
  

 

Abstract—Dimensionality reduction and feature selection is 

an important aspect of electroencephalography based event 

related potential detection systems such as brain computer 

interfaces. In our study, a predefined sequence of letters was 

presented to subjects in a Rapid Serial Visual Presentation 

(RSVP) paradigm. EEG data were collected and analyzed 

offline. A linear discriminant analysis (LDA) classifier was 

designed as the ERP (Event Related Potential) detector for its 

simplicity. Different dimensionality reduction and feature 

selection methods were applied and compared in a greedy 

wrapper framework. Experimental results showed that PCA 

with the first 10 principal components for each channel 

performed best and could be used in both online and offline 

systems. 

I. INTRODUCTION 

ingle trial ERP detection is critical for 

stimulus-synchronous brain computer interfaces. In most 

ERP applications, time domain signals within a short window 

after the onset of the stimuli are used as features to detect 

ERP. However, the original features are in high dimensional 

space, and are not feasible for real-time system; hence, 

effective dimensionality reduction and feature selection must 

be done. In our previous research, we applied feature selection 

on original features, as well as channel-wise projected features 

using LDA [1]. Results were not satisfied with their speed and 

accuracy. In this study, we are going to investigate and 

compare more dimensionality reduction and feature selection 

methods for ERP detection: Principal Component Analysis 

(PCA), Sparse PCA (SPCA), Empirical Mode Decomposition 

(EMD), and Local Mean Decomposition (LMD).  We will 

apply these methods on EEG data and rank the EEG channels 

based on classification performance. 

A. Data Acquisition 

Three adult subjects were recruited for the study under an 

approved IRB protocol for RSVP and EEG acquisition. Each 

subject finished 2 sessions in two days. Each session 

contained 100, 10-second epochs. An epoch started with an 

audio presentation of the target letter. At time stamp 0, a 

one-second fixation screen was presented, followed by 3 

sequences of English letters. Each sequence contained 10 

images (one letter per image) at 167ms/image in a random 

order. Within each sequence, there was only one target letter, 

all others were distracters. There were 0.5 second intervals 
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between two sequences. EEG recordings were made 

synchronously. 
We used two computers to acquire data, one for image 

display and the other for data collection. The EEG data were 

collected using a 32-channel Biosemi ActiveTwo system at 

sampling rate 256Hz. Presentation™ (Neurobehavioral 

Systems, Albany, CA) software was used to present images 

with a high degree of temporal precision and to output pulses 

or triggers to mark the onset of the target and distracter 

stimuli. The triggers were received by the Biosemi system 

over a parallel port and recorded concurrently with the EEG 

signals. 

B. Preprocessing 

We first filtered EEG signals using a bandpass filter (0-20 

Hz, no DC) based on our previous study. Then the filtered data 

were truncated using a [0 500ms] window following each 

image stimulus (called a “trial” in what follows) and 

normalized with the [-100ms, 0] pre-stimulus window. We 

concatenated data within one trial by channels, and to obtain a 

data vector with 32×129=4128 dimensions (each channel 

contains 129 samples). 

C. EEG Channel Ranking and Classification 

EEG channels were ranked using the wrapper approach 

(error based approach) with a greedy search strategy. For a 

given channel subset, all samples from these channels were 

concatenated to form a new data point for each trial. We used 

trials from the first 50 epochs as training set, used the 

remaining data as testing set, applying the LDA classifier on 

three sequences separately, and fusing results using a majority 

vote for the final decision. The accuracy of this final decision 

was used as criterion for ranking the EEG channels. 
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Fig. 1.  EEG data processing and ERP detection scheme. 

 



  

II. METHODS 

The EEG data processing and ERP detection scheme is 

illustrated in Figure 1. In our previous study, we compared 

feature ranking and classification performance in terms of 

speed and accuracy using both raw features and channel-wise 

LDA projected features. Experimental results showed that the 

classification accuracy using raw features is superior 

compared to the accuracy of using LDA projected features, 

however, the former could be too slow to be used in real-time 

system (Depending on additional computational requests from 

the system.). In this study, we are going to investigate other 

dimensionality reduction and feature selection methods, 

including channel-wise Principal Component Analysis (PCA), 

Sparse PCA (SPCA), Empirical Mode Decomposition 

(EMD), and Local Mean Decomposition (LMD), and to 

compare results with those of our previous study. 

A. Principal Component Analysis (PCA) 

Perhaps PCA is one of the most commonly used 

dimensionality reduction methods. PCA seeks the linear 

combinations of the multivariate data that capture a maximum 

amount of variance. However, the projections that PCA seeks 

are not necessarily related to class labels; hence may not be 

optimal for classification problems. In this study, we will 

apply PCA to individual EEG channels, and compare channel 

ranking performance using the first 1, 5 and 10 components of 

each channel (in our particular application, typically using 5 

components carries 75% variance and using 10 components 

carries 90% variance). 

B. Sparse Principal Component Analysis (SPCA) 

PCA has many advantages, such as it captures maximum 

variance, and the components are uncorrelated. However, the 

principal components are usually linear combinations of all 

variables; hence it is not possible to discover a set of low 

dimensional space that explains most of the variance. For 

example, we apply PCA on individual EEG channels for a 

0.5s window of data (129 points) after the stimuli onset. This 

projection can not tell that which points (when after the stimuli 

onset) contain more information for ERP detection. It would 

be of interest to discover sparse principal components by 

sacrificing some of the explained variance and the 

orthogonality. Among many existing SPCA algorithms, we 

choose DSPCA in our study [2], and compare channel ranking 

performance using the first 1, 5 and 10 components of each 

channel.  

C. Empirical Mode Decomposition (EMD) 

EMD was first proposed by Huang et al. [3] for analyzing 

signals of nonlinear and nonstationary time series. EMD can 

be used to decompose any time series into a finite number of 

functions called intrinsic mode functions (IMFs) without 

leaving the time domain. The Intrinsic Mode Functions are 

nearly orthogonal and sufficient to describe the signal. Unlike 

other time-frequency methods, such as short time Fourier 

transform and wavelet transform, EMD does not require any 

assumption of the data; hence it is more flexible in extracting 

time-frequency information from EEG data. 

EMD finds a local mean envelope by creating maximum 

and minimum envelopes around the signal using cubic spline 

interpolation through the individual local extrema. The mean 

envelope, the half sum of the upper and lower envelopes, is 

then subtracted from the original signal, and the same 

interpolation scheme is iterated on the remaining signal. This 

is called the “sifting” process (SP). SP terminates when the 

mean envelope is approximately zero everywhere, and the 

resultant signal is designated as an IMF. After the first IMF is 

removed from the original data, the next IMF is extracted 

iteratively by applying the same procedure (Appendix A). 

By the nature of this decomposition procedure, the data are 

decomposed into n fundamental components, each with a 

distinct time scale. More specifically, the first component 

associates with the smallest time scale, which corresponds to 

the fastest time variation of data. As the decomposition 

process proceeds, the time scale increases, and hence, the 

mean frequency of the mode decreases. By combining 

different IMFs, EMD can be used as low-pass, high-pass, or 

band-pass filter. 

Although after doing EMD, different feature extraction 

methods can be further applied, in this study we remove the 

high frequency component of IMFs (based on the assumption 

that ERP energy concentrates in lower frequencies). Since 

IMFs have the same length as original data, we apply PCA on 

IMFs to reduce the dimension. This procedure is repeated for 

all EEG channels, and the channel ranking performance is 

evaluated using an LDA classifier. 

D. Local Mean Decomposition (LMD) 

The local mean decomposition (LMD) was developed 

recently by Jonathan [4] to decompose amplitude and 

frequency modulated signals into a small set of product 

functions, each of which is the product of an envelope signal 

and a frequency modulated signal from which a time-varying 

instantaneous phase and instantaneous frequency can be 

derived. Like EMD, LMD decomposes data into a series of 

functions in time domain. It does not require any assumption 

on the data. Unlike EMD using cubic spline,  which may 

induce information loss, LMD uses smoothed local means 

(moving average filter) to determine a more credible and 

reliable instantaneous frequency directly from the oscillations 

within the signal. The LMD algorithm is shown in Appendix 

B. In our study, we apply LMD and evaluate the performance 

using the same way as we mentioned above in EMD section. 

III. EXPERIMENTAL RESULTS 

A. PCA and SPCA with different number of components 

We apply both PCA and SPCA projection to individual 

EEG channels, and use the first 1, 5 and 10 components of 

each channel as features, then rank the EEG channels using 

LDA classifier error. The feature ranking results for different 



  

subjects/sessions using different number components are 

compared (figures not shown here). As we expected, using the 

first 10 components of each channel for both PCA and SPCA 

yields the best performances and the computation time using 

PCA is reasonable low. It is interesting to see that by using 

only one component, SPCA performs better than PCA. 

However, the performances of PCA by using the first 5 and 10 

components are better than those of SPCA. This indicates that 

using SPCA does not benefit us considering the computational 

costs and performances. We will use results from 10 principal 

components of each channel to compare with other methods in 

the rest of this study. 

B. Compare different methods 

We compare feature ranking results using different 

dimensionality reduction and feature selection methods: 1) 

using original features;  2) using channel-wise LDA projection 

for dimensionality reduction; 3) using channel-wise PCA 

projection, picking the first 10 components for each channel; 

4) using channel-wise SPCA projection, picking the first 10 

components for each channel; 5) using channel-wise EMD for 

feature extraction and the first 10 PCA components of each 

channel for dimensionality reduction; 6) using channel-wise 

LMD for feature extraction and the first 10 PCA components 
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(d) Subject 2, Session 2 
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(e) Subject 3, Session 1 
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(f) Subject 3, Session 2 

Fig.2. Feature ranking results for different subjecs/sessions using 

different dimensionality reduction and feature selection methods. 
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(a) Subject 1, Session 1 
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(b) Subject 1, Session 2 
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(c) Subject 2, Session 1 

 



  

of each channel for dimensionality reduction. The results for 

different subjects/sessions using different methods are shown 

in Figure 2 (a-f). The performance of using original features 

and using the first 10 principal component of PCA are 

comparable. However, using PCA for dimensionality 

reduction is much faster than using original features. The 

performance of using channel-wise LDA for dimensionality 

reduction is acceptable, and it is the fastest method. The 

performances of using SPCA, EMD and LMD are worst, and 

they generally cost more computational time. 

IV. CONCLUSION 

Experimental results show that using original features and 

using PCA with the first 10 principal components for each 

channel perform best, while the time-consuming SPCA, 

EMD, and LMD methods perform surprisingly worse, even 

for an offline system. The performance of LDA projection is 

acceptable and is the fastest method. Thus, we conclude that:  

1) Channel-wise PCA projection with the first 10 principal 

components of each channel offers the best trade off in terms 

of accuracy and speed. It can be used in both online and 

offline systems. 

2) Chanel-wise LDA projection is the fastest method with 

acceptable accuracy. If Channel-wised PCA projection can 

not satisfied real-time requirement, perhaps LDA is the only 

method.  

3) In theory, the properties of EMD and LMD suggest they 

should be suitable for EEG data processing. However, neither 

method benefits our particular application. 

  

APPENDIX 

A. EMD Algorithm 

 The EMD will break down a signal into its component 

IMFs. 

 An IMF is a function that:  

1. has only one extreme between zero crossings, and  

2. has a mean value of zero.  

 The IMFS is acquired by sifting process: 

1. For a signal X(t), let m1 be the mean of its upper and 

lower envelopes as determined from a cubic-spline 

interpolation of local maxima and minima.  

2. The first component h1 is computed: h1=X(t)-m1  

3. In the second sifting process, h1 is treated as the data, 

and m11 is the mean of h1’s upper and lower envelopes:  

h11=h1-m11 

4. This sifting procedure is repeated k times, until h1k is an 

IMF, that is: h1(k-1)-m1k=h1k 

5. Then it is designated as c1=h1k, the first IMF component 

from the data, which contains the shortest period 

component of the signal. We separate it from the rest of 

the data: X(t)-c1=r1 The procedure is repeated on rj: 

r1-c2=r2,....,rn-1-cn=rn. 

B. LMD Algorithm 

1. From the original signal x(t), determine the mean value, 

mi,k, and local magnitude, ai,k, with extrema, nk,c (t: time, i : 

number of Product Function, k : iteration number in a 

process of Product Function, c : sequence of the extrema) 

       mi,k,c= (nk,c + n k, c-1)/2,   ai,k = | nk-nk+1|/2 

2. Interpolate straight lines of mean (local magnitude) values 

between successive extrema. 

3. Smooth the interpolated signal using moving average 

filter. 

4. Subtract the smoothed mean signal from the original 

signal, x(t). 

hi,k(t) = x(t) − mi,k(t) 

5. Get the frequency modulated signal, si,k(t), by dividing 

hi,k(t) by ai,k(t). 

si,k(t) = hi,k(t)/ai,k(t) 

6. Check whether the ai,k(t) is equal to 1 or not. 

7. If not, multiply ai,k(t) by ai,k−1(t)and go to the first step. 

8. Envelope, ai(t), can be derived by multiplying the whole 

ai,k(t) until ai,k(t)equals one. 

ai(t) = ai,1(t) × ai,2(t) × ai,3(t) × ... × ai,l(t) 

(l : maximum iteration number) 

9. Derive Product Function by multiplying ai(t) by si,l(t) 

PFi = ai(t) × si,l(t) 

10. Subtract PFi(t) from x(t), and then go to the first step with 

the remainder. 
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