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ABSTRACT
Generalized cylinder shapes are ubiquitous in biological sys-
tems and image processing techniques to identifies these
tubular objects in 3D from biomedical imagery in vari-
ous modalities is a general problem of interest. One such
structure that exhibits branching tubular forms are neuronal
networks; specifically, recent developments in microscopy
imaging technology allow researchers to acquire massive
amounts of 3D color images of neural structures that need
to be tracked in 3D to extract structure for the purpose of
studying function. In this paper, we propose a piecewise lin-
ear generalized cylinder tracing algorithm that exploits both
edge and color information in order to automatically trace
axons of neurons in Brainbow imagery. Results indicate that
the proposed method can successfully trace multiple axons in
dense neighborhoods.

Index Terms— Locally linear generalized cylinders,
axon segmentation, Brainbow

1. INTRODUCTION

Generalized cylinder shaped objects are ubiquitous in 3D
biomedical imagery; many structures exhibit tree topologies
with cylindrical branches (e.g., vascular networks, dendritic
trees, bronchia). Consequently, significant research effort
has been dedicated to the segmentation of objects with such
structures that arise in various contexts [1, 2, 3]. Shape mod-
els informed by knowledge of the geometry and physical
constraints of the biological structures are useful in improv-
ing automatic segmentation results; however, accurate shape
models require the availability of manually segmented train-
ing data, which requires immense manual labor and time
commitment to acquire. Consequently, the design of segmen-
tation algorithms that can both aid the process of training data
extraction and that can then utilize the new available data to
its advantage by incorporating the information as shape priors
will facilitate the development of accurate automatic segmen-
tation approaches in this domain.

In general, since clustering based approaches are not
suitable for the straightforward incorporation of shape pri-
ors, active contour and level set techniques that are based
on the evolution of curves or surfaces that optimize some
suitable energy function that combines multiple optimality
measures, one of which imposes the desired shape prior in
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penalty form [4, 2], through scalarization (e.g., linear combi-
nation) are preferred. The designed energy function is used
to highlight object boundaries [5] and these curve and surface
evolution methods have been shown to work well in a variety
of scenarios with careful tuning. These approaches, however,
require a detailed level of topological and structural under-
standing of the dataset in order to define energy functions that
will succeed. These measures are functions of image inten-
sity (e.g., gradient-norm or other edginess metric) and spatial
and shape penalties. In order to highlight certain curvilinear
structures, shape filters have also been employed [6, 7]. Eige-
nanalysis of the Hessian matrix of the image intensity is also
a popular approach to identify objects (e.g., vessels), where
eigenvalue ratios can be related to local curvature [8, 7];
however, determining such relationships require extensive
experience and training data.

Brainbow images, a recently developed technique for ac-
quiring 3D colored confocal microscopy imagery that depict
neuronal networks in the brain, present a great opportunity for
neuroscientists to study brain structure and function; however,
the speed of progress is hampered by the inability to automat-
ically extract structural information about the network from
these images due to the lack of robust and reliable 3D cylin-
drical object segmentation techniques for color images that
could automatically trace axons (techniques designed for MR
and CT specialize on intensity and they primarily focus on
slice-based segmentation [1, 2, 3, 9]). Currently, researchers
using Brainbow technology are limited to manual segmenta-
tion of images and tracing of axons to identify neural net-
works; this process is clearly cumbersome and prevents the
study of large brain sections.

In this paper, we propose an algorithm for semiautomatic
segmentation of objects with generalized cylinder shapes (ax-
ons) utilizing both edge and color information without mak-
ing strict shape assumptions (such as curvature bounds or pri-
ors). The approach involves building piecewise linear cylin-
der approximations starting from a single seed point inside
the axon given by the user. Future improvements will include
automatic seed point identification and incorporation of infor-
mation obtained from semiautomatically segmented imagery
as priors. The algorithm will enable neuroscientists who ac-
quire Brainbow images to extract 3D network structure with
minimal labor and intervention.

2. BRAINBOW IMAGES & PROBLEM STATEMENT

The brain processes and propagates information through
thousands of structural connections within neural networks.
Understanding the organization of these ’circuits’ is thought
to be necessary to understand how such networks execute and
adapt complex behaviors. Investigations of networks have



been prevented, however, due to the length of 3D projections
of single neurons (mm’s) and the density and thinness of
structures (<0.5 µm in diameter). The large-scale makes
high-resolution imaging (serial electron microscopy) infeasi-
ble and the high density of thin structures makes resolution by
diffraction-limited light microscopy impossible. To improve
resolution of optical techniques, researchers have developed
a genetic tool that randomly labels different neurons in mice
with different colors, called ’Brainbow’. The color label is
generated by random, combinatorial expression of three spec-
trally distinct fluorescent proteins (red, blue and green). The
ratio of these proteins produces a multicolor label throughout
the processes of each neuron. Neural tissues from these mice
can be optically sectioned with multi-color laser-scanning
confocal microscopy to render an image stack with both
spectral (color) and spatial (x,y,z) resolution. To study the
connections of these neurons, the resulting data set must be
reconstructed manually, a process which takes months to
complete, even in the simplest circuits. Thus, reconstructions
have been greatly limited in quantity and complexity.

(a) 7thSlice (b) 8thSlice (c) 9thSlice

Fig. 1. Axial (xy-plane) slices of a sample brainbow image
stack showing a bundle of axons of motor neurons connecting
from the spinal cord to a muscle.

Fig. 2. Square root of the edge values in an xz-plane crossec-
tion showing circular axon boundaries.

(a) Tuning Step (b) Propagation Step

Fig. 3. Tuning and propagation steps are illustrated: tuning
consists of finding a sphere with center p0 and radius r0, as
well as finding the axon propagation direction n, which spec-
ifies a circular base for the local cylinder; propagation identi-
fies the length l of the piecewise cylinder such that the surface
of the cylinder follows the strong edges and the interior has a
consistent color.

3. PROPOSED METHOD

Our approach uses the edge information calculated from
smoothed color images to define axon boundaries. We also
use the color information of fibers in our calculations to sep-
arate closely passing axons and calculating the direction of
the generalized cylinder models. For a given seed voxel, the
algorithm highlights each axon through a two-step process.
The first step (tuning) calculates the local orientation and the
corresponding perpendicular circular crossection of the axon,
and the second step (propagation) identifies a cylinder with
the given circular base and orientation that approximates the
curved axon in a piecewise linear fashion. The process is
iteratively repeated to identify a generalized piecewise linear
cylinder model of the axon starting from the initial seed.

3.1. Fiber Boundary

The 3D image stack is processed jointly after resampling of
each image plane to achieve cubical voxels. Preprocessing
includes smoothing of the image volume using 3D bilateral
filtering [10] and calculation of the edginess value for each
voxel using the largest singular value of the color Jacobian
with respect to voxel coordinates following an earlier similar
idea utilized successfully for 2D image edge extraction [11].
It has been shown in this early work that using color gradient
as a vector field will result in more robust edge detection com-
pared to other conventional methods; furthermore, the pro-
posed edginess measure for color images reduces to gradient
norm for grayscale images. The (RGB) color Jacobian with
respect to position (xyz where z is depth across image slices
obtained via confocal microscopy) is
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The largest singular value is obtained by identifying the
largest eigenvalue of JT J as the edginess value of a voxel.
The calculated edge map, E, is used for tuning and propa-
gation. An xz-plane crossection of the square root of the 3D
edge map E is shown in Fig. 2 to illustrate.

3.2. Tuning

For a given seed (initial p̂0 input) or a calculated center es-
timate from cylinder i (denoted by Ci with initial circular
surface centered at pi with radius ri and axial vector ni as
illustrated in Fig. 3) given by p̂i+1 = pi + lini after propaga-
tion, we optimally identify the center pi+1, radius ri+1, and
direction ni+1 of the axon via the following procedure:

Step 1: The center pi+1 and radius ri+1 are identified by
minimizing the inverse of the total edginess values on sample
points si from the surface of sphere S(p; r) using the active-
set algorithm and subject to the constraints that (i) the center
of the the new sphere lies on the plane that is defined by the
last circular surface of the previous cylinder, (ii) the center
of the new sphere must be within ri distance from p̂i+1, (iii)
the cos(angle) between the color distributions of voxels in



previous cylinder and current sphere must be greater than 0.9:

(pi+1, ri+1) = arg min
p,r

1∑
i E(si; p, r)

subject to (2)

nT
i (p− p̂i+1) = 0

(I− ninT
i )(p− p̂i+1) < ri

G(mi −mS(p,r); Σi + ΣS(p,r))
G(0; 2Σi)G(0; 2ΣS(p,r))

> 0.9

where, si are obtained using a 21-by-21 grid in angular co-
ordinates with π/10 radian resolution in θ (longitude) and
π/20 radian resolution in φ (latitude)1, E(si; p, r) is obtained
from the edge map E via 3D-cubic spline interpolation, and
G(x,C) = (2π)−n/2 det(C)−1/2 exp(− 1

2xT C−1x), with
mi & Σi being the estimated mean and covariances of the
Gaussian color distribution model in RGB space for the vox-
els in the last cylinder (denoted by index i), and mS(p,r)

& ΣS(p,r) similarly being the estimated color mean and
covariances for the voxels in the current sphere S(p; r).
The mean and covariance estimates are obtained using
Expectation-Maximization (EM) with a Gaussian color den-
sity model. Note that if we define the inner product between
two Gaussian densities Gj = G(x−mj ; Σj) for j = 1, 2 as
< G1, G2 >=

∫
G(x−m1; Σ1)G(x−m2; Σ2)dx, then

< G1, G2 >

(< G1, G1 >< G2, G2 >)1/2
=

G(m1 −m2; Σ1 + Σ2)

G(0; 2Σ1)G(0; 2Σ2)
(3)

Step 2: The direction ni+1 is identified as the largest
eigenvector (whose sign is selected such that it makes a pos-
itive inner product with ni) of a weighted covariance matrix
W of voxel coordinate vectors for each voxel vj in a cube
that contains sphere S(pi+1, ri+1) and that has edges aligned
with the xyz-axes of the image coordinate system. The weight
of each voxel is obtained from the Gaussian color model iden-
tified from the voxels inside the sphere using EM as described
in step (1). Specifically:

W =
∑

j

G(dj ; s2I)G(cj −mSi+1 ; ΣSi+1)djdT
j (4)

where dj = vj − pi+1 is the displacement of voxel j from
the center of the current sphere Si+1 = S(pi+1, ri+1).

3.3. Propagation

Once the circular crossection of the cylinder is identified us-
ing the tuning process described above, a linear extension of
the cylinder in the direction pointed to by ni is generated us-
ing increments of length equal to the edge of one cubic voxel
until a criterion leaves the margin determined by adaptively
set lower and upper bounds. The criterion in particular, for a

1A better sampling strategy can be achieved by using uniformly displaced
grid samples on the sphere. Approximations can be done by solving a con-
straint optimization problem with equally displaced grid locations constraint
on the sphere manifold.

given cylinder of length l, is given by:

Υ(l) =
∑

k

E(qk;C(pi+1, ri+1, lni))

−l
∑

j

E(sj ;B(pi+1, ri+1,ni)) (5)

where C(pi+1, ri+1, lni) is a cylinder with base center pi+1,
radius ri+1, with length l in the direction of ni, and qk are
samples from its surface taken on a uniform grid along the an-
gle of the circular base (with π/10 rad resolution) and length
(at a resolution of one voxel). Similarly, B(pi+1, ri+1,ni) is
the base of this cylinder and sj are samples taken uniformly
from its circular boundary (at π/10 rad sample period). The
lower and upper thresholds are selected to be proportional to
the second term in the criterion above (specifically, we have
used factors of 0.98 and 1.05).

4. RESULTS

We demonstrate selected results from the proposed method on
a brainbow image set composed of 31 slices (z-direction res-
olution of 64 µm) with each slice being 1024 × 1024 pixels
(x & y directions at 11 µm resolution). In the preprocessing
step the images are downsampled by 3 in the x & y directions
and upsampled by 2 in the z direction yielding a voxel size of
33 × 33 × 32 µm3. The resampled image stack is smoothed
in 3D using a bilateral filter with Gaussian kernel with diago-
nal covariance (spatial scale of 5 voxels and RGB-color scale
of 0.2). Fig. 1 shows sample axial slices of the axons after
smoothing and a coronal slice of the edge map, E is shown in
Fig. 2. While all axons can be identified and traced success-
fully, in Fig. 4 only a couple of selected axons are displayed.
In order to emphasize weak edges, we also used the square-
root of the edge values to select and iterate additional fibers.
Columns of Fig. 5 show two different yz-plane slices of the
brainbow image stack where first row is the filtered image,
second row shows the corresponding edge map slices, and the
last row displays the selected fiber projections on the square-
root of the edge map.

5. DISCUSSION AND FUTURE WORK

The automatic identification and segmentation of fiber/vessel-
shaped objects in 3D imagery is a commonly encountered
problem. Brainbow images in particular provide a novel tool
for neuroscientists to study the structure of the nervous system
in vitro via confocal microscopy. In this paper, we presented a
method for identifying axons in 3D image sets using edge and
color information with weak shape priors incorporated in the
form of a piecewise linear generalized cylinder approximation
and constraints imposed during the optimization process. The
proposed approach, at this point, aims to be semiautomatic in
order to reduce the requirement of manual labor and inter-
vention, yet allow the neuroscientist to have control over the
identified axon-tree solutions. This will enable the accumu-
lation of more ground-truth information about axon network
geometries in various parts of the nervous system, thus will
allow us to improve the presented algorithm in the future fur-
ther by incorporating prior information that can be extracted
from such a database.

The algorithm exploits the knowledge that each branch of
an axon is a generalized cylinder and approximates this form



Fig. 4. Selected identified axons in a given 3D region (with
axis units in voxels).

Slice 1 Slice 2

a)

b)

c)

Fig. 5. a) Different Coronal (yz-plane) slices of a sample
brainbow image stack b) Corresponding edge values c) Pro-
jected fibers on the image slice showing the square-root of the
edge values.

using piecewise linear cylinders locally. This approach elimi-
nates the complicated global optimization required for active
shapes or level sets that minimize energy functions over the
whole volume or surface. The local cylinder fitting approach
results in a relatively simpler energy minimization type prob-
lem and the piecewise approximation does not lose its abil-
ity to model highly complex axon trajectories. Continuity is
guaranteed by imposing constraints on the search space for
consecutive cylinder pieces and the final smooth generalized
cylinder can be approximated by a smooth interpolation tech-
nique such as cubic spline in 3D.

While the algorithm utilizes the edge information to fit
individual local cylinders, it employs color model continuity
to prevent the local cylinders from jumping from one axon
to another in the vicinity. In fitting the Gaussian color den-
sity model in RGB coordinates, we used the EM algorithm
instead of sample mean and sample covariance estimates for
the mean and covariance. It is possible for some voxels in
the given cylinder or sphere to have a multimodal color dis-
tribution (e.g. background, target axon, and a neighbor axon
with a different color), thus sample statistics will be severely
influenced by these additional modes, which in turn could cre-
ate problems in determining the local fiber direction using the
largest eigenvector of the weighted covariance matrix during
the tuning step or the length of the fiber that is calculated in
the propagation step. Therefore propagation purely based on
the edge values is not preferred and color values of the voxels

are utilized.
Problem formulation favors uniformly distributed strong

edges having larger edge values which lead to easier segmen-
tation of fibers. Depending on the location and the color, edge
values vary throughout the dataset; thus proposed method as-
sumes local thresholding strategy to adaptively select upper
and lower bounds in the propagation step. Moreover, in order
to emphasize the weak edges having smaller edge values, the
square-root of the edge values are used. Choice of using the
square-root of the edge values is heuristic and future work in-
cludes image enhancement strategies that will enable us to get
more uniform edge value distributions throughout the dataset.

A desirable feature in semi-automatic segmentation is the
ability of the user to intervene with the solution in a flexible
and local manner. The proposed method gives the opportunity
to the user to intervene in the initialization and propagation of
each local cylinder while such interventions are not trivial to
implement to the user’s satisfaction in active shape or level
set type approaches.

Since direct interventions from the user is always possible
at each local cylinder, online corrections to the segmentation
result are possible. Future work includes an online segmen-
tation algorithm that adaptively calculates edge values that
takes into consideration the local neighborhood. Interactive
segmentation of a fiber for the selected seed point will be in-
corporated with the knowledge of the previously segmented
fibers. This iterative and interactive segmentation approach
will also enable easy segmentation of weaker fibers by seg-
menting the strong edges first and eliminating the effects of
segmented edges by incorporating them as inequality con-
straints.
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