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Abstract— Conducting research on lipid vesicles is very
convenient, since they provide a stable and controllable en-
vironment for in vitro observations. Their resemblance to
biological cell membranes allows biologists to assess hazardous
potential of nanoparticles by exposing the vesicles instead of
live organisms. When considering behavior of vesicles during
incubation with nanoparticles, majority of existing research
focus on observing single vesicles only. Our approach provides
an ability to observe thousands of lipid vesicles for more
representative behavior estimation. We developed an efficient
algorithm to transform video sequences acquired with video
microscopy into quantitative data. This includes steps required
to filter noise, use multiple frames for more precise content
presentation, detection of regions of interest, and segmentation
of circular and non-primitively shaped vesicles. Presented work
is a crucial step towards the creation of an automated computer
analysis for lipid vesicles behavior assessment.

Index Terms— lipid vesicles, microscopy video, image seg-
mentation

I. INTRODUCTION

With the advances in nanotechnology and engineered
nanoparticles research, techniques for assessing properties
of novel nanoparticles are also in great demand. Besides the
desired properties of nanoparticles which make them inter-
esting, we also have to determine their hazardous potential
to humans, animals and biological systems in general [1].
Recent studies suggest that nanoparticles can strongly inter-
act and disrupt cell membranes [2]. Given the large number
of diverse nanomaterials, systematic approaches are favored.
Beside in vivo assays [3], [4], a popular approach to assess-
ing cell membrane permeability is to use artificial instead of
biological systems [5]. It appears that palmitoyloleoylphos-
phatidylcholine (POPC) lipid vesicles, which are simplified
biological membranes, offer controllable conditions to study
effects of xenobiotics and can easily be observed directly
under light microscope. In these experiments, populations
of lipid vesicles are exposed to the various substances and
observed through the microscope. Most published results
focus on single vesicles and their morphological changes
whether they are observed by a biologist spending hours
behind the microscope, or a computer algorithm analyzing
the video [6], [7]. However, with this approach, only a minute
sample of the vesicle population can be observed. There
is no guarantee that the changes we might be interested
in will manifest in that precise sample. In our previous
work we introduced a novel approach for analyzing larger
samples [8], [9]. Microscopy images were taken at smaller
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magnification, which allowed us to capture more vesicles. A
biologist then manually labeled the vesicles and computer
algorithms were used to quantitatively evaluate the labeled
images (eg. quantities, sizes, eccentricities of vesicles). This
way we were able to capture approximately 15% of the
vesicle population we were interested in, and determine some
significant effects which could not be acquired through single
vesicle inspection. Apart from the benefits, this approach
also had a weak point, since it was very time consuming
for biologists. They spent weeks manually labeling tens
of thousands of vesicles and preparing the images for the
computer aided analysis. However, to repeat this experiment
frequently with various nanoparticles, two things had to be
improved: the percentage of captured vesicles had to be
increased and the time needed to segment had to be vastly
reduced. We decided to incorporate videos instead of images
to capture more vesicles in the same amount of time and to
develop an image processing algorithm for automatic vesicles
segmentation. This paper describes the steps required to
prepare the video of the vesicles and transform it into a
useful data set with segmented lipid vesicles, prepared for
statistical evaluation of vesicles’ shapes and sizes.

II. METHODS

A. Acquiring data

Fig. 1. Object glass is placed under the microscope. Videos are acquired
by sliding the sample in one dimension which allows us to capture a single
track.

The intact membrane of POPC lipid vesicles allows the
sugar composition inside (saccharose) to differ from the
composition outside (saccharose and glucose). This results in
lipid vesicles appearing darker from the surrounding medium
and thus easy for detection. The 45 µl of 5% glucose suspen-
sion containing lipid vesicles was applied on its own object



glass and covered with a cover glass. The sample is observed
under an invert microscope (Nikon Eclipse TE2000-S) with
an attached camera at 400x magnification. This allows us
to detect vesicles with radii larger than 1 µm. The field of
view (visible area) at this magnification is 190 x l43 µm.
The population of lipid vesicles is contained on the object
glass and spreads over a 15 x 15 mm area. Each video was
acquired by sliding the objective glass under the microscope
in one dimension only (Fig. 1). Approximately 4 minutes are
required to capture a single track at appropriate speed for the
vesicles to remain detectable. Videos were uncompressed.

B. Preprocessing

The video segment used in the following analysis was
a 33.467 second long sample at 15 frames per second
(502 frames) and every frame of 768 x 576 pixels width
and height. It was also cropped to eliminate a thin black
border that contained no information. Despite the fact that
both camera and microscope lenses were cleaned before the
experiment, some lens noise remained visible throughout
the video as seen in the Fig. 2-a. However, because of the
static nature of the lens noise, we were able to remove it by
calculating the median value of intensity over all frames and
then subtracting its effect from each frame (Fig. 2-b).

Fig. 2. a) Original. b) Without the lens noise. c) After downsampling and
interpolating.

Fig. 3. Mean of the DFTs of the columns of a single frame. F measure
is calculated as the area under the mean curve within 10% high frequency
band (shaded region).

While recording video, moving object glass under the
microscope was performed manually, leading to the changing
speed of movement. This resulted in frames corresponding to
higher speed of movement being blurry. In order to use only

the frames in focus for generating the panorama, the moving
frames that were most distorted had to be identified. We
manually labeled a minority of frames as good or moving and
used Linear discriminant analysis (LDA) with two features
to classify the rest of the frames. The first feature was the
Brenner gradient, which can also be used as a blur metric
[12]:

B =
N∑
i=1

M∑
j=1

[I(i, j)− I(i+m, j)]2 (1)

where N and M are height and width of the image, m = 2,
and I is the intensity. The second feature we used (F ), is a
Discrete Fourier Transform (DFT) based metric.

Fig. 4. a) Feature values of 200 test frames with the linear separation
between classes. The line represents the LDA generated border between
classes. b) Feature values of frames that have been classified with > 95%
accuracy.

The reason for choosing the DFT was that we noticed hor-
izontal interlacing artifacts (Fig. 2-a) in the moving frames,
which suggested large amplitudes in higher frequencies for
moving frames when compared to the good ones (Fig. 3).
DFT based feature F is given as the mean of the areas
under the frequency curve in the high frequency region
over the columns of a single image and can be written
as

∑1
f=0.9(

∑M
i=1 Si(f)/M), where Si(f) is the amplitude

of the DFT for the ith column. These two features were
enough for the LDA to classify the frames as good or moving
Fig. 4-a. We decided to remove only the frames which were
classified as moving with more than 95% accuracy Fig. 4-b.



Fig. 5. Composed track with vesicles.

This allowed us to eliminate the blurred frames and limit
the number of usable frames to 300. Frames also had arti-
facts (horizontal lines) which were cleaned through vertical
downsampling and interpolation Fig. 2-c. These frames were
used to generate one big image containing the whole track
covered in the video sequence.

Cross-correlation between frames was used to calculate
the shift (only translation) of the camera movement. Frames
were then aligned by change of correlation peaks position
in consecutive frames. This resulted in a big image, where
frames representing the same actual position in sample over-
lapped. To create the mosaic, median intensity of overlapping
frames was calculated. In order to smooth the image while
preserving the edges, we applied bilateral filter [10] with a
3 pixel spatial and 0.05 color domain kernel sizes, with a 5
x 5 window size.

C. Defining and Segmenting within individual ROIs

We implemented a foreground detection algorithm that
uses the intensity and edge information. Sobel mask [11] is
used to find the edges, and morphological closing operation
is applied to extract the foreground regions. After hollow
interior regions are filled with 4-connected neighbors, we
calculate the bounding boxes (ROIs) encapsulating the de-
tected foreground regions as shown in Fig. 5.

Since some ROIs contain more than one vesicle, further
segmentation is required. A typical vesicle can be recognized
as a dark region with a bright halo surrounding it. Fig. 6-a
& g show the negative of a lipid vesicle and its surroundings
with the detected b-box. In order to smooth the image
and enhance vesicles, we employed bilateral filter (17 x 17
window size, 5 pixel spatial and 0.8 color domain kernel
sizes) in combination with a Gaussian filter (7 x 7 window
size with unit standard deviation) as presented in Fig. 6-b

& h. Next, we used intensity function of the filtered image
to calculate the second order statistics. The Hessian defines
a natural boundary for the vesicles. The region between the
zero crossings is the high power portion of the signal we
would like to segment. We approximate the derivative along
x&y-directions with differences. In 2D case, Hessian of the
intensity, I(x, y), at pixel location (x, y) is given as

H(x, y) =

[
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

]
→

[
a c
c b

]
(2)

The second derivative test states that the eigenvalues of the
Hessian are negative around local maximum. Both eigenval-
ues will be negative and their product is positive inside a
region that is defined by the inflection curve of the intensity
function. On the inflection curve, one of the eigenvalues
will change the sign making the product negative. This can
be detected by calculating the determinant of the Hessian
which shares the sign with the product of eigenvalues of the
Hessian. The determinant of each pixel location is calculated
as d = (ab − c2), and the values are displayed in Fig. 6-c
& i. Fig. 6-d & j presents the regions where the determinant
is positive. Inside the ROI, connected component analysis
is employed to find and label the segments. Fig. 6-e &
k shows the result of the segmentation. However, signs
of the eigenvalues by themselves do not provide sufficient
knowledge to segment the vesicles. In order to eliminate
the segments belonging to the background, we used the
segmented regions together with the power of the intensity
function. Power is given by the average of the squared
intensity value of the negative image. Average power of the
ith segment can be given as

Pi =
1

Ni

∑
xi,yi∈Si

I(xi, yi)
2 (3)

where Ni is the total number of pixels, and (xi,yi) are the
pixel locations of the ith segment,Si.

Let P1 > P2 > . . . > Pk be the average power of k
segments, and d1 . . . dk−1 the consecutive differences of the
power values such that di = Pi+1−Pi, i = 1 : k−1. Number
of vesicles, j, inside the ROI is given by

j = argmax
i

(di) .

An interesting yet difficult case is presented in Fig. 6-
bottom row, where tubular shaped vesicle is falsely detected
as two separate regions. However, a small vesicle attached to
the tubular shaped is correctly marked using the algorithm. In
our future work, we will also focus on such non-primitively
shaped vesicles. We tested the algorithm on the available
video. Out of 92 regions our algorithm detected, 82% over-
lapped with the manually segmented ones. The remaining
18% include dust and other intruding particles which can
be easily identified by biologists. As their manually labeled
data was used as a gold standard for our current performance
evaluation, we intend to incorporate their decision making
in our future iterations of the algorithm. This could be done
either by a semi-supervised segmentation or by incorporating
a trained classifier.



Fig. 6. Stages in segmentation process.

III. DISCUSSION

The computerized procedure was designed to segment
individuals in videos of populations of lipid vesicles. It is
the first step towards a fully automated video analysis which
is required for fast assessment of lipid vesicles behavior in
various conditions. Video analysis research we conduct is
synchronized with research of the team acquiring videos,
and the observations each team presents are helpful for both.
With creating and segmenting mosaics of video sequences,
we were able to acquire 100% of the tracks in comparison
with 15% acquired in the same amount of time by capturing
single frames. Some of the problems we dealt with originate
from the nature of the experiment and properties and state of
the microscope and camera. For example, lens noise, frame
interlacing, readjusting focus, variable speed of movement
etc. Consequently, all of these problems had to be addressed
and solved in the preprocessing steps in order to acquire
image, good enough for accurate segmentation.

Currently the regions resulting from our segmentation can
be used to count and estimate vesicles’ sizes only. However,
the biologists are also interested in detecting non-primitive
shapes such as tubes, chains of vesicles, which occur more
frequently when vesicles are exposed to membrane altering
substances. In this respect, part of our future work will focus
on extending the algorithm to classify all known shapes
together with pointing out new, previously unidentified struc-
tures. Through the eyes of biologists, such advances would
allow them to carry out more experiments in less time and
therefore verify potential hazardous behavior or harmlessness
of nanoparticles with greater certainty.
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