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ABSTRACT

This paper describes a capstone design project by four un-
dergraduate students (first four authors listed in alphabetical
order by last name). A noninvasive brain computer inter-
face (BCI) based on the steady state visual evoked potential
(SSVEP) has been developed and utilized in controlling an
iRobot platform remotely in real-time closed-loop fashionus-
ing video feedback from the robot’s eye view to the operator
over the internet. The operator selects commands by focus-
ing gaze on one of four flickering checkerboards surrounding
the video feedback window in order to navigate the robot as
desired. The intended/desired control commands are sent to
a laptop controlling the iRobot platform via remote wireless
connection. Naive subjects are able to control and navigate
the robot via the designed interface with minimal practice and
classifier calibration. Typical command selection accuracy is
over 95% within 4 seconds of the desired transition; most sub-
jects are able to achieve such high accuracies with a 1 second
delay.

Index Terms— EEG, SSVEP, Brain Control

1. INTRODUCTION

Brain computer interfaces (BCI) have emerged as a promising
new human computer interface modality in the last decade or
so with the merger of various technological and theoretical
developments [1]. BCI research had been divided into two
primary camps: (i) invasive microelectrode array based ac-
quisition of brain activity, which focuses on acquiring highly
localized single unit spike activity from one or more corti-
cal areas and attempting to build highly detailed neuronal
response models based on basic neuroscience models such
as tuning curves coupled with advanced statistical (Bayesian)
dynamic recursive state estimation tools, such as particle
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filters [2, 3, 4, 5, 6, 7, 8, 9, 10], (ii) noninvasive electroen-
cephalography (EEG) based acquisition of brain activity,
which focuses on macroscopic responses of various cortical
areas to external stimuli such as in P300-based paradigms or
internal subject-induced brain activity such as motor imagery,
followed by statistical pattern recognition approaches for sig-
nal detection or discrimination citeAll10, Kue05, Hua09,
Tow10, Tre10, Vau06, Bin09a, Bin09b, Liu10, Luo10,
Mul05, Qia10. Electrocorticography (ECOG) based BCI
research had been pursued by some [23], however, not as
widely as neither microelectrode array nor EEG based ap-
proaches, primarily due to the lack of access to subjects given
the invasive cortical surface measurement requirements of
this acquisition approach. There is also some interest in using
near-infrared spectroscopy (NIRS) as a brain activity sensing
modality in various brain interface contexts [24, 25, 26].

On the EEG front, typical signals that have been exploited
by various groups include single- (or multi-) trial event re-
lated potentials (such as the P300 signal that is generated in
response to a novel stimulus or one that matches an expected
target; P3a vs P3b) [13, 14, 15, 16], motor imagery induced
cortical potentials (which provide the subject to voluntarily
and asynchronously generate command signals by imagin-
ing the performance of a body/limb movement) [11, 12], and
steady state visual evoked potentials (SSVEP) which is the
natural periodic response of the visual cortex to a periodic
visual stimulus pattern [17, 18, 19, 20, 21, 22]. The latter sig-
nal is generated when the gaze of the subject is focused on a
flickering visual pattern, such as a high-contrast checkerboard
that oscillates between two inverted color states periodically
at a predetermined frequency (typically around 5Hz-15Hz).
While photosensitive seizures might be a concern for some
subjects (estimated at 1 in 4000 people), in most subjects the
flickering frequencies are considered safe and too low to in-
duce such seizures - nevertheless, proper precaution must be
taken and visual stimuli must be terminated immediately at
first sign of a problem since there might be subjects who are
unaware of their condition as such visual stimuli are unnatural
and not common.



2. METHODS

In order to exploit the strong signals generated by the vi-
sual cortex in the SSVEP paradigm, we have built a remote
robot navigation interface using this approach as the basis
of a brain interface and have tested the designed prototype
successfully on various volunteer operators. The system con-
sists of the following components: (i) an iRobot platform that
acceptsand executes motion commands through a serial port
(four commands are used in this prototype: turn left/right go
forward, stop); (ii) video feedback from the robot’s perspec-
tive via a webcam and Skype, (iii) visual stimulus display
to induce unique frequencies in visual cortex activity cor-
responding to each desired command (four checkerboards
flickering on the screen with periods coinciding with the
monitor refresh rate and approximately at 7Hz, 9Hz, 11Hz,
and 13Hz); (iv) multichannel EEG acquisition and frequency
detection/classification algorithm using a g.USBamp ampli-
fier with g.Butterfly active electrodes (G.tec, Austria). Gaze
tracking is a routine technique employed for assessing the
focus of attention of the subject on a screen - for instance
in assistive technology applications [27]. The designed sys-
tem essentially achieves gaze based selection of commands
from a screen by processing visual cortex signals directly and
it is estimated to be a better indicator of attention than the
pupil position surrogate - this claim, however still needs to be
evaluated in experiments.

The iRobot platform provides a convenient API to com-
municate with and control the robotic platform. A laptop is
mounted on the robot and this laptop both received commands
from the brain interface for the robot via remote wireless con-
nection and transmitted to the operator’s screen video feed-
back from the robot’s perspective using a Skype video con-
nection. The visual stimulus was in the form of 4 checker-
boards (8x8 grid of black/white squares) positioned on each
corner of the screen, occupying slightly less than one quar-
ter of the monitor (typically Dell 22” widescreen LCD, but
also tried stand-alone Mac monitors as well as Mac laptops
of various sizes). The checkerboards have been separated
by a relatively thin black + spanning the horizontal and ver-
tical length of the monitor separating the screen into quad-
rants. The Skype video feedback window was overlaid on
the checkerboards, centered on the screen, and occupied ap-
proximately one third of the screen area. The subject was
initially positioned directly in front of the monitor at a dis-
tance of approximately 50cm; however, the subject was free
to move the head and torso and reposition himself as desired
to maximize comfort and change positions if desired. The
checkerboard state transitions were synchronized to the re-
tracing of the screen (60Hz) using OpenGL in order to ensure
perfect periodicity.

The visual cortex activity was measured using up to 8
electrodes at 256Hz sampling rate from the occipital regions
using the g.GAMMAcap positions at the back of the head

around O1 & O2 sites in the International 10-20 configu-
ration. Active g.Butterfly electrodes were used to acquire
EEG activity, an acquisition driver and software written by
our team from scratch was used to read the signals into a
computer through a USB port. The signal from each elec-
trode was processed by a Welch periodogram with 512 FFT
points and a sliding (at 125ms intervals) window of variable
length (typically set to an integer length in seconds such as
1s, 2s, 3s, or 4s) were used to estimate the energy at and
around the known flickering frequencies of the checkerboards
(7, 9, 11, 13 Hz and their neighboring half frequencies were
monitored as features). The 12 time-frequency features were
acquired for each window (8 times per second), and classi-
fied by a multiclass SVM frequency detector. The frequency
decisions for all channels were then subjected to a majority
vote fusion scheme in order to obtain a joint frequency se-
lection that would then send the corresponding command to
the robot to be executed. The classifiers also featured a re-
ject option which was used when the operator focused gaze
on the Skype video feedback rather than a flickering checker-
board. The reject vs frequency detector was calibrated prior
to each session by asking the operator to focus gaze on each
checkerboard and then the static Skype video screen sequen-
tially for about 10 seconds each - the total calibration timein
this manner usually took less than one minute.

3. RESULTS

The designed prototype brain controlled robot navigation in-
terface has been tested on various subjects successfully. De-
pending on the subject and session (i.e. electrode connec-
tion and signal quality), sometimes fewer than 8 electrodes
have been used. Most of the time, it has been observed that
even a single electrode (specifically O1 or O2) can be suf-
ficient to achieve 100% accuracy among 4 frequencies and
reject as described above. For different subjects, the peri-
odogram window length had varied between 1s and 4 s but
all subjects we have experimented with achieved 100% cor-
rect classification with 4s windows and none needed a longer
window. Of course, a longer window causes transitions be-
tween two separate commands to be delayed by up to the
window length since the periodogram calculations are based
on a longer window containing portions of two separate fre-
quencies. Some subjects achieve 100% correct decision using
a 1s window; we have not attempted to reduce the window
length further for such subjects, but it is expected that as small
as 285ms (one period of the longest flickering period corre-
sponding to 7Hz) could work with multiple high SNR elec-
trodes. A video demonstration of one subject operating the
robot through the described brain interface platform is avail-
able here: http://www.youtube.com/watch?v=cuC0RTf1taw.



4. DISCUSSION

SSVEP paradigm is a particularly interesting BCI design ap-
proach because it requires minimal subject training and sys-
tem calibration. Compared to motor imagery, which requires
extensive subject training, and P300, which is not very reli-
able at single-trial mode and requires high level of cognitive
effort (though not as much as motor imagery perhaps) from
the subject, SSVEP paradigm is based purely on the sensory
signal generated in the brain at an early stage and requires no
effort from the subject to be generated, apart from focusing
the gaze at the desired location. Of course, one could think of
this system as a fancy eye tracker - however, there might be
advantages to external eye tracking: the signals are measured
directly from the visual cortex and while signal strength might
be influenced by contrast and visual angle it occupies (de-
pending on size on screen and distance from subject’s eyes),
the method does not suffer from miscalibration difficultiesen-
countered by eye trackers that require subjects to move min-
imally to maintain calibration accuracy. For SSVEP-BCI the
flickering patterns can be transparently embedded into the
images/icons representing functions and possibly optimized
in terms of contrast and frequency to be effective (generate
measurable visual cortex response), safe (avoid photosensi-
tive seizures) and comfortable (perhaps at higher frequen-
cies that are not perceived by the user). Alternative flick-
ering patterns are also possible. For instance m-sequences
have been investigated in vision psychophysics experiments
as well as BCI applications as the flickering pattern of the vi-
sual stimulus [28, 29, 30]. We have obtained initial resultsus-
ing m-sequence flickering sequences for checkerboard stim-
uli. Specifically, our recent experiments revealed that using
a simple template matching classifier (i.e. a matched filter)
we can achieve 99% classification accuracy using 60 or 70
training samples to create the average template for each m-
sequence response (our results are submitted for publication
in another venue). In our experiments, we used four sepa-
rate 31-bit m-sequences with pairwise correlation coefficients
less than 0.3 in amplitude. Flickering at 30 bits per sec-
ond, the calibration time needed was about one minute per m-
sequence. Our future work will continue to investigate these
improvements as well as alternative applications; currently,
we are starting to explore the application of this techniquein
flight simulator control and wheelchair control.
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