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ABSTRACT 

 

Blood vessel segmentation, that is, extraction of the center 

lines and corresponding local cylinder radii are important 

for the study of vascular diseases, and in the brain also 

important for the modeling and understanding of 

relationships between hemodynamics and electrical neural 

activity. Several image processing methods have been 

proposed for vessel extraction in many domains including 

those that explore the use of pattern recognition techniques, 

model-based approaches, tracking based approaches, 

artificial based approaches, neural network based 

approaches, and miscellaneous tube-like object detection 

approaches. In this paper, we propose a ridge tracing 

approach based on recently developed principal curve (PC) 

projection and tracing algorithms for the extraction of 

vasculature networks in the brain from 3D microscopy 

image stacks. Results on mice brain imagery obtained for 

the purpose of studying hemodynamic effects on neural 

activity are promising. 
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1. INTRODUCTION 

 

Acquisition and storage of 3D microscopy imagery for 

biological tubular networks such as neurons and blood 

vessels is widespread in basic and clinical neuroscience. 

Structures of neural arbors are investigated to better 

understand the network formation strategies in the brain and 

elsewhere in the nervous system. Analysis of blood vessel 

networks in the brain is particularly important in improving 

our models and understanding of the relationships between 

hemodynamic parameters and neural function and electrical 

activity. A study of vasculature networks in other contexts 

such as the study of stroke or trauma is also important. 

Several methods have been proposed for vessel tracing 

and extraction in 3D imagery. These algorithms range from 

pattern recognition techniques to tracking-based approaches. 

An overview of different techniques on blood vessel 

extraction is given by [1]. 

 Two main methods that extract the blood vessel 

centerlines, also the focus of this paper and the proposed 

approach, are skeleton- and tracking-based approaches. 

Skeleton-based approaches apply local operators to the 

whole image. Generally, they follow these steps: 1) apply 

thresholds to features; 2) determine object connectivity; 3) 

apply thresholds again; 4) perform a suitable thinning 

procedure; 5) extract the skeleton in the form of a graph. By 

connecting the centerlines a vessel tree/graph is constructed. 

The resulting network structure is used for 3D 

reconstruction; skeleton-based approaches have been 

primarily applied on 3D CT images [2]. The skeleton 

models provide bifurcation point information besides the 

centerlines; however, they do not directly provide 

radius/boundary information. On the other hand, tracking-

based approaches typically start from an initial point and 

detect vessel centerlines or boundaries by analyzing the 

pixels orthogonal to the tracking (tracing) direction. 

Different methods are employed in determining vessel 

contours or centerlines. Edge detection operation followed 

by sequential tracing by incorporating connectivity 

information is a straightforward approach [3-6]. Some 

tracking approaches utilize a model in the tracking process 

and incrementally segment the vessels [7]. A more 

sophisticated approach is to use a graph representation. The 

segmentation process is then reduced to finding the 

optimum path in a graph representation of the image [8]. 

Vessel tracking approaches can allow user intervention in 

initializing (seed point entry by user) as well as during 

tracing (path correction by user). Such manual interventions, 

however, are in general undesirable for large scale data 

analysis scenarios since it is infeasible to require too much 

human interaction time and effort. 

 In this paper we demonstrate a recursive principal curve 

(PC) ridge tracing approach to automatic vessel extraction in 

3D imagery. Specifically, we demonstrate the application of 

the technique in extracting the blood vasculature networks 

in a section of the mice brain using 3D microscopy image 

stacks. The method seamlessly incorporates tube radius 

estimates from an isotropic Gaussian kernel Frangi filter [6] 

with the principal curve tracing framework using the 

common underlying kernel smoothing interpolation model 

for intensities. Simultaneous noise reduction, background 

elimination, and vessel enhancement is achieved with 

preprocessing, making the centerline identification and 

tracking task easier and more reliable. A multiscale 
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interpolation is used in conjunction with a principal curve 

tracing algorithm that performs repeated propagation-

correction updates gives the vessel centerlines. The same 

framework also allows us to detect bifurcation points and 

trace branches automatically in a recursive fashion. 

 

2. METHODS 

 

The proposed approach consists of three major steps: (1) the 

Frangi filter is applied to the grayscale 3D imagery using 

isotropic Gaussian kernels (other choices obviously 

possible), which yields as output vesselness measures for 

each voxel as well as maximum vesselness response kernel 

bandwidth; (2) using the maximum response kernel 

bandwidth, a multiscale local kernel interpolation of 

intensity is obtained and an algorithm for projecting voxels 

onto their respective principal curves (ridges) with a hill 

climbing procedure is employed; (3) using a seed point (also 

projected onto the principal curve) the principal curve is 

traced and branches and bifurcations are determined from 

the samples projected onto the principal curve locally in step 

two. When all existing branches are traced, a network/graph 

of vessel centerlines and estimated radii for each sample is 

obtained.  

 

2.1 Frangi-Filter 

 

We apply the Frangi filter to 3D microcopy image stacks 

containing blood vessel images as a pre-processing step to 

enhance the edges and reduce noise [5]. Frangi-filter uses 

conditions and measures obtained from the eigenvalues of 

the Hessian of the interpolated image intensity to estimate 

the vesselness measure, using interpolations at multiple 

scales ( ) since local tube radii are unknown and must be 

discovered. The maximum filter response is obtained within 

the range of vessel widths for each voxel. The filter 

response is large along the centerlines of the tubular 

structures, low towards the boundary and close to zero 

outside tubular regions. In addition to filtered images, 

Frangi-filter returns a matrix with the scales (kernel 

bandwidth) at which the maximum response is found for 

each voxel. Along the centerline, maximum response scale 

value is equal to the local tube radius and its value increases 

as the distance from the centerline increases.  

 These bandwidths can be used in constructing an 

isotropic variable bandwidth (multiscale) Gaussian kernel 

interpolation of the image intensity over space for the 

principal curve analysis to be performed in the next step. 

 

2.2 Principal Curve Analysis 

 

Let      be a position vector and let             , be a 

set of voxel positions in an image. Let      be the intensity 

function over space at position p and let      be the 

transpose of its gradient vector and      be the Hessian 

matrix. Similarly defining the Hessian of logf(p) and 

considering its second order Taylor series approximation, 

we define a local covariance inverse                 

                               in anology with the 

covariance of a Gaussian distribution. Let 

                                  be the eigenvalue-

eigenvector pairs of     , sorted in ascending order: 

                    . In general, a point   is on the d-

dimensional principal manifold if and only if the local 

gradient is a linear combination of eigenvectors of the local 

covariance inverse that span the tangent space; hence the 

gradient is also orthogonal to the remaining n-d eigenvectors 

for which all corresponding eigenvalues are strictly positive 

[9]. For instance, let                      
                 be the normal space spanned by n-d 

eigenvectors and                             be the 

tangent space spanned by d vectors at p. The condition that 

for p in the d-dimensional principal surface            and 

the eigenvalues for the vectors that span       are all 

positive reduces to the following for 1-dimensional principal 

curves: the gradient is an eigenvector of the Hessian and the 

eigenvalues for the other eigenvectors are all positive. The 

eigenvalue corresponding to the gradient can be negative or 

positive; if positive, then it is the smallest such eigenvalue 

in accordance with Frangi’s intuition. By construction, the 

local maxima of the function as well as some saddle points 

are members of the principal curve. Consequently, given a 

seed point that is inside a vessel, a gradient ascent to the 

nearest local maximum provides a corrected seed point 

which is on the principal curve – the vessel centerline. 

Starting from such a corrected seed point, one can trace the 

centerline by following the tangent space eigenvector of F 

by locally identifying its smallest eigenvector due to the 

reasoning provided above. Since a step in the tangent vector 

direction (corresponding to an Euler integration of the 

vector flow field) will cause the trajectory to diverge from 

the principal curve, one can improve each iterate by 

performing one or more correction steps where the 

candidate point is iterated towards the principal curve using 

the projection of the local gradient on the orthogonal space 

     . A measure of how close the point p is to the 

principal curve, which works well once sufficiently close to 

the principal curve, is the cosine of the angle between the 

gradient and Hessian times the gradient; when on the 

principal curve, since these vectors are aligned, the cosine in 

question assumes  value of unity. Specifically, we measure 

the cosine of this angle as follows: 

      
              

                
 (2) 

where                                and    
                 are eigenvectors that span    and their 

eigenvalues, respectively. Also,             
 . Clearly, 

      attains a value of 0 on the principal curve and is 

bounded from below and above by -1 and 1, respectively.  



 To obtain a smooth but local-scale-dependent 

interpolation for f(p), we employ variable-width local 

Gaussian kernel smoothing defined as follows: 

                
      

 
    (3) 

where       is the intensity at pixel with coordinate    and 

     
   is the isotropic variable kernel covariance which is 

the scale at which the maximal Frangi filter output for this 

pixel was achieved. The Gaussian kernel is given by 

   
        

  
 

 
    

   
. Letting                

       

and         
        , we get the gradient and Hessian 

as follows: 

                     
    (4) 

             
           

       
    (5) 

Using a variable kernel bandwidth allows the model to 

capture local scales of vessels in the interpolation process 

and leads to more accurate details overall compared to 

smoothing using a fixed bandwidth kernel. 

In a scenario, where multiple principal curves intersect, 

local tracing methods make decisions based on the local 

evidence, i.e. particle analysis and edge information. Here, 

we propose a method that uses the described tracing strategy 

for fractal analysis as well. After each termination of the 

tracing, we employ a local search algorithm in the vicinity 

of the traced branch to find a new seed candidate. We 

constrain our search space to the underlying principal curves 

of the fractals. For that purpose, we calculated the projection 

of sample points around the underlying principal curves 

before starting tracing process. Similar to the tracing, Euler 

integration is used to solve ordinary differential equation at 

an arbitrary point p [9] and using the    data samples are 

projected to their corresponding principal curves. We only 

process and keep the samples that are in the vicinity of the 

principal curve, such that if the curve length during the 

projection is larger than 0.5 we discard those samples, 

where 0.5 is the half width of a voxel. Fig. 1(a) shows such 

a case, where initial tree-like structure is overlaid with its 

principal curve projections represented with green dots. In 

Fig.1(b) red curve represents the initial tracing result and 

yellow cross denotes a seed point where tracing initiated. 

After each tracing process, we define proximity for the 

traced branch. We define this proximity as the encapsulating 

curvilinear cylinder envelop having inner radius 1.5*R(p), 

and outer radius 3* R(p), where R(p) is the local radius 

estimate of the Frangi filter. Selection of the outer radius is 

arbitrary but the inner radius should be larger than R(p) due 

to the multiscale analysis and the measure defined in (2). 

The purpose is to prevent the gap between underlying 

principal curves resulting from local eigen-value ranking 

system. Since this discussion is not in the scope of this paper 

and due to the space limitations, we left the detailed 

explanation of the possible gap between principal curves 

around bifurcation location in a future work. 

In order to analyze bifurcations we cluster the principal 

curve samples that are nearby of the branch being traced at 

the previous iteration. Samples in the curvilinear cylinder 

envelop are in general elongated in distinct clusters and 

mainly originate from distinct principal curves as shown in 

Fig. 1(b). Fig. 1(c) shows the zoomed version of the top left 

branch, where blue stars represent nearby PC samples. 

Medioid-shift method [10] is used to estimate the modes of 

these clusters, and each mode is assumed as the bifurcation 

candidate, si. For every candidate, we shoot two trajectories 

in the direction given by q1(si) and -q1(si) using the tracing 

method defined before. If a trajectory coincides with the 

previously traced branch (at a junction sample), then branch 

is detected and the mode is simply connected to the junction 

sample, else we conclude that the tested trajectory diverges 

from the local principal curve. For the detected branches we 

start the tracing algorithm with si as the seed location and 

the negative of the direction used for the test trajectory that 

converges to the previously traced branch. We continue to 

run the same recursion until no branch candidates remain. 

Fig.1(d) shows the final tracing result obtained by described 

recursions. Note that displayed iterations are the actual 

results of the proposed approach. 

 

3. RESULTS 

 

We first applied the proposed method to the synthetic data 

that is shown in Fig.1(a). The image size is 435x500 pixels 

and is generated by convolving the trace of the tree with a 

Gaussian kernel having size of 15x15 with increasing scale 

 
a) Initial tree (white) with its principal curve projection 

(green). b) Detection of nearby PC samples. 

  
c) Zoomed look around a bifurcation d) Recursive Tracing 

result. 

Fig. 1 Recursive tracing method. 

 



in y-direction (assuming the image origin is at upper-left 

corner). Mean centerline deviation between the algorithm 

result and original trace is calculated as 0.2058 pixels. Next, 

the proposed method is tested on two 3D image stacks 

obtained from multi photon microscopy. Each stack has 110 

and 62 images, and the size of the images is 512x512 pixels 

as shown in Fig. 2(a). Between image stacks, there is an 

overlap in z direction that enables us to register stacks to 

each other. Here, principal curve projections are depicted 

with blue dots. Fig. 2(b-c) display four vessel trace in 2D 

and 3D respectively obtained using the proposed approach. 

Fig. 2(d) shows the 3D reconstruction of a sample in 3D.  

 

4. DISCUSSION 

 

In this paper, we described a tracing method for curvilinear 

structures. Proposed method utilizes Gaussian interpolation 

to define a twice differentiable function using variable 

kernel size bandwidths that is consistent with the local 

geometry. Unlike other methods, this method does not 

require segmentation as a pre-processing step. At each 

iteration, correction term pulls the trace to the underlying 

principal curve, which enables us to obtain accurate traces. 

Bifurcations are handled without any explicit effort, and 

recursive implementation provides a compact and simple 

solution for the challenging task. Future work will include 

quantitative analysis of results obtained from the proposed 

method when manually labeled data becomes available. 
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(a)       (b) 

    
(c)       (d) 

Fig. 2 (a) Projected samples 3D microscopy image stack. (b) 

Overlaid four vessel tracing. (c) 3D view of the projected 

samples and the tracings. (d) Final result: reconstructed 

vessel. 


