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Abstract—Radiation therapy is one of the most effective
options used in the treatment of about half of all people
with cancer. A critical goal in radiation therapy is to de-
liver optimal radiation doses to the observed tumor while
sparing the surrounding healthy tissues. Radiation oncologists
typically manually delineate normal and diseased structures
on three-dimensional computed tomography (3D-CT) scans.
Manual delineation is a labor intensive, tedious and time-
consuming task. In recent years, concerns about respiration
induced motion have led to the popularity of four-dimensional
computed tomography (4D-CT) for the tracking of tumors and
deformation of organs. However, as manually contouring in all
phases would be prohibitively expensive, the development of
fast, robust, and automatic segmentation tools has been an
active area of research in 4D radiotherapy.

In this paper, we describe a novel application of principal
surfaces for the propagation of contours in 4D-CT studies.
Regions of interest (ROIs) are manually delineated slice-
by-slice in the reference 3D-CT scans. Edges are detected
on all of the slices of the target 3D-CT phase. A kernel
density estimation (KDE) based on the detected edges is then
calculated. The principal surface algorithm is applied to find
the ridges of the edge KDE to provide the object contours.
Manually drawn contours from the reference phase are used as
an initialization. Contours of ROIs are propagated recursively
in all consecutive phases to complete a respiration cycle. Results
are provided for a phantom data set of simulated tumor motion
as well as on a de-identified data set of the lung of a patient.
Evaluation of the efficacy of automatic segmentation in organs
and tumors are based on the comparison between manually
drawn contours and automatically delineated contours. The
Dice coefficients are approximately 0.97 for the lung tumor on
the phantom data sets and 0.95 for the patient data sets. The
centroid distances between manually delineated lung volume
and automatically segmented lung volume in each CT direction
are < 1 mm for both phantom data sets and patient data sets.

Keywords-radiation therapy; contour propagation; segmen-
tation; principal surface;

I. INTRODUCTION

Technological advances in radiation oncology have insti-
gated to significant changes in the delivery of radiotherapy
over the last few decades. These changes have led to the
replacement of conventional radiotherapy that utilizes simple
rectangular treatment apertures with increasingly conformal

radiotherapy techniques, such as three-dimensional confor-
mal radiation therapy (3D-CRT) and intensity-modulated ra-
diation therapy (IMRT). Conformal radiotherapy techniques
facilitate the delivery of tumoricidal doses of radiation to
tumor-bearing tissues while simultaneously minimizing the
dose to adjacent organs-at-risk (OARs), hence improving
the therapeutic ratio. The radiotherapy dose is typically
prescribed to a planning target volume (PTV). This vol-
ume includes a gross tumor volume (GTV) plus areas of
microscopic spread (clinical target volume, CTV) and a
margin around it that accounts for the systematic and random
errors plus physiological organ changes that occur during
the treatment planning and delivery process [1, 2]. Using a
conformal radiotherapy technique to deliver a radically high
dose to the PTV could result in a significant dose to the
OARs. However, there is robust evidence from several tumor
sites indicating that employing dose-escalation and/or altered
fractionation treatments results in improved outcomes [3]-
[6]. Reducing the dose to the OARs using techniques such as
IMRT and reducing the size of the PTV using image guided
radiotherapy (IGRT) enables radiation dose-escalation to be
effective.

However, creating treatment plans with steep dose gradi-
ents (as is typical of IMRT) and decreasing target volume
margins raises concern about the effect of inter- and/or
intrafraction motion on target coverage and the importance
of properly defining the PTV. Respiratory-correlated or 4D
computed tomography is increasingly being used to assess
motion in the thoracic and abdominal regions. By including
respiration-induced motion into radiotherapy, 4D-CT ensures
improvements in the accuracy of target definition and local-
ization, ensures dose coverage of the target throughout the
breathing cycle and calculation of the dose distributions for
targets and OARs, and reduces the occurrence of breathing
artifacts. In order to incorporate 4D-CT information into 4D
radiotherapy, delineation of tumors and organs in these data
sets becomes critically important. As manually contouring
on all phases would be prohibitively time/labor-intensive,
delineating 4D ROIs manually is a challenging task in
radiotherapy. The ability to accurately propagate 3D surface



information would be useful to reduce the clinical workflow.
Deformable registration-based techniques are widely used

to propagate contours from a reference phase to other re-
maining phases of a 4D-CT data set. Deformable registration
provides displacement maps between the reference phase im-
age and the target phase image. 3D contours on a reference
phase are then deformed to the target phase according to the
displacement maps to generate contours on that phase [7].
The procedure for obtaining displacement maps is based on
the entire voxel-voxel matching between the reference phase
and the target phase. Propagating object boundaries from the
reference phase to other phases of 4D-CT data sets without
performing full blown 3D-3D deformable registration is
expected to be more computationally efficient and less time
consuming.

In this paper, we demonstrate a novel application of
the KDE-based principal surface algorithm for volumet-
ric segmentation and contour propagation of tumors or
organs. Rather than implementing deformable registration,
our method incorporates the user inputs from the reference
phase as an initialization and edge information from all the
target phases. The initialized 3D contours are propagated
consecutively and recursively through all the phases by
applying the principal surface algorithm to converge to the
ridges of the edge maps. Automatically propagated contours
after a breathing cycle are quantitatively validated through
a comparison with manual contours. The principal surface
algorithm had been applied for image segmentation before
[8,9]. Kalpathy-Cramer et al. presented a semi-supervised
protocol for segmentation of tumors and non-affected tissues
by using non-parametric snakes with the modified principal
curves to propagate boundaries between CT slices. A given
two-dimensional slice for 3D-CT scans was segmented first.
The final segmentation on that slice was then used as a
reference contour for segmenting neighboring slices. This
process was repeated for all the 2D slices to form a contin-
uous 3D surface model. In this paper, the principal surface
algorithm is applied for directly segmenting the objects in
three dimensions thereby permitting 4D contour propagation
and analysis. Direct 3D segmentation without the need to
optimize parameters makes this approach faster and less
computationally complex.

II. METHODOLOGY

The overall algorithm starts with preprocessing of images.
Edge maps are then detected on all the slices of the target
3D-CT phase. Then, a KDE based on the detected edges is
calculated. Based on the edge maps, the principal surface
algorithm is applied to find the ridges of the edge KDE
to provide the object contours on the target phase using
manually drawn contours from the reference phase as an
initialization. Finally, some postprocessing methods are used
to optimize the output of the principal surface algorithm.

A. Edge Detection

Let I be the 3D-CT such that p = [x, y, z]T is the location
of a voxel, and I(x, y, z) is the intensity at that location. Let
E(p) be the edge image. The edge maps can be obtained
using a suitable edge detector, and the edge values can be
binary or continuous [10].

1) Binary edge voxels obtained using the Canny edge
detector with appropriate thresholds can be used in
this situation.

E(p) =

{
E(pi) = 1; pi is an edge voxel
E(pi) = 0; otherwise

A KDE of the edge distribution is constructed using
the edge image E(p) via a summation of the kernel
functions centered at every voxel in the image.

pe(p) =
1

N

N∑
i=1

E(pi)kΣi(p− pi)

where N is the number of edge voxels, k is a kernel.
2) Continuous edge density map can be obtained us-

ing prethreshold edge strength values leading to a
weighted edge KDE.
Suppose we have a continuous edge map Ec(p) ∈
[0,∞), obtained for instance by employing a suitable
rule such as:

Ec(p) =


(i) : Eb(p) ∗G(p)

(ii) : ||∇I(p)||2

(iii) : (ii) ∗G(p)

where Eb(p) is a binary edge map, G(p) is a gaussian
filter, and ∇I(p) is the magnitude of the gradient field
of the image.
The KDE based on continuous edge maps can be
expressed as

pe(p) =

N∑
i=1

wikΣi (p− pi)

where the weights wi are the normalization factor with

wi =
Ec(pi)∑N
i=1 Ec(pi)

.

B. Principal Curve/Surface

A self-consistent principal curve or surface, defined by
Hastie [11], is a smooth differentiable curve that passes
through the middle of the data. In Hastie’s definition, every
point on the curve or surface is the conditional mean of the
points projecting onto this point. Locally defined principal
curves and surfaces are presented by Erdogmus and Ozertem
[12,13]. They are inspired by Hastie, but utilizes local
first and second order derivatives of the underlying density
function instead. According to this definition of the principal



curve/surface, a point is on the principal curve/surface iff it
is the local maximum in the orthogonal subspace, instead of
the expected value.

Given a vector x ∈ Rn, let q(x) be its pdf, g(x) be the
transposition of the local gradient, and H(x) be the local
Hessian of the pdf [14].

Assume q(x) > 0 for all x, and is at least
twice differentiable. Local covariance is defined as:
Σ−1(x) = −q(x)−1H(x) + q(x)−2g(x)gT (x).
((λ1(x),v1(x)), ..., (λn(x),vn(x)) are the eigenvalue-
eigenvector pairs of local covariance, where the eigenvalues
are sorted such that λ1(x) > λ2(x) > ... > λn(x) and
λi 6= 0. In general, a point is on the d dimensional
principal surface iff the local gradient is in the span of d
eigenvectors of the local Hessian and the corresponding
(n − d) eigenvalues are negative. Using the KDE,
selecting the orthogonally constrained subspace spanned by
corresponding (n − d) eigenvectors of the local covariance
can constrain the mean-shift iterations into the subspace by
d leading eigenvectors of the local covariance.

Consider the data samples {xi}Ni=1, where xi ∈ Rn. The
KDE is defined as q(x) = 1

N

∑N
i=1 kh(x− xi), where k is

a kernel, and h is the bandwidth of the kernel. The most
commonly used kernels are Gaussian kernels. The Gaussian
kernel based KDE of this data set is

q(x) =

N∑
i=1

w(xi)kΣi
(x− xi)

where w(xi) is the weight (= 1/N with binary edge
voxels) and Σi (= σ2I in this case for computational
simplicity) is the kernel covariance for xi; kΣi

(x − xi) =
1

(2π)d/2|Σi|1/2
e−

1
2 (x−xi)

T Σ−1
i

(x−xi). The gradient and the
Hessian of the KDE are

g(x) = −
N∑
i=1

w(xi)ciui

H(x) =

N∑
i=1

w(xi)ci(uiu
T
i −Σi)

−1

Σ−1(x) = −q(x)−1H(x) + q(x)−2g(x)gT(x)

where ci = kΣi
(x− xi), ui = Σ−1i (x− xi).

At the mode, the gradient becomes zero:

g(x) = −
N∑
i=1

w(xi)kΣi
(x− xi)Σ

−1
i (x− xi) = 0

Reorganizing it and solving for x, one obtains the mean-shift
update

x←m(x) = (

N∑
i=1

kΣi
(x−xi)Σ

−1
i )−1

N∑
i=1

kΣi
(x−xi)Σ

−1
i xi

The eigen decomposition of Σ−1(x) = VΓV. Let V⊥ =
[v1...vn−d] be the (n − d) largest eigenvectors of Σ−1.
Then, x is iteratively forced to converge to the principal
surface in the constrained space V⊥VT

⊥m(x) through the
subspace mean-shift update. If the gradient is orthogonal to
the subspace spanned by the selected (n − d) eigenvectors
when projecting the data from n to d dimensions, the mean-
shift iterations stop.

C. Data

The principal surface algorithm to segmentation is imple-
mented in two studies. The first study is a phantom study to
simulate the motion of lung tumors. All images are acquired
on a dedicated 16-slice helical big-bore simulator (Philips
Medical Systems, Cleveland, OH, USA). For respiratory-
correlated acquisitions, the scanner is operated in helical cine
mode with a table pitch of 0.09 mm s−1 and gantry rotation
time of 0.5 s. Respiratory cycle signals are monitored using
the Real-time Position Management respiratory gating sys-
tem (RPM, Varian Medical Systems, Palo Alto, CA, USA)
for precise temporal correlation to CT data acquisition. In
brief, an infrared camera mounted to the CT couch records
the position of a small, reflective block placed on the upper
abdomen of patients to continually measure breathing cycles
throughout the cine scan. The breathing trace is then used
to retrospectively correlate the cine CT images with 10
equally-spaced phases of the respiratory cycle. All CT scans
are reconstructed at 3 mm thickness with pixel size in
the transverse direction of 1 mm. All reconstructed CT
series are transferred to a 4D treatment planning platform
(Eclipse v8.6, Varian Medical Systems, Palo Alto, CA, USA)
for manual segmentation. Because the reconstructed 3D-CT
series have the same coordinate system (DICOM frame of
reference), Eclipse recognizes the images as being registered
to each other and creates a 4D image object. The size
and resolution of the CT images are 512 × 512 × 54 and
0.668× 0.668× 3 mm3, respectively.

The second study is a 4D-CT patient study to propagate
the lung contours from one of the reference phase to all
target phases and compare back with the initial manual
contours. These 4D-CT data sets, in the DICOM format,
cover one full breathing cycle with 10 3D-CT scan phases
numbered phase 0 through phase 9. Each 3D-CT scan has
a slice thickness of 3 mm with 116 slices, the size for
each slice 512× 512, and the pixel resolution for each slice
1.17188 × 1.17188 mm2. Phase 6 corresponds to the end-
of-expiration phase. Manual contours of all ROIs are drawn
by a physician on that phase. All ROIs are stored as separate
binary mask files with the same dimensions as each 3D-CT
scan. A binary ROI mask file is a three-dimensional matrix
with ones at the voxels of ROIs and zeros everywhere else.

D. Evaluation Metrics

Two methods are used in quantitative validation:



1) Dice similarity coefficient index
In order to measure the overlap between the automat-
ically propagated contours achieved by the principal
surface algorithm and the manually drawn contours
by a physician, the Dice coefficient is applied.

d = 2
|A ∩B|
|A|+ |B|

where A and B indicate the volume of objects. The
output of the principal surface algorithm is the 3D
coordinates of object surfaces. A binary 3D volume
mask should first be created in order to calculate the
Dice coefficients.

2) Absolute centroid distance
In order to measure the distances between the vol-
umes defined by the surfaces, the absolute centroid
distance is applied. The absolute centroid distance is
the Euclidean distance between the centroids of two
volumes.

III. EXPERIMENT RESULTS

A. Phantom Study

We test the principal surface algorithm on each phase of
the phantom data for tumor segmentation. In the preprocess-
ing step, each slice of the 3D-CT scan is down sampled by
3/0.668 while keeping the same resolution in the z dimension
to yield 3 × 3 × 3 mm3 resolution. The edge maps are
detected by the Canny edge detector. A Gaussian kernel
is used with the kernel covariance σ2I , where σ = 1.
The resampled contours after the principal surface algorithm
are 1-4 pixels inside the manually drawn contours. Those
contours are converted into a binary volume with a pixel
value of 1 inside the contours and 0 outside. Morphological
operation is then used to grow the contours by n pixels,
where n is determined based on the data to maximize the
Dice coefficient. Here we choose n=2.

Figure 1 shows the results of the proposed algorithm on
one slice of a 3D-CT scan with its associated automatic
contours (blue lines). The manual contours are included for
comparison (red lines).

Figure 2 shows the Dice coefficient index between the
automatic contours by the principal surface algorithm and
manually drawn contours of tumors in each 3D-CT phantom
data set. The mean Dice coefficient index for this 4D
phantom data is 0.9666 with a standard deviation of 0.0069.

Table I illustrates the centroid distances of between the
automatically segmented tumor volumes and manually de-
lineated tumor volumes in each 3D-CT phantom data set
based on the absolute centroid distances in Medial-Lateral,
Superior-Inferior, Anterior-Posterior directions. The results
demonstrate that the automatically segmented contours are
consistent with the manually drawn contours of tumors.

Figure 1: Automatically segmented contours (blue lines) and
manual contours (red lines) on one slice of one 3D-CT phase
out of 4D-CT phantom data

Figure 2: Dice coefficients for each 3D-CT phase

B. Patient Study

We also apply the principal surface identification algo-
rithm to a patient 4D-CT data set for lung segmentation.
10 phase 3D-CT scans form a whole breathing cycle in
4D-CT data sets. In the preprocessing step, each slice
is down sampled by 3/1.17188 while keeping the same
resolution in the z dimension to yield 3 × 3 × 3 mm3

resolution. The edge maps are also detected by the Canny
edge detector. A gaussian kernel is used with the kernel
covariance σ2I , where σ = 2. Lung contours are only
manually delineated on phase 6. Manual contours of lung
from phase 6, therefore, are used as an initialization surface
to find the lung surface of the consecutive phase. The output
is then used as the initialization for the next phase. This
procedure is executed recursively in all consecutive phases to
complete one respiration cycle. The final output contour after
a complete propagation is resampled back to the original
3D-CT scan. The Dice coefficient between the 10-phase
recursively iterated principal surface (to coincide with the
initial reference phase) and the manually delineated lung
volume in this reference phase is 0.946.

Figure 3 shows the triangulated surfaces of the initial man-
ually segmented lung and the corresponding automatically



Table I: Absolute centroid distances of tumors versus respi-
ration phase in each direction

Phase ML (mm) SI (mm) AP (mm)
1 0.0361 0.0028 0.0114
2 0.0917 0.0352 0.0015
3 0.0819 0.0426 0.0118
4 0.0679 0.0639 0.0326
5 0.0118 0.0939 0.0158
6 0.0654 0.0113 0.0074
7 0.0432 0.0075 0.0638
8 0.0273 0.0021 0.0704
9 0.0632 0.0402 0.0359

propagated contours for the lung.

Figure 3: Left figure: Triangulated surfaces of the lung by
physicians (green); Right figure: Triangulated surfaces of the
lung segmented by the principal surface algorithm (blue)

Figure 4 compares the automatic contours with the manual
contours in transversal, sagittal, and coronal views. Slicer is
used as the visualization tool. The original manually drawn
contours for the lung are displayed as solid golden lines,
and the automatically segmented contours are shown as
red shades. The manual contours are only drawn on the
transversal view, and the visualization tool does some ap-
proximations to display it on the sagittal and coronal views.
These comparisons show that the consistency between the
manual contours and automatic contours.

The absolute centroid distances between the volumes of
the automatically segmented lung and the manually seg-
mented lung are 0.3420 mm, 0.1026 mm, and 0.3153 mm,
respectively in Medial-Lateral, Superior-Inferior, Anterior-
Posterior directions. It can be noted that the outputs of our
principal surface algorithm are consistent with the manually
drawn contours of ROIs by physicians.

IV. DISCUSSIONS

Modern technological advances have significantly im-
proved the ability to target tumors while sparing nearby
OARs. However, the steep dose gradients applied necessitate
the closer monitoring of breathing induced motion to ensure
tumor coverage. The use of 4D-CT imaging is gaining
popularity in radiation therapy as a means of measuring and

Figure 4: Transversal, sagittal, coronal views of CT images
comparing the originally manually delineated lung contours
with the contours obtained by the principal surface algorithm

adapting to inter- and/or intrafraction motion. As manual
contouring of critical structures in all phases is not realistic
in the routine workflow in the clinic, registration is typically
used to propagate manually drawn contours from one phase
to all subsequent phases. Rigid or deformable registration is
first applied using the reference phase as the fixed image and
other phases as moving images. The contours are deformed
using the resulting deformation fields.

However, as deformable registration can be computa-
tionally expensive if large volumes are used, global rigid
registration followed by local deformable registration is
commonly used. As the current implementation of the prin-
cipal surface-based algorithm uses only binary edge points
detected by the edge detector, the computational complexity
and speed are better than many deformable registration algo-
rithms. Finding the accurate edge information for tumors or
organs is a very crucial step. Consequently, in our approach
the success of the algorithm may be limited if edges based on
intensity or texture are not easily discernible. The algorithm
generally performs well on the lungs and simulated tumors
in phantom data because of the clear boundaries detected.
Some organs do not have significant contrast against the
background, such as the heart, the liver, the prostate, and
the kidney. Tumors often have similar intensity and texture
as the surrounding soft tissues. Thus, our proposed algo-
rithm might have limited success in segmenting those ROIs.
Physicians delineate these ROIs based on their previous
knowledge of the shape and relative positions of the ROIs.
A more accurate and robust segmentation would incorporate
prior shape information. The prior knowledge of ROIs is
critical to successfully segment those ROIs with lower
contrast to the background or similar intensity values to the
surrounding tissues.



V. CONCLUSIONS AND FUTURE WORK

We have presented preliminary results on a novel ap-
plication of the principal surface algorithm for the propa-
gation of contours in 4D-CT for applications in radiation
therapy. Our experimental results demonstrate the feasi-
bility of automatic segmentation of the ROIs in 4D-CT.
We are currently performing a more extensive evaluation,
comparing this algorithm to commonly used deformable and
rigid registration-based contour propagations. In the future,
we will incorporate prior shape information into the KDE
procedure to make principal surfaces smoother and more
consistent with the prior shapes. We are also evaluating the
use of weighted edges instead of purely binary edges to
improve the robustness of the algorithm.
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