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ABSTRACT

We start with a locally defined principal curve definition for a given
probability density function (pdf) and define a pairwise manifold
score based on local derivatives of the pdf. Proposed manifold score
can be used to check if data pairs lie on the same manifold. We use
this score toi) cluster nonlinear manifolds having irregular shapes,
and ii) (down)sample a selected principal curve with sufficient ac-
curacy sparsely. Our goal is to provide a heuristic-free formulation
for principal graph generation and curve parametrization in order to
form a basis for a principled principal manifold unwrapping method.

Index Terms— Principal graphs, resampling on manifolds

1. INTRODUCTION

In general, high dimensional data is embedded in low dimensional
manifolds where the intrinsic dimension of the manifold is less than
the dimension of the data space. Unsupervised manifold learning
and dimension reduction techniques [1, 2, 3] aim to estimate the in-
trinsic embedded manifold from the original data samples that are
possibly subject to noise, so that mapped noise-free data samples
on the manifold represents the original samples sufficiently well.
A common approach to map data to a lower dimensional space is
to use linear projections such as PCA that maximizes sample vari-
ance on the projected spaces. However, linear methods are incapable
of representing data structures sampled from nonlinear manifolds.
Nonlinear techniques are needed to map such nonlinear structures
onto local piecewise-linear subspaces [3, 4, 5] namely onto princi-
pal manifolds. Principal manifolds are smooth manifolds that passes
through the middle of the data space or cloud. The concept is first
introduced by Hestie and Stueltz [6]. Kegl and Krzyzak [7] extend
principal manifold definition to principal graphs such that self inter-
sections and branching structures are also included in their defini-
tion. A principal graph is a set of principal manifolds that resides in
the middle of the data space. After them, [5] described the principal
graph (and its approximations/variations) in terms of its deviation
from the ideal configuration, using rule-based complexity measure
which is a function of elements in the graph and graph grammar.
In addition to these advances, [8] embraces a local strategy to define
principal sets in terms of data probability distribution and its first and
second order statistics. With this study, following earlier work [8],
we extend the concept of principal manifold projections, and define
a score that represents the similarity between sample pairs on any
local manifold. Proposed score can be used to approximate the prin-
cipal manifolds as piecewise linear structures and to obtain principal
graphs with some given compression factor. Unlike [5], our mea-
sure is not rule-based and does not require any grammar, and can be
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driven from local definitions without any global optimization. More-
over, we demonstrate that the same affinity measure can be used to
cluster structures having irregular shapes. In this manuscript, our
goal is not to come up with efficient algorithms that will speed up
the process, but to establish a framework for future studies. For that
reason, we tested the proposed approach mainly on1-dimensional
manifolds (principal curves) using synthetic datasets.

2. PRINCIPAL CURVES

Letx ∈ R
n be a random vector, having a given pdf estimate ofp(x).

Let g(x), H(x), andC(x) = −Hlog p(x)(x) = −p−1(x)H(x) +

p−2g(x)T g(x) be the transpose of its local gradient, the local Hes-
sian and the inverse of the local covariance respectively. The local
covariance is defined in this manner using the second order term in
the Taylor series expansion oflog p(x) in order for principal curve
projections to be consistent with PCA projections in the case of a
Gaussian density. Let{(λ1(x),q1(x)), . . . , (λn(x),qn(x))} be
the eigenvalue-eigenvector pairs ofC(x), sorted in ascending or-
der: λ1 ≤ λ2 ≤ · · · ≤ λn. In general, a point,x, is on the
d-dimensional principal manifold iff the local gradient is a linear
combination of eigenvectors of the local covariance inverse that span
the tangent space, where gradient is also orthogonal to the remaining
n−d eigenvectors and all corresponding eigenvalues are strictly pos-
itive [8].1 Similarly, minor curves satisfy the same criteria, except
that eigenvalues are all negative and they pass through the valleys
of the probability density function (pdf) and define a natural bound-
ary between density modes; as well as between underlying clusters.
For instance, letS⊥(x) = span{qd+1(x),qd+2(x), . . . ,qn(x)}
be the normal space spanned by then − d orthogonal eigenvectors
andS‖(x) = span{q1(x), . . . ,qd(x)} be the parallel vectors that
span the tangent space atx. If a point is on the principal mani-
fold, theng(x) is orthogonal toS⊥(x). For 1-dimensional mani-
folds this property implies that gradient is collinear with one of the
eigenvectors (having smallest eigenvalue) of the local covariance in-
verseC(x). Since the mode of a probability density is also a mem-
ber of principal manifolds, starting from a mode and following the
eigenvectors of the local covariance inverseC(x), one can highlight
all the principal curves of a given probability distribution. A simi-
lar strategy can also be used to project data samples to the principal
curve axis. Since the local gradient is orthogonal toS⊥(x) on a
principal curve, we use the following measureγ(x) to terminate it-
erations and check if the point is on the principal curve.

γ(x) =
g(x)T C⊥(x)g(x)

‖C(x)g(x)‖‖g(x)‖ (1)

HereC⊥(x) = QΛ⊥QT , whereQ = [qd+1(x), . . . ,qn(x)]
andΛ⊥ = diag(λd+1, . . . , λn) are eigenvectors that spanS⊥ and

1Note that local covariance has the same eigenvalues as theHlog p(x)
with inverted signs.



their eigenvalues respectively.γ(x) has some nice properties:i)
γ(x) will attain a 0 value on the principal curve sinceg(x) is or-
thogonal toS⊥(x), ii) in a convex region around principal curve
γ(x) is positive since all the eigenvalues ofΛ⊥ are all positive and
conversely, around minor curves it will attain negative values, and
lastly iii) it is bounded between−1 < γ(x) < 1 due to the normal-
ization term. Due to space limitations, we skip the proofs here, but
they can easily be derived from the eigendecomposition of the local
covariance inverse.

It is crucial to mention that, it is not trivial to define a global
ranking for the principal curves where data has intersections. For
example, a T shaped Gaussian mixture with 2 components have the
same local principal axis with opposite local rankings (the vertical
axis is locally a principal curve but in one Gaussian it is the major
direction while in the other it is the minor direction). [7] defines
principal graphs to address this problem and proposed an algorithm
that handles such cases with bifurcations or self intersections based
on rules or grammar. Instead, we define ranking of principal curves
with respect to local cluster means. Therefore, a principal curve that
corresponds to the smallest eigenvalue form the first local princi-
pal curve (manifold). Similarly, principal subspace having the two
smallest eigenvalues form a principal surface and the process can be
extended to higher dimensions in this manner.

We used weighted variable-width kernel density estimate (KDE)2

obtained from samplesx1,x2, . . . ,xN . KDE is given as

p(x) =
N∑

i=1

w(xi)GΣi
(x − xi) (2)

wherew(xi) is the weight andΣi is the variable kernel covariance3

of the Gaussian kernelGΣi
(xi) = CΣi

e−
1

2
xT Σi

−1x for theith data
samplexi. The gradient and the Hessian of the KDE are:

g(x) = −
N∑

i=1

w(xi)GΣi
(x − xi)Σi

−1(x − xi) (3)

H(x) =
N∑

i=1

w(xi)GΣi
(x − xi)(uiu

T
i − Σi

−1) (4)

Hereui = Σi
−1(x − xi).

In the literature, there are various techniques to estimate the ker-
nel size from given data [9]. In this paper, we used leave-one out
cross validation to estimate the width of anisotropic kernels. Al-
though density estimation using variable kernel size or anisotropic
kernels is more robust to outliers and is capable of fitting the un-
derlying density variations better, the estimation procedure requires
k-nearest neighbor (k-nn) information where selection ofk is cru-
cial (we selectedk =

√
N ). This is computationally very expensive

compared to isometric kernels. Fig. 1(a) displays nonlinearly sep-
arable 4-spiral data clusters (blue) and their principal curve projec-
tions (red) and (b) the estimated probability density using anisotropic
kernels.

3. SIMILARITY ON MANIFOLDS

In general, two samples belong to the same manifold if their projec-
tions are connected via the same principal curve. In order to define

2KDE is used as an example since it encompasses parametric mixture
models as a special case; the method is general for any pdf model.

3Assuming Gaussian kernels here for simplicity.
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Fig. 1. (a) Spiral dataset with 4 clusters. (b) Kernel density estimate
using anisotropic kernels

connectivity on a principal curve, we first define a similarity score
that has low values (ideally0) between the data pairs on the same
curve and high values (ideally∞) between inter-curve samples. In
Eqn. 1, we have already defined the measure of being a data sample
on the principal curves in terms of local gradient and covariance in-
verse. Let℘(a, b) be the similarity score4 of pointsa andb, given as
the line integral of scalar valued function,γ(.), from a to b evaluated
on the curvel(t)

℘(a, b) =

∫ 1

0

γ(l(t))[l̇T (t)l̇(t)]
1

2 dt (5)

here we parameterizedl(t) = a + t(b− a) as a line withl(0) = a,
l(1) = b andl̇(t) = (b − a).

Since the local principal curve rankings might not coincide with
the ones in the neighborhood manifolds, we used the ranking at lo-
cation a as reference and select the ranking of eigenvalues at an
intermediate step based on the pairwise inner product of reference
eigenvectors with the ones at the intermediate step. Letq

l(t)
j be the

jth eigenvector atl(t) andqa

⊥,k be thekth eigenvector that spans
S⊥(a) at referencea, wherej = 1, . . . , n andk = d + 1, . . . , n.
Ranking of thekthprincipal curve can be obtained as

Θk = arg min
i=1,...,n

(q
l(t)
i )T qa

⊥,k (6)

If the line integral passes through a minority curve or a region where
local convexity is violated, measure defined in Eqn. 1 will attain neg-
ative values. Since we initially assumed that the data lies very close
to the manifold, we only calculate the score between pairs where
the connecting path also lies inside the locally defined convex region
such that

℘̄(a, b) = ℘(a, b) if ∀t ∈ [0, 1]λd+1,...,n(l(t)) > 0 (7)

= ∞ otherwise

Note that the defined score is not symmetric. This is implied by
the fact that in the presence of multiple local manifolds, the signif-
icance ranking of manifold dimensions vary as one travels through
the space. Although there are two overlapping paths (actually same
path defined by the local principal curve) that connects data pairs,
they have different rankings. For example, in the previous T-shaped
Gaussian mixture example, lets assume pointa is at the mode of bot-
tom mixture, whereasb is positioned at the upper mode. By follow-
ing the first-principal axis defined ata (y-direction), we have access
to pointb, whereas the opposite is not true since the first-principal
axis of the top mixture is in x-direction.

4In the rest of the paper we avoid the use of distance measure for℘(a, b),
since as we will discuss it later,℘(a, b) does not have to be symmetric. How-
ever, intuitively they are similar in terms of representing dissimilarities.
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Fig. 2. (a) Mixture of 4-spirals. (b) Affinity using Euclidean dis-
tance. (c) Affinity using Manifold Score. (d) Clustering on Mani-
folds.

4. CLUSTERING ON MANIFOLDS

In the previous sections, we defined pairwise manifold scores,
℘̄(a, b), that could be used to assess the similarity between the
projected principal curve samples. We further bound the principal
curve path that connects these pairs by a convex region. Using these
pairwise scores, now we define the principal curve affinity matrix as
A℘(a,b) = e−max(℘̄(a,b),℘̄(b,a)). In order to cluster data samples,
we simply cluster local manifolds based onA℘(a,b). Because
extra connections between manifolds will merge clusters, we assign
the maximum of the pairs as the score,℘(a,b). Fig. 2(a) displays
4-spiral data, each of which is radially perturbed with a uniform
noise. In fact, for this particular example, iterative methods such
as Medioidshift [10] employing ISOMAP distance [1] fails to ex-
tract the underlying cluster structure due to the presence of uniform
perturbation along the first principal curve direction, whereas the
proposed manifold score successfully captures the underlying pair-
wise affinity. For comparison, Fig.2(b-c) show obtained affinities
using pairwise Euclidean distance and manifold score respectively.
Fig. 2(d) displays the clustering result using the proposed manifold
affinity. Since affinity is already in sparse block diagonal form,there
is no need to threshold the affinity structure. Clustering result can
be obtained by using connected component analysis directly, where
each color represents a distinct cluster label in the figures. Similarly,
Fig. 3(a) shows the result of the clustering algorithm with labels
in color, and (b) shows the corresponding affinity matrix. In both
figures, projected principal curve points are overlayed with cluster
labels as black dots.

5. SAMPLING ON PRINCIPAL MANIFOLDS

Principal curves provide a nonlinear summary for the data and can
be used as a compression tool that mimics the underlying sparse
geometry sufficiently sparse. For that purpose, given a compres-
sion factor, we define the deviation from the original curve invari-
ant of path length as̄℘∗(a,b) = max(℘̄(a,b), ℘̄(b, a))/L, where

L =
∫ 1

0
[l̇T (t)l̇(t)]

1

2 dt is the arc length of the path. LetΓ℘(a,b) =

e−℘̄(a,b)/L be the affinity matrix obtained from this path normal-
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Fig. 3. (a) Mixture of 3-crescents with clustering results (in color)
and principal curve projections (black). (b) Affinity matrix with 0
off-diagonals.

ized pairwise score matrix andM(a,b) be the neighborhood mask
obtained fromΓ℘(a,b) by thresholding withthr.

We propose the strategy outlined in Tab. 1 to approximate any
smooth principal curve with piecewise linear lines.

Given confidence/compression threshold,thr and an initial reference sample
xk, first obtainM(a,b) = Γ℘(a,b) > thr. Then, repeat below until
termination

1. Find the set of projected samples on the principal curve,ℵk =
xj ∈M(k,.), j = 1, . . . , N , that is accessible fromxk

2. Find the furthest 2 samples inℵk having smallerx− and largerx+

index.

3. Starting fromx− repeat the steps 1-2 for only - indexes until the
smallest possible index is achieved.

4. Starting fromx+ repeat the steps 1-2 for only + indexes until the
largest possible index is achieved.

Table 1. Sampling on principal manifolds

Fig. 4(a) shows a spiral shaped distribution, where samples (blue)
are ordered from inwards to outwards and generated uniformly
along the angle which results in increasing pairwise displace-
ment between consecutive samples with the increasing curve in-
dex. Moreover, data is perturbed with a radially increasing uniform
noise. Principal curve projection of the samples are plotted in red.
Fig. 4(b) displays the pairwise Euclidean distance between principal
curve projections. Fig. 4(c) shows the pairwise principal affin-
ity (Γ℘(a, b) = e−℘̄(a,b)/L). Fig. 3(d) illustrates the masked graph
that is obtained using the given compression thresholdthr Euclidean
distance graph obtained. Larger values ofthr, will result in smaller
mask area and smaller distance range forx− andx+, implying low
compression and viceversa. Lastly, Fig. 4(e) shows the algorithm
result.

6. DISCUSSION

Using the locally defined principal curve definitions, we address two
problems.i) How do you decide if two sample belongs to the same
local manifold? ii) If you have samples from the same manifold,
how do you compress (and downsample) them? In this study, we
didn’t deal with computational efficiency issues and tested the basic
algorithm on synthetic results on 1-dimensional manifolds, namely
principal curves. However, the method described here is generic and
can be extended to higher dimensions with minor modifications. An
interesting, yet not so-well investigated issue is thek-nearest neigh-
borhood (k-nn) selection procedure. Almost all graph based methods
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Fig. 4. (a) Single spiral. (b) Pairwise Euclidean distance. (c) Affinity
using manifold score. (d) Pairwise Euclidean distance on a masked
graph. (e) Resampled instances on the curve.

for dimensionality reduction and manifold learning start with some
initial sparse graph, i.e.k-nn, and selection ofk is arbitrary. How-
ever, although we start with a fully connected graph initially, our
problem formulation yields to a varying implicit neighborhood de-
gree around the principal curve throughout the space and further can
be constrained with the thresholdthr as seen from Fig. 3(c-d).
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