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ABSTRACT

We proposed a novel algorithm to extract connectivity infor-
mation of neuronal arbors from 3D confocal images. The
method is based on the use of ridge sampling and approxi-
mation using piecewise linear segments that conform to an
inequality constraint that ensures shape accuracy. An auto-
matic neuron structure reconstruction algorithm based on ker-
nel interpolation of intensities using multiscale local Gaussian
kernels has been utilized on a sample Olfactory neuron recon-
struction problem successfully.

Index Terms— Manifold sampling and approximation,
automated neuron reconstruction

1. INTRODUCTION

In the recent years, there has been a significant effort to
extract morphology information from neuronal arbors to con-
struct connectivity wiring diagrams. These diagrams enables
neuro-scientists to design large scale simulations that helps to
better understand and interpret how a neural network works
and how certain neuro-degenerative diseases might occur.
With recent developments in imaging techniques, large vol-
umes of 3D high quality/resolution images have become
available. However, estimation of neural wiring diagrams
from 3D stacks is not straightforward. There are two major
approaches.i) Global approaches that attain globally opti-
mum results by checking all possible cases. In general these
methods are not feasible given the size of the search space
for all possible trajectories and requires lots of trainingto
come up with a globally feasible objective function that is
generalizable at least to certain types of datasets. Moreover,
there is not a rigorous way to make even a small adjustment to
the optimization process, which makes these methods over-
all not undesirable [1]. ii ) Second category includes local
approaches that constrain the search space to a local region.
These methods propagate in the search space based on the
decisions using local evidence [2]. This kind of approach
makes it easier to develop fast and adaptive implementations,
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but generally not yielding reliable solution. Since decisions
are subject to a small neighborhood of the search space, i.e.
26 connected voxels in 3D, they might miss the general topol-
ogy due to noise or outliers. In this manuscript, we described
a novel connectivity analysis method that bridges the two
approaches. We use local evidence to build a reduced con-
nectivity graph of the centerline of the whole data set that has
the practicality of local approaches with a broadened view
over the search space.

2. RIDGE DEFINITION

A ridge is a curve that passes through the center of a high di-
mensional data cloud or a multivariate scalar valued function.
Definition of the ridge is studied in various concepts such as
in image processing and statistical data analysis [3, 4, 5].A
rigorous way of defining the ridge of a function is to check
the local critical set/manifold definitions [3, 5]. Letf(x) :
R

n → R be an at least twice continuously differentiable func-
tion 1, g(x) andH(x) be its gradient and Hessian. Letqi and
λi be theith eigenvector/eigenvalue pair of the Hessian ma-
trix of f(x) such thatλ1 ≤ · · · ≤ λn. In general, a point
is on thed-dimensional principal manifold if the gradient is
orthogonal ton − d eigenvectors,g(x)Tqi(x) = 0, and the
eigenvalues corresponding to these eigenvectors are all neg-
ative,λd+1,...,λi,...,λn

< 0. Since our goal is to extract 1D
centerline information, we will assumed = 1 in the rest of
the paper.

Mentioned local conditions are generalizations of the lo-
cal maxima/minima conditions; a point on the ridge is the
local maximum of the function in the subspace spanned by
the n − d eigenvectors,S⊥ = span(qd+1, . . . ,qn). Let
H⊥(x) =

∑n
d+1(λiqiq

T
i ) be the orthogonal component of

H(x); a measure for being on the ridge can be formulated as

γ(x) =
g(x)

T
Hg(x)

‖H(x)g(x)‖‖g(x)‖
(1)

The measureγ(x) becomes 0 on the ridge. In order to ex-
plain the concept better, consider a 1D Gaussian profile (µ =
0 andσ = 1) that decays orthogonal to the ridge as depicted

1We will discuss how to obtain such a function and its first and second
order partial derivatives in Sec, 4



in Fig.1(a) as shown with the blue solid curve, with its ab-
solute value of the first derivative and the second derivative
as green dashed curve and red cross respectively. Note that,
for this example,H‖(x) = H(x) − H⊥(x) will be singular
with λ = 0, sincef(x) is constant alongq1(x). Multiscale
analysis using an isotropic Gaussian kernel states that opti-
mum scale that results in maximal ridge response for a tubu-
lar structure like this is obtained for a kernel width (standard
deviation-σ)that matches the radius of the tube at that loca-
tion. In a dual concept for vessel segmentation, a review of
methods that optimize the kernel width can be found in [6].
However these methods are just enhancement techniques and
incapable of extracting high level information such as con-
nectivity. Nevertheless, they still do provide some important
geometric information about the structures such as the radius
of the local tubular structure and can be used as a denoising
technique at the preprocessing step. Fig. 1(b) shows the vari-
ation of theγ(x) measure along the same profile without the
normalization term in the denominator of Eq. (1). In gen-
eral the denominator will be dominated by the constant term
from the eigenvalue elongated with the ridge. Although re-
sultant profile might be scaled, this term will not effect the
location of the critical points. Notice that the described value
attains non-positive values in the region whereH⊥(x) is neg-
ative definite around the ridge (concave), and is bounded be-
tween−1 ≤ γ(x) ≤ 0, but not monotonic with respect to
|x|.2 As we will discuss later, we will consider only connect-
ing line segments between points that remain in the vicinity
of the ridge, where the function is concave on a local con-
vex region. For that purpose, we propose a more practical
measure by defining the ridge of a function in terms of the in-
verse of the local Hessian,H−1(x). For a unimodal Gaussian
distribution,H−1(x) is equal to the negative of local covari-
ance, and in the rest of the paper, we will denote this quan-
tity with C(x). One can write the orthogonal component of
C⊥(x) =

∑n
d+1(λ

−1
i qiq

T
i ), and similar to Eq. 1 we define

the membership function of a samplex as

η(x) = −
g(x)TC⊥(x)g(x)

‖C(x)g(x)‖‖g(x)‖
(2)

Newly proposed measure,η(x), has only one local min-
imum at 0 (on the ridge), and it is monotonically increasing
elsewhere except at the sigma, where the sign of the eigenval-
ues ofH(x) and theC(x) change as the multiscale analysis
imply. Fig. 1(c) shows the profile without the normalization
term forη(x).

3. CONNECTIVITY OF NEURONAL ARBORS

In order to analyze the overall connectivity of a neural struc-
ture, global methods first define a pairwise similarity between

2We skip the derivations due to space constraints, but all thederivations
will be described in a future extended publication. Here|x| is used as an
indicator of distance from the ridge.
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Fig. 1. (a) Gaussian and derivatives. (b) Numerator of (1). (c)
Numerator of (2)

samples. Such methods, e.g. minimum spanning tree (MST)
[7], seek to connect similar samples by minimizing an over-
all cost function, i.e. the sum of the all pairwise distances,
in a cluster. The cost function is defined in the spatial do-
main, where distances are measured in terms of pixels/voxels.
Here, unlike previous methods, we adopt a more statistical
approach to define connectivity over spatial domain. We as-
sume that two samples are connected if and only if they be-
long to the same ridge. So instead of searching for all possi-
ble trajectories between samples, we convert the problem to
first searching for the ridges in an image, then once we ob-
tain these ridges, checking whether the samples belong to the
same ridge or not. This way, nearby samples in a neighbor-
hood can be separated based on their underlying ridges. In
fact, this method can also be used for clustering purposes.
For this, usingv(x) = C⊥(x)C⊥(x)

T g(x) we first project
all the samples to the ridge by solving an ordinary differential
equation employing Euler integration, where the error accu-
mulation is in the order ofε2. Herev(x) is the tangent di-
rection for the projection and obtained by projecting the gra-
dient to the normal space defined byC⊥(x) andε is the se-
lected step size for integration. We only keep samples whose
projection trajectory remains inside the boundary of the cor-
responding voxel. In order to Fig. 2(a-b) shows such cases,
where the projected samples are overlayed with the Olfactory
neuronal dataset [8]. Note that unlike most of the previous
methods, our approach estimates the underlying ridge with
subvoxel accuracy.
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Fig. 2. (a) Olfactory Projection dataset. (b) Zoomed version.
(c) Pairwise masked dissimilarity score,M(a,b). (d) Seg-
mentation result.

Once we project the points to the ridges, we define the
dissimilarity score between samples (ideally 0 for a path on
the ridge). Let℘(a,b) be the dissimilarity score3 of pointsa
andb, given as the ratio of the line integral of scalar valued
function,η(.), froma tob evaluated on the curvel(t) and the
arc length of the curve

℘(a,b) =

∫ 1

0
η(l(t))[l̇T (t)l̇(t)]

1

2 dt

L(a,b)
(3)

here we parameterizedl(t) = a + t(b − a) as a line with
l(0) = a, l(1) = b, l̇(t) = (b−a), andL =

∫ 1

0
[l̇T (t)l̇(t)]

1

2 dt

is the arc length of the path. An important concept here is the
order of the eigenvalues that defines ridges. Consider aT

shaped tubular mixture, where two ridges coincide or even
intersects, then the eigenvectors that define the ridge of each
tubular object will be aligned differently (in fact orthogonal
to each other). In order to overcome such ambiguities, we use
the eigenvalue ranking at locationa and order the eigenvec-
tors with their corresponding eigenvalues with respect to this
initial ranking. Letql(t)

j be thejth eigenvector atl(t) and
qa

⊥,k be thekth eigenvector that spansS⊥(a) at referencea,
wherej = 1, . . . , n andk = d+1, . . . , n. Ranking of thekth

direction can be obtained as

Θk = arg max
i=1,...,n

(q
l(t)
i )T qa⊥,k (4)

3The proposed℘(a,b) score is a pseudometric, and is not always sym-
metric. However, it is a useful measure of dissimilarity between samples.

An immediate implication of the scale space theory is that,
any integration on a line segment at which the cross-section
of f(x) is not concave will accumulate negative values for the
portion of the function that is not concave. In fact, we con-
sider such line segments unsuitable, since they clearly deviate
too far from the ridge. For example, all the samples from
a linear ridge will be connected to each other, whereas at a
curvy location possible connections will be limited in length
due to the rapidly changing signs of the eigenvalues along
the integration path even at short distances from the ridge.In
fact, this limitation is consistent with the curvilinear geome-
try, since the orthogonal profile shown in Fig. 1(c) is bounded
with the local structure radius. Since we already map the
samples to the ridges, with this concavity criterion, we also
enforce all the connections to be inside a local region around
the ridge such that

℘̄(a,b) =

{

℘(a,b) if ∀t ∈ [0, 1], λd+1,...,n(l(t)) < 0

∞ otherwise

(5)
Once we obtain all local connectivities constrained to the
underlying geometry defined by the concavity of the func-
tion f(x), we can partition the structure into subsegments
by thresholding the pairwise score, where each subsegment
has some predefined confidence, i.e.M(a,b) = ℘̄(a,b), if
℘̄(a,b) < thr, 0 otherwise. Fig. 2(c) shows,M(a,b), the
pairwise score matrix after thresholding. In an hierarchical
setup, by varyingthr, one can obtain a partition of the dataset
based on the proposed dissimilarity score. The upper bound-
ary of the score is 1, and is obtained by evaluating the path
integral on the edge of the tubular structure. As we decrease
thr, the initial partition will start to break down from bifurca-
tion regions where multiple ridges are present. For example,
in the previous T-shaped ridge mixture example, lets assume
point a is on the bottom ridge, whereasb is positioned at
the upper ridge positioned at the intersection location of the
ridges. By following the initial ridge axis defined ata (y-
direction), we have access to pointb, whereas the opposite is
not true since the initial ridge direction of the top mixtureis in
x-direction. As we further decrease the value we start to par-
tition individual ridges from high curvature regions. Fig.2(d)
shows the segmentation result for an Olfactory neuron shown
in Fig. 2(a) usingthr = 0.1. Here, each cluster is labeled with
a distinct color. Note that describedthr is uniteless, since we
normalized the score values with the arc length in (3).

4. ESTIMATION OF THE FUNCTION

Unlike previous methods that uses voxel intensities directly
to define the objective function, we used a more statistical
approach, where we define a ridge functionf(x) in terms of
position (x) and intensity (I(x)). f(x) can be written as



f(x) =

N
∑

i=1

I(xi)Gσc
(I(x)− I(xi))GΣi

(x− xi) (6)

=

N
∑

i=1

w(xi)GΣi
(x− xi)

wherew(xi) = I(xi)Gσc
(I(x) − I(xi)) is the weight for

the ith data samplexi, σc is the scale of the intensity val-
uesGσc

(xi) = Cσc
e−

1

2
(I(x)−I(xi))

2/σ2

c andΣi is the vari-
able kernel4 covariance of the Gaussian kernelGΣi

(xi) =

CΣi
e−

1

2
x
T
Σi

−1
x. The gradient and the Hessian off(x) are:

g(x) = −

N
∑

i=1

w(xi)GΣi
(x − xi)Σi

−1(x− xi) (7)

H(x) =

N
∑

i=1

w(xi)GΣi
(x− xi)(uiu

T
i −Σi

−1) (8)

Hereui = Σi
−1(x − xi). The covariance for each Gaussian

kernel is selected as the local minimum of the maximizers of
the Frangi filter responses within the neighborhood.

5. RESULTS

In order to test the proposed method, we used two 3D Ol-
factory confocal image stacks obtained from Drosophila fly-
brain [8]. There are 60 images in one stack and 62 in the other.
Each image size is 512x512 pixels. In order to estimate the
initial projections we usedε = 0.01 voxels as the step size for
the numeric integration. We normalized the image stacks to
[0,1] intensity range and we experimentally selectσc = 0.2
for the intensity scale. Fig. 3 shows the 3D rendering of the
neuronal reconstruction (thr = 1), where first column shows
the manual reconstruction and second column displays our al-
gorithms automated reconstruction. We calculated the point-
wise distance between the ground-truth and the estimated cen-
terline as 0.7437±0.5163 voxels and 1.25± 0.9060 voxels for
the first and the second datasets respectively.

6. DISCUSSION

In this paper, we proposed an automatic neuron reconstruc-
tion algorithm based on a multi-scale kernel interpolationof
intensities in 3D confocal microscopy images. The algorithm
identifies samples from the ridge of the intensity function and
piecewise linearly connects them into a tree structure ensur-
ing that each segment remains within closed proximity of the
ridge, where proximity is defined based on the underlying
ridge function. Although we start with a wholly connected
graph, we end up with a highly sparse connectivity matrix as

4Assuming Gaussian kernels here for simplicity.

Fig. 3. (a) Ground-truth of the neuron. (b) Reconstructed
neuron

seen in Fig. 2(c). Unlike other methods, sparsity of the matrix
is not due to the predefined nearest neighbors such ask or ε-
ball. Proposed method automatically highlights the intrinsic
connectivity with respect to the underlying ridges in the im-
age. Preliminary results on Olfactory neuron reconstruction
are encouraging.
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