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Abstract— In our application, the goal is to search through a  for panning is removed) on a screen directly in front of the
large image to find all instances of a pre-specified, high-valued (human) user. This image presentation paradigm is known as
target. One approach taken fo increase the throughput of this 44 serial visual presentation (RSVP). If we stopped here
|mage_search ta_sk is to: chop the large image into numerous the EEG-b d t Id ¢ bl E
small images, display them to a user at high rates one-at-a- e ased system would encounter a pro em.- ven
time, and then search the simultaneously-recorded EEG data though humans can detect targets shown for a fraction of
for neural activity that signifies that the user detected an a second, we are not very good at signifying precisely when
instance of the target. The temporal efficiency of this EEG- we detect targets, which becomes a problem as we increase
?hased s;t/)stemf isl retduged by the ove|r_r|1ead, which_inhcrtea?e(sj 3Sthe rate at which images are shown. More specifically, the

e number ol electroaes InCreases. Hence, we Wwis O TInd a - . .
minimal set of electrodes that ideally maintains the detection stand&_lrd deviation of the tlme _b_etween image onset and the
performance. In order to inform the design of future EEG- behavioral response that signifies detection (e.g., a hutto
based image search systems, in this paper we find the 12 press) can be larger than the image duration. This is where
out of 32/64 most important electrodes for detection using 5 the computer algorithm comes in. Even though computer
different _fe_ature selection methods. They optimal set includes algorithms are not very good at detecting arbitrarily-sithp
all 5 occipital and the 2 most frontal electrodes. L . .

targets (e.g., in images), they do a relatively good job at
I. INTRODUCTION detecting approximately fixed-shaped neural signatutes) s
. ] . . ] as the one that occurs in EEG data when the user detects
~ Imagine that you wish to find, as quickly as possible, alh target. Moreover, since this particular neural signature
instances 'of a hlgh-valu'ed target in a large image. The f'rﬁlnown as the P300 [2]) is approximately time-locked to
approach is to load the image onto a screen and then havg,g jmage onset, the standard deviation of the time between
human pan around and zoom in and out of the image. A Ségnage onset and the neural signature is relatively small.
ond approach is to use a c.omputer algorithm t(_) automaucal_ly The reason one might elect to use an EEG-based system is
search for targets in the image. The former is problematigecayse it is more temporally efficient than manual (human)
because it is relatively slow. The latter is problematicchese search, as has been shown by several different research
thg detection per_formance of automgtic search algorithn@)‘?oups [3],[4]. The efficiency calculation oftentimes, how
(with the constraint that there are either no or few fals@yer, does not include the overhead associated with setup or
positives) is oftentimes relatively low. Fortunately, ardh tear down. The setup overhead includes the time required
approach has recently become a reality [1]. to prepare the scalp, place the electrodes, and check the

The third approach for searching images is an EEGmpedances of the electrodes. The tear down overhead in-
based system that incorporates a human and a compUifides the time required to remove and clean the electrodes
algorithm. In this approach, the human detects targets agfg to clean the user's scalp. In our experience, the total
the computer algorithm detects preciselyien the human oyerhead associated with a 32-electrode EEG system is on
detects targets. As it turns out, humans are very good @e order of 30 minutes. Let's assume that the overhead for
detecting the presence of a target within an image even df 32_electrode system is 30 minutes and that 20 minutes of
they view the image for as little as 50 or 100 ms. Based ofjs total scales proportionally to the number of electeode
this fact, the images in an EEG-based system are choppggsed on this information, the overhead for a 12 and a 128-
into smaller images (so the need for zooming is removedgjectrode system i$0 + 20 x (12/32) ~ 18 and 90 minutes,
which are then rapidly displayed one-at-a-time (so the negdgpectively. Let us further assume that the overhead can be

_ __ignored if it constitutes less than or equal to 10% of the time
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TABLE |

LiST OF METHODS A. Ratio of Target to Distractor Energy

The first electrode selection method, Erg, is based on

# _ Description . Abbreviation  energy. More specifically, this approach selects the eldes
1. Ratio of target to distractor energy Erg .
2. Mutual information between data and class label MI that have the largest Valu_es of target to d'_StraCtor energy,
3. Principle feature analysis PFA where the energy of each is found by averaging over images
4. Forward selection . . FS and time. The Erg performance metric for thé electrode
5.  Sequential forward floating selection SFFS . .
is given by,
1 MT N T 2
] ) ) J. — NMT Zm:l Zn:l(xk,m,n) (1)
we expect a relatively small improvement if we change the k=" MP <N (P )2’
number of electrodes from 64 to 128. The final number of NMP Lum=1 Lun=11"k,m.n

electrodes used in an EEG-based system must representitieren = 1 corresponds to the first sample in the temporal

balance between the opposing forces of temporal efficieneyindow, IV is the total number of samples in the temporal

and detection performance. window, andM7™, MP are the total number of target and
In this paper, we assume that the optimal number dfistractor images, respectively.

electrodes is 12 and our goal is to find the optimal location i

for these 12 electrodes. In an attempt to find the 12 bebt Mutual Information

locations, we apply 5 different electrode selection meshod The second electrode selection method, MI, is based on

to 5 different datasets, each of which was collected usingutual information. More specifically, this approach stdec

either 32 or 64 electrodes. the electrodes that have the maximum mutual information

between the data and the class label. This approach involves

12 iterations. In each iteration, one previously-unseléct

electrode is added to the set of selected electrdddshich

is initialized to (). Hence, the cardinality ofC increases

one each iteration and once an electrode is added to

it cannot be removed. The mutual information between

data and the class label is given Btxcxc.m 1.5, Cim ),

erexyex,m,1:n denotes theéV|KC| samples of the temporal

Il. ELECTRODE SELECTION METHODS

We can consider the temporal signal produced at a giv
electrode (in response to a single image) as a single featu;g
Hence, we can use any feature selection algorithm to sel
electrodes. The selection methods we use, which are list
in Table |, are meant to be a representative set of the v }ndow associated with image and the electrodes ik
arhray of mﬁtthdS tTa; havehbeen described in th; Iiter:aturﬁq is the cardinality offC, C,, is the class label of ima,ge
The 5 methods include 3 that are generative and 2 that are . '
discriminative, which means that agclassifier is not requirem’ Cm € {T, D}, T'is the class label used for targets, and

D is the class label used for distractors. We approximate the

for the optimization of the former and is required for themutual information by expressing it as the Renyi marginal

latter. The Erg, MI, and PFA methods are generative and tt?e%tropy minus the Renyi conditional entropy, as described i

FS and SFFS m_etho_ds are d|s_c_r|m|nat|ve. . a previous publication [5]. Hence, in each iteration we can
Feature selection is a specific type of feature redUCt'oréxpress the MI performance metric for sétas
The most common feature reduction methods include prin- '

ciple components analysis (PCA) and linear discriminant Je = Ha(Tkex,m,1:n) — Ha(Therx m,1:8|Cm)  (2)

analysis (LDA). We do not include either of these 2 methods

because they, as do many other feature reduction methoW{,er? HQ(th)’ tWE'Ch. repFr)esents Rznyls (_qu;]adratlc entr:opy d
learn a linear transformation from the original set of featu of z, 1S estimated using Farzen windows. he approach use

to the set of lower-dimensional output features. In othel?ere was obtained by taking the previously-published featu

words, they require access to the full set of original feaggdEgteignfg:ihigr[eis]sz?:(:g:;ki[g? modifications so that it can

tures, whereas our goal is to reduce the number of featur
(electrodes) that must be collected. C. Principle Feature Analysis

In the paragraphs that follow, we describe the 5 methods The third electrode selection method, PFA, is based on

for selecting electrodes. In this discussion, we us8, ,, tO a modification of PCA published by Lu et al. [6]. More

denote the EEG data collected at electrégdémagem, and o . .
. ) . : S\Becn‘lcally, this approach forms a matrix whose columns
timen, where each image has an associated temporal windg

(e.g., the temporal window might extend from 100 ms to 508onsist of the dominant eigenvectors of the PCA solution,

. : ) . Clusters the rows using K-means, finds for each cluster the
ms after the onset of its associated image). In addition, we ] . .

T D index of the row that is closest to its corresponding mean,
usez; ,, , andz;’, . to denote the data that correspond to 4

! . . .~ and returns the set of indices (one for each cluster). The set
target image and a distractor (non-target) image, respbygti - .
oS . f returned indices represents the electrodes that, aogprd
whereas the lack of a superscript indicates that either we do .
; . : : 0 PFA, should be kept. The PFA performance metric for set
not know or do not care if the given image is a target or

distractor. % is given by,

JIC = fK%eans([ql qz - fhz]) (3)



where fx_mcans(Q) denotes that K-means is applied to theelectrodes. The electrode locations used in all 5 datasets a
rows of matrixQ andg; represents thé” dominant eigen- listed in Table Il (we discard the 32 extra electrodes from
vector (the eigenvector having thé largest eigenvalue). each of the 64-electrode datasets). The locations are given

There have been other attempts to modify PCA so thapherical coordinates. The first column represents thesdsgr
it can be used to select features. These methods commoolyinclination from Cz (where positive values correspond to
select features by finding the index of each dominant eigeithe right hemisphere) and the second column represents the
vector that has the maximum magnitude. However, this typgegrees of azimuth (from T7 for the left hemisphere and
of approach can lead to highly-correlated output featuses,from T8 for the right hemisphere, positive values correshon
problem which is avoided by PFA. to anti-clockwise rotations). The pre-processing consist
D. Forward Sdection ﬁltering_ the data using a_sixth-order Butterworth band pass

filter with cutoff frequencies of 1 and 40 Hz.

The fourth electrode selection method, FS, is a greedy To compare the methods we do the following. First, we
method that selects the electrodes that have the maximyid, for each electrode selection method, the optimal set of
classification accuracy. As with M, this approach involves 7 electrodes for each subject of each of the first 4 datasets
12 iterations. In each iteration, one previously-unseléct (producing a total of6 + 2 + 10 + 10 = 28 results per
electrode is added to the set of selected eleCtrddQWhiCh method) Second’ we combine the 28 results in order to
is initialized tO@) Unlike MI, the selection in each iteration produce a Sing|e 0pt|ma| set, which we refer to as the overall
of FS is based on the classification accuracy of a Bayes-MOgptimal set, of 12 electrodes per electrode selection ndetho
classifier Using 10-fold cross validation. The classifmati (the process of Combining results across Subjects/dat&et
accuracy is measured by estimating the receiver operatiggscussed below). Third, we test each solution using the fift

characteristic (ROC) curve and finding the area under thigataset (where we use a Bayes-MOG classifier and 10-fold
curve (AUC). In each iteration, the FS performance metrigross validation).

is given by, As stated above, separate performance metric results are
L obtained for each subject of each dataset. For the Erg

Ji = 0 ZfAUC (fBayes—moG(Trex mem1:n, Cmer))  Method, it is trivial to combine these results across migitip
i=1 subjects/datasets since the performance metric is cochpute

) S (4) for each electrode separately. For the other 4 methods, on
where 10 is the number of cross validation Setsyhe other hand, the performance metric is only computed for

fBayes-m0G (Trex,mem,1:n; Cmen;)  denotes that the geis of electrodes. The set of optimal electrodes is expecte
Bayes-MOG classifier is trained on the EEG data correspong; differ, if only slightly, from one subject/dataset to thext

ing to the images in set; using the data from electrodes in 54 it is not feasible to compute the performance metric for
K, fBayes-moc() returns the posterior probability that eachy hossible combinations. Hence, to combine results acros
of the images in the disjoint test set (all s.t.m & Mi) g pjects/datasets for MI, PFA, FS, and SFFS, we measure

contains a target, anflyyc() computes the AUC. (for each method separately) the percentage of time each
E. Sequential Forward Floating Selection electrode is included in one of the 28 optimal sets.
The fifth electrode selection method, SFFS, selects the
electrodes that have the maximum classification accurgdcy [7 1 ,
Like both Ml and FS, this is an interative method. However, Best 12
unlike Ml and FS, at each iteration SFFS can either ad
or remove electrodes to the existing set/K, and SFFS O 0.9t I\ 1
, e \ : ) oD e N
iterates until it reaches a local optimum. As is the case fo < T
FS, the selection in each iteration is based on the AUC of ¢ l
Bayes-MOG classifier using 10-fold cross validation. Infeac 5 0-8f ]
. ; o O
iteration, the SFFS performance metric is given by, 5
1 10 -8 0.7 i
5 o.
J = 0 ; fave (fBayes—voc (Trex,mem,1:N s Cmer)) <
©) < g ]
which is identical to (4) since the difference between the .
methods is only howC is updated in each iteration.
0.5

1. COMPARISON

The 5 feature selection methods are compared using -
different datasets, which are b_nefly described in Table “Fig. 1. AUC for all 5 electrode selection methods for 1, 3, 1ad &2
All 5 datasets were collected using an EEG system manufagacirodes.
tured by Biosemi (Amsterdam, Netherlands) and they were
collected at a sample rate of 256 Hz using either 32 or 64

= 2

Erg
PFA}
SFFS



TABLE I

LIST OF DATASETS

TABLE IV
LIST OF12 OPTIMAL ELECTRODES FORSFFS

Dataset Subjects Image Duration(s) in (ms) Target Masks Electrode Name % Optimal Electrode Name % Optimal
1. 6 POL No 15 o1 0.56 16 Oz 0.47
2. 2 60, 100 SAM sites No 11 P7 0.55 30 Fp2 0.47
3. 10 50, 100, 150, 200 SAM sites  Yes 12 P3 0.51 18 PO4 0.45
4, 10 50, 100, 150, 200 SAM sites  Yes 1 Fp1l 0.50 17 02 0.44
5. 3 100, 150 SAM sites  No 32 Cz 0.49 20 P8 0.44
14 PO3 0.48 3 F7 0.42
TABLE IIl
LIST OFELECTRODES
_ . Fig. 2 shows a scalp plot corresponding to the SFFS
Electrode Name Location Electrode Name _Location method. Larger values (lighter shades of gray) indicaté tha
1 Fpl 92 -72 17. 02 92 12 . L . :
> AE3 74 -65 18. poa 74 -e5 the electrode in question is considered more important. To
3 F7  -92 -36 19. P4 60 -51 improve visualization, we normalized the results in thisifey
4. Fs 60 51 20. P8 92 -36 50 that they span the range of 0 to 1. Notice that the results
5. FC1 -32 -45 21. crPe 72 21 :
6 FC5 .72 21 59 cp2 132 .45 are spatially smooth even though we made no attempt to en-
7 T7 92 0 23. c4 46 0 force spatial smoothness. Table IV shows the overall-cgtim
8 c3 46 O 24. T8 92 0 getof 12 electrodes for the SFFS method. Also shown in this
9. CP1 -32 45 25. FC6 72 21 . .
10. cps 72 21 26. Fc2 32 45 table are the percentage of times each of the 12 appeared in
11. P7  -92 36 27. F4 60 51 the 28 optimal solutions corresponding to all combinatiohs
12. Ps  -60 51 28. F8 92 36 gybjects/datasets. For sake of comparison, the worstatiect
13. Pz 46 -90 29. AF4 74 65 ) . X
14, PO3 74 65 20. Fp2 92 72 appearsin 15% of the 28 optimal solutions.
15, oL 92 72 31. Fz 46 90
16. oz 92 -90 32 cz 0 0O V. DISCUSSION
The Erg method is neither discriminative (whereas the
FS and SFFS methods are) nor does it take into account
IV. RESULTS

what electrodes were selected previously (whereas aller oth

Fig. 1 shows the AUC (averaged over 10 cross validatiofethods do, albeit in a greedy fashion). Nevertheless, it
sets and the 3 subjects of the fifth dataset) for the overalferforms nearly as well as SFFS. _
optimal set of 12 electrodes for each method. The error The results in Fig. 1 indicate that it may be possible to
bars indicate the minimum and maximum values (over theeduce the number of electrodes even further without a large
3 subjects). The dashed line in this figure is the mean AU@SS in detection performance. However, keep in mind that it
when all 32 electrodes are used. For sake of comparisdfi, "0t uncommon for one or more electrodes to be dropped
we also include results for the overall-optimal set of 1 and §uring a recording session (an electrode is “dropped” when
electrodes. All 5 methods perform nearly the same when ealli impedance becomes unacceptably high, which renders
uses its overall-optimal set of 12 electrodes. If we considdn® associated signal unusable). Using a larger number of
the performance of 1, 3, and 12-electrode solutions theﬁ!ectrodes provides robustness against dropped elestrode

for our data, the SFFS and Erg methods perform noticeably
better than the MI and FS methods and much better than th[?

PFA method.

0.75

0.25

Fig. 2. Scalp plot where larger values correspond to inee#®sportance.
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