , be the error before 

the nonlinearity. If ( εvar ) is small, then we can use the following first order Taylor 

series approximation on each component of the output vector. 

 εε *).()()()( dfdfdfzf ′−≈−=     (D.3) 

Substituting this in Eq. (D.2), we obtain 

 [ ] [ ])*).(()*).((min)()(min
,,

εε dfHdfEydHydE T
bW

T
bW

′′≈−−     (D.4) 

which is the result we seek. 

Thus, we conclude that, to backpropagate the desired signal through a 

nonlinearity, we evaluate the inverse of the nonlinear function at the value of the desired 

signal after the nonlinearity. The weights then must be optimized according to the 

criterion given in Eq. (D.1). The scaling term )(df ′  ensures that each error sample 
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corresponding to an input-output pair of the training set is magnified appropriately 

according to the operating point of the nonlinearity at the corresponding value of the 

desired signal. This result also agrees with our commonsense. For example, when the 

processing element is near its saturation level, the variance caused by an error sample 

before the nonlinearity corresponds to a small variance after the nonlinearity. On the 

other hand, the variance of the error corresponding to a desired signal operating at a 

large-slope region of the nonlinearity will be magnified by that slope while passing 

through this nonlinearity. Note that if ( )dvar  is also small, then since the operating 

point of the nonlinearity will almost be fixed for all samples, this scaling term becomes 

unnecessary. All the previous applications of least squares to initialize the weights in 

MLPs failed to take the variance of d into account, because they simply reflected the 

desired response to the input of the nonlinearity. This is a poor approximation and as Eq. 

(D.1) shows, the scaling effect of the nonlinearity on the variance of the error before the 

nonlinearity should be considered in minimizing the mean-square-error (MSE) at the 

output of the nonlinearity. In general, for more accurate results one may want to use more 

terms in the Taylor series expansion, however, this brings in the higher order moments of 

the error, which prevents us from using the linear least squares fitting algorithms for 

training. 

Secondly, we investigate the backpropagation of the desired output through a 

linear layer of weights. For this, consider a linear layer whose output is given by z=Wx+b 

and the desired signal d  is given for z. In this scheme, we assume the weights W and b 

are fixed, but the input vector x is the free optimization variable. In the MLP context, x 

will correspond to the output (after the nonlinearity) of the previous layer. Since the 
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previous layers will produce output vectors only in a bounded subset D of the complete 

vector space due to the limited span of the basis functions, backpropagation of the desired 

signal of z to a desired signal for x requires solving a linear weighted least squares 

problem. The result is summarized in Lemma D.2. 

Lemma D.2. Let nm zdxd ℜ∈ℜ∈ ,,,

1, nxnxm b ℜ∈

 be the desired signals and corresponding 

output signals, W  be the fixed weight matrix and the bias vector. 

Minimization of the weighted MSE between 

ℜ∈

d  and z at the output of the linear layer is 

equivalent to minimizing a weighted MSE between x and d, i.e., finding the constrained 

linear least squares solution for the optimal input vector. Mathematically, this is given by 
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Proof. The weighted MSE at the output of the linear layer requires solving 
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where H is again the weight matrix of the weighted MSE criterion. Defining d as the least 

squares solution for the given problem and  as the error between the input 

x and d (i.e., ε

1nxD ℜ⊂′∈ε

 = d-x), the above optimization problem becomes equivalent to performing 

an optimization over the error vector ε. The equivalence of these optimization problems 

is shown in Eq. (D.7). 
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Substituting the least squares solution for d in the final expression, the last two terms 

cancel out to zero leaving the first as the only consideration. The least squares solution is 

given by the minimum norm solution in general [Lan87]. For the case n>m, one can use 

the well-known form )()( 1 bdWHWWd THT −= − . 

There are two situations that require special attention at this point.  

• If , then mn ≥ )()( 1 bdHWHWW TT −= −d  is the unique weighted least squares 

solution for the over-determined system of linear equations ( db =+Wd with MSE 

weighting matrix H). 

• If n < m, then the QR factorization may be used to determine the minimum norm least 

squares solution for this underdetermined system of linear equations ( db =+Wd ) 

[Lan87]. Since in this underdetermined case there are infinitely many solutions that yield 

zero error, the MSE weight matrix H becomes redundant, and any one of the infinitely 

many solutions can be used. 

In both cases, this result tells us that, given a desired signal ld  for the linear 

output zl of the lth layer, we can translate this signal as a desired signal dl-1 for the output 

(after the nonlinearity) of the previous layer. This value then can be backpropagated 

through the nonlinearity as described in Lemma D.1.   

Once the desired response is backpropagated and it is time to determine the 

optimal weights or the layer under consideration, it is necessary to solve the following 

problem. 

Problem D.1. Suppose that we are given a linear layer of the form bWxz += , 

where . The training samples are given in the input-output 1, nxnxm bW ℜ∈ℜ∈
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configuration as Nsdx ss ,...,1),( = , and also a matrix G=[γij] for the weighted least 

squares is provided. We define the error for every sample of the training data and for 

every entry of the output vector as 

  Nsnjzd jsjsjs ,...,1,,...,1 ==−=ε     (D.8) 

where each output entry is evaluated using  

      (D.9) ∑
=

==+=
N

i
isjijjs Nsnjxwbz

1
,...,1,,...,1,

with wji denoting the jith entry of the weight matrix, bj denoting the bias at the jth output 

node, and xis denoting the ith entry of the input sample xs. The optimal weights for this 

layer according to the arguments presented in Lemma D.1 and Lemma D.2 are the 

solutions to the following minimization problem. 
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Solution. In order to solve for the optimal weights for Problem D.1, we take the 

derivatives of the cost function with respect to the weights of the system. 
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where denoting the Kronecker-delta function with δkj, 
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Equating all the derivatives in Eq. (D.11) to zero and rearranging the terms in order to 

obtain a square system of linear equations with n nm +⋅  unknown variables yields (D.13). 

The solution to Problem D.1 is the solution of this linear system of equations, which 

could be obtained using a variety of computationally efficient approaches (e.g. Gaussian 

elimination with pivoting). 
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Solving these equations for the variables wip and bi, allows one to construct then 

the optimal weights of the layer under consideration. Notice that the weight matrix G in 

this optimization problem allows one to take into account the magnifying effect of the 

succeeding layers on the error of the specific layer. The terms with the derivative of the 

nonlinearity, on the other hand, allows one to take into consideration the magnifying 

effect of the slope of the nonlinearity at the end of each layer of the MLP. 

D.2 The Backpropagation of the Desired Response Algorithm 

Here, we will describe how to apply the procedures devised in Lemma D.1 and 

Lemma D.2 to the training of a 2-layer MLP (one hidden layer). Although we restrict the 

algorithm that is presented below to only two layers, the idea can be generalized easily to 

MLPs with more layers. However, it is known that an MLP with only a single hidden 

layer that contains a sufficiently large number of hidden PEs can approximate any 
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continuous-differentiable function [Cyb89, Hor91], thus this topology is sufficient in 

general. 

Consider a 2-layer MLP with n0 inputs, n1 hidden PEs, and n2 output PEs. For the 

sake of generality, we also assume that the output layer contains nonlinearities. We 

denote the weight matrix and the bias vector of layer l with Wl and bl, respectively. The 

output vectors of this layer before and after the nonlinearity are denoted as usual by zl and 

yl, and ld  and dl denote the desired signals for these outputs, respectively. The algorithm 

for this MLP is as follows: 

Algorithm D.1. Backpropagation of the desired response through the layers: Given 

. Initialize the weights in W( ) Nsdx ss ,...,1,, 2 =

2211 ,,, ssss yzyz

2
sd 11 ,Wopt =

 1, b1, W 2, b2 randomly. Evaluate 

 using xs and the random weights. Set Jopt to the MSE between  and 

. Set W . 

2
sy

2222111 ,, bbWWbb optoptopt ===

1. Compute sdf ss ∀= − ,)( 212d  as the desired signal for . 2
sz

2. Compute ( ) )( 2221221 bdWWWd s
TT

s −=
−

 as the desired signal for  (this is for the 

over-determined case where n

1
sy

2>n1, for the underdetermined case, the minimum norm 

solution could be used). 

3. Compute sdfd ss ∀= − ,)( 111  as the desired signal for . 1
sz

4. Optimize W 1 and b1 using the linear least squares equations in Eq. (D.13), using xs as 

input samples and 1
sd  as desired output samples. Use G  as the weighting 

matrix for weighted MSE criterion (this weight matrix could optionally be chosen as 

the identity matrix, since in general the weights of the following layers are not 

22 WW T=
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optimal, the use of these as weighting factors for the preceding layers is superfluous; 

we suggest the G=I choice in most cases except for classification type training data). 

5. Evaluate  using the new values of first layer weights. 11 , ss yz

6. Optimize W 2 and b2 using the linear least squares equations in Eq. (D.13), using  

as input samples and 

1
sy

2
sd  as desired output samples.   

7. Evaluate z  using the new values of second layer weights. 22 , ss y

8. Evaluate the value of J, the MSE between  and . If J<J2
sy

2b

2
sd opt, set Jopt=J, 

. 22211111 ,,, bWWbbWW optoptoptopt ====

9. Go back to step 2. 

The algorithm presented above prefers backpropagating the desired signal all the 

way to the first layer and then optimizes the weights of the layers sweeping them from 

the first to the last. Alternatively, first the last layer weights may be optimized, then the 

desired signal can be backpropagated through that layer using the optimized values of the 

weights, and so on. Thus, in this alternative algorithm, the layers are optimized sweeping 

them from the last to the first. Simulations with the latter yield results similar to those 

obtained by the presented algorithm; therefore, we did not see any reasons to prefer one 

approach to the other. 

 Finally, once this algorithm is iterated a number of times (two to five), the weight 

values that correspond to the smallest MSE error can be assigned as initial conditions to a 

standard backpropagation algorithm if MSE is to be further used as the optimization 

criterion. The same weights could also be used as initialization to an MEE training 

algorithm for the MLP for further information theoretic training.  
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Figure D-2. Robot arm analogy for the operation of the algorithm 
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In order to understand better the operation and the behavior of the algorithm (for 

the two-layer MLP case), consider an analogy to a robotic arm with two joints (depicted 

in Figure D-2); this analogy is a mechanical equivalent of adapting the bases and the 

projections at the same time in a two-layer MLP. In this analogy, the weights of the two 

layers become the angles of the two joints of the robot arm, whose one end is fixed at a 

given point (a given sample of the input vector) and the other end is trying to reach a 

desired position in space (the corresponding desired response for the network). The fixed 

arm lengths signify the limited choice of basis functions and the bounded span of these 

bases. At every iteration, the robot arm first evaluates the desired position for Joint 1, 

depending on the current value of Joint 2 (backpropagates the desired response through 

layers). Then it moves Joint 1 (first layer weights) to bring the first arm as close as 

possible to its desired location (backpropagated desired response for the first layer). 

Finally, it moves Joint 2 (second layer weights) to bring the second arm as close as 

possible to the desired position (actual desired network response). In the following 

subsection, we investigate the performance of this algorithm in different types of 

problems involving various data sets. These problems all involve continuously valued 
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desired responses. When applying this algorithm to the training of classification MLPs, it 

may be necessary to add some small perturbation to the class labels in the training data 

[Wan99]. A thorough Monte Carlo analysis of the performance of the backpropagation of 

the desired response algorithm is performed using various data types and problems 

including the generalized XOR classification problem, short-term chaotic time-series 

prediction problem (Mackey-Glass time-series, laser time-series [Wei84], and Dow Jones 

closing index time-series), and identification of the realistic nonlinear engine manifold 

dynamics (based on a car engine [Pow98]), but we omit these results here. These 

simulations clearly show that the proposed initialization algorithm achieves its goal fast, 

successfully and efficiently. 

  



APPENDIX E 
ERROR DYNAMICS CONTROL APPROACH TO ON-LINE ADAPTATION 

 
 In on-line adaptation, it is also possible to adopt the idea of error dynamics 

control from the inverse dynamics control literature, which provides a powerful tool in 

control theory. The main idea behind error dynamics control is to determine the weight 

updates at every time instant such that the resulting error signal obeys a pre-specified 

difference equation (for the continuous-time case, this would be a differential equation. In 

general, one could choose any type of difference equation, as long as it represents a stable 

system; however, in inverse dynamics control, it is customary to select linear systems of 

first or second-order. In the second-order linear difference equation case, the desired error 

dynamics would be 

 02211 =++ −− kkk eee λλ  (E.1) 

where the coefficients λi are set such that the difference equation poles form a complex 

conjugate pair (or two real poles) inside the unit circle for stability. In the simpler first 

order dynamics case, the one which we will consider in this appendix, the error evolution 

is simply given by 

 01 =− −kk ee λ  (E.2) 

where the decay parameter λ is real and between –1 and 1. Consider an ADALINE whose 

error at time instant k is given by e  in terms of its current weight vector. 

The error dynamics in Eq. (E.2) for this case yield 

k
T
kkk wxd −=

1 
 99
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  (E.3) 0111 =+−− −−− k
T
kkk

T
kk wxdwxd λλ

In order to satisfy this difference equation, wk must be one of the infinitely many 

solutions to the equation given in Eq. (E.3), which gives Eq. (E.4) when rearranged. 

  (E.4) 111 −−− +−= k
T
kkkk

T
k wxddwx λλ

In order to minimize the fluctuations in the weight vector, we would like to have updates 

that are as small as possible. Therefore, for wk, from among the infinitely many solution, 

we select the solution that minimizes the cost function 

  (E.5) )()( 11 −− −−= kk
T

kk wwwwJ

subject to the constraint Eq. (E.3). Using Lagrange multipliers α, we get the modified 

cost function as 

 ( )11111 )()( −−−−− +−−−−−= k
T
kkk

T
kkkk

T
kk wxdwxdwwwwJ λλα  (E.6) 

Notice that in Eq. (E.6), besides the Lagrangian, the optimization variable is the vector 

wk, and everything else is known constants. Taking the gradient of Eq. (E.6) with respect 

to the weight vector and the Lagrangians and equating to zero 
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we can solve for the Lagrangian and the optimal solution of the constrained weight 

vector. The linear set of equations in Eq. (E.6) yield 
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which provide the weight update equation that minimizes the norm of the update subject 

to the constraint of desired error dynamics. 

 Especially interesting is the special case where λ=0. In that case, the weight 

update equation reduces to 
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1
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k
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kk

kkk
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xww −

−
−

+=  (E.8) 

which resembles the well-known normalized LMS update rule.  

  



APPENDIX F 
DERIVATION OF EXTENDED FANO’S BOUNDS USING RENYI’S DEFINITIONS 

OF JOINT ENTROPY AND MUTUAL INFORMATION 
 

First, consider Renyi’s joint entropy. Staring from the definition, and applying 

Baye's rule and Jensen’s inequality, for different values of α, we obtain two inequalities. 
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Hence, rearranging the terms, we obtain the following inequality 
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Now consider Renyi’s mutual information. Once again applying Jensen’s 

inequality in two steps, we can obtain the lower and upper bounds for error probability. 

In the bound for mutual information, Jensen’s inequality is applied two times. 
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Now, rearranging the terms, and applying Jensen’s inequality once more, 
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which, after recollecting terms, becomes equal to 
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Finally, rearranging the terms and substituting appropriate extreme values for the 

multiplier of pe, we obtain the following inequality on error probability in terms of 

Renyi’s mutual information. 
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