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Abstract— In our application, the goal is to search through a
large image to find all instances of a pre-specified, high-valued
target. One approach taken to increase the throughput of this
image search task is to: chop the large image into numerous
small images, display them to a user at high rates one-at-a-
time, and then search the simultaneously-recorded EEG data
for neural activity that signifies that the user detected an
instance of the target. The temporal efficiency of this EEG-
based system is reduced by the overhead, which increases as
the number of electrodes increases. Hence, we wish to find a
minimal set of electrodes that ideally maintains the detection
performance. In order to inform the design of future EEG-
based image search systems, in this paper we find the 12
out of 32/64 most important electrodes for detection using 5
different feature selection methods. They optimal set includes
all 5 occipital and the 2 most frontal electrodes.

I. INTRODUCTION

Imagine that you wish to find, as quickly as possible, all
instances of a high-valued target in a large image. The first
approach is to load the image onto a screen and then have a
human pan around and zoom in and out of the image. A sec-
ond approach is to use a computer algorithm to automatically
search for targets in the image. The former is problematic
because it is relatively slow. The latter is problematic because
the detection performance of automatic search algorithms
(with the constraint that there are either no or few false
positives) is oftentimes relatively low. Fortunately, a third
approach has recently become a reality [1].

The third approach for searching images is an EEG-
based system that incorporates a human and a computer
algorithm. In this approach, the human detects targets and
the computer algorithm detects preciselywhen the human
detects targets. As it turns out, humans are very good at
detecting the presence of a target within an image even if
they view the image for as little as 50 or 100 ms. Based on
this fact, the images in an EEG-based system are chopped
into smaller images (so the need for zooming is removed),
which are then rapidly displayed one-at-a-time (so the need
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for panning is removed) on a screen directly in front of the
(human) user. This image presentation paradigm is known as
rapid serial visual presentation (RSVP). If we stopped here,
the EEG-based system would encounter a problem. Even
though humans can detect targets shown for a fraction of
a second, we are not very good at signifying precisely when
we detect targets, which becomes a problem as we increase
the rate at which images are shown. More specifically, the
standard deviation of the time between image onset and the
behavioral response that signifies detection (e.g., a button
press) can be larger than the image duration. This is where
the computer algorithm comes in. Even though computer
algorithms are not very good at detecting arbitrarily-shaped
targets (e.g., in images), they do a relatively good job at
detecting approximately fixed-shaped neural signatures, such
as the one that occurs in EEG data when the user detects
a target. Moreover, since this particular neural signature
(known as the P300 [2]) is approximately time-locked to
the image onset, the standard deviation of the time between
image onset and the neural signature is relatively small.

The reason one might elect to use an EEG-based system is
because it is more temporally efficient than manual (human)
search, as has been shown by several different research
groups [3],[4]. The efficiency calculation oftentimes, how-
ever, does not include the overhead associated with setup or
tear down. The setup overhead includes the time required
to prepare the scalp, place the electrodes, and check the
impedances of the electrodes. The tear down overhead in-
cludes the time required to remove and clean the electrodes
and to clean the user’s scalp. In our experience, the total
overhead associated with a 32-electrode EEG system is on
the order of 30 minutes. Let’s assume that the overhead for
a 32-electrode system is 30 minutes and that 20 minutes of
this total scales proportionally to the number of electrodes.
Based on this information, the overhead for a 12 and a 128-
electrode system is10 + 20 ∗ (12/32) ≈ 18 and 90 minutes,
respectively. Let us further assume that the overhead can be
ignored if it constitutes less than or equal to 10% of the time
spent viewing images in a single session. In this case, the
overhead is negligible only if the user views images for a
minimum of 3, 5, and 15 hours per session when using a 12,
32, and 128-electrode system, respectively.

Increasing the number of electrodes is detrimental to
the temporal efficiency of an EEG-based system, but it
can allow an increase in the detection performance. In our
experience, as the number of electrodes is increased the
performance increases at an exponentially-decreasing rate.
More specifically, we expect a relatively large improvement
if we change the number of electrodes from 1 to 3 and



TABLE I

L IST OF METHODS

# Description Abbreviation
1. Ratio of target to distractor energy Erg
2. Mutual information between data and class label MI
3. Principle feature analysis PFA
4. Forward selection FS
5. Sequential forward floating selection SFFS

we expect a relatively small improvement if we change the
number of electrodes from 64 to 128. The final number of
electrodes used in an EEG-based system must represent a
balance between the opposing forces of temporal efficiency
and detection performance.

In this paper, we assume that the optimal number of
electrodes is 12 and our goal is to find the optimal location
for these 12 electrodes. In an attempt to find the 12 best
locations, we apply 5 different electrode selection methods
to 5 different datasets, each of which was collected using
either 32 or 64 electrodes.

II. ELECTRODE SELECTION METHODS

We can consider the temporal signal produced at a given
electrode (in response to a single image) as a single feature.
Hence, we can use any feature selection algorithm to select
electrodes. The selection methods we use, which are listed
in Table I, are meant to be a representative set of the vast
array of methods that have been described in the literature.
The 5 methods include 3 that are generative and 2 that are
discriminative, which means that a classifier is not required
for the optimization of the former and is required for the
latter. The Erg, MI, and PFA methods are generative and the
FS and SFFS methods are discriminative.

Feature selection is a specific type of feature reduction.
The most common feature reduction methods include prin-
ciple components analysis (PCA) and linear discriminant
analysis (LDA). We do not include either of these 2 methods
because they, as do many other feature reduction methods,
learn a linear transformation from the original set of features
to the set of lower-dimensional output features. In other
words, they require access to the full set of original fea-
tures, whereas our goal is to reduce the number of features
(electrodes) that must be collected.

In the paragraphs that follow, we describe the 5 methods
for selecting electrodes. In this discussion, we usexk,m,n to
denote the EEG data collected at electrodek, imagem, and
timen, where each image has an associated temporal window
(e.g., the temporal window might extend from 100 ms to 500
ms after the onset of its associated image). In addition, we
usexT

k,m,n andxD
k,m,n to denote the data that correspond to a

target image and a distractor (non-target) image, respectively,
whereas the lack of a superscript indicates that either we do
not know or do not care if the given image is a target or a
distractor.

A. Ratio of Target to Distractor Energy

The first electrode selection method, Erg, is based on
energy. More specifically, this approach selects the electrodes
that have the largest values of target to distractor energy,
where the energy of each is found by averaging over images
and time. The Erg performance metric for thekth electrode
is given by,
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wheren = 1 corresponds to the first sample in the temporal
window, N is the total number of samples in the temporal
window, andMT , MD are the total number of target and
distractor images, respectively.

B. Mutual Information

The second electrode selection method, MI, is based on
mutual information. More specifically, this approach selects
the electrodes that have the maximum mutual information
between the data and the class label. This approach involves
12 iterations. In each iteration, one previously-unselected
electrode is added to the set of selected electrodes,K (which
is initialized to ∅). Hence, the cardinality ofK increases
by one each iteration and once an electrode is added to
K, it cannot be removed. The mutual information between
the data and the class label is given byI(xk∈K,m,1:N , Cm),
wherexk∈K,m,1:N denotes theN |K| samples of the temporal
window associated with imagem and the electrodes inK,
|K| is the cardinality ofK, Cm is the class label of image
m, Cm ∈ {T,D}, T is the class label used for targets, and
D is the class label used for distractors. We approximate the
mutual information by expressing it as the Renyi marginal
entropy minus the Renyi conditional entropy, as described in
a previous publication [5]. Hence, in each iteration we can
express the MI performance metric for setK as,

JK = H2(xk∈K,m,1:N ) − H2(xk∈K,m,1:N |Cm) (2)

where H2(x), which represents Renyi’s quadratic entropy
of x, is estimated using Parzen windows. The approach used
here was obtained by taking the previously-published feature
reduction method [5] and making modifications so that it can
be used for feature selection [5].

C. Principle Feature Analysis

The third electrode selection method, PFA, is based on
a modification of PCA published by Lu et al. [6]. More
specifically, this approach forms a matrix whose columns
consist of the dominant eigenvectors of the PCA solution,
clusters the rows using K-means, finds for each cluster the
index of the row that is closest to its corresponding mean,
and returns the set of indices (one for each cluster). The set
of returned indices represents the electrodes that, according
to PFA, should be kept. The PFA performance metric for set
K is given by,

JK = fK−means([q1 q2 · · · q12]) (3)



wherefK−means(Q) denotes that K-means is applied to the
rows of matrixQ andqi represents theith dominant eigen-
vector (the eigenvector having theith largest eigenvalue).

There have been other attempts to modify PCA so that
it can be used to select features. These methods commonly
select features by finding the index of each dominant eigen-
vector that has the maximum magnitude. However, this type
of approach can lead to highly-correlated output features,a
problem which is avoided by PFA.

D. Forward Selection

The fourth electrode selection method, FS, is a greedy
method that selects the electrodes that have the maximum
classification accuracy. As with MI, this approach involves
12 iterations. In each iteration, one previously-unselected
electrode is added to the set of selected electrodes,K (which
is initialized to∅). Unlike MI, the selection in each iteration
of FS is based on the classification accuracy of a Bayes-MOG
classifier using 10-fold cross validation. The classification
accuracy is measured by estimating the receiver operating
characteristic (ROC) curve and finding the area under this
curve (AUC). In each iteration, the FS performance metric
is given by,

JK =
1

10

10∑

i=1

fAUC (fBayes−MOG(xk∈K,m∈M,1:N , Cm∈M))

(4)
where 10 is the number of cross validation sets,
fBayes−MOG(xk∈K,m∈M,1:N , Cm∈Mi

) denotes that the
Bayes-MOG classifier is trained on the EEG data correspond-
ing to the images in setMi using the data from electrodes in
K, fBayes−MOG() returns the posterior probability that each
of the images in the disjoint test set (allm s.t. m 6∈ Mi)
contains a target, andfAUC() computes the AUC.

E. Sequential Forward Floating Selection

The fifth electrode selection method, SFFS, selects the
electrodes that have the maximum classification accuracy [7].
Like both MI and FS, this is an interative method. However,
unlike MI and FS, at each iteration SFFS can either add
or remove electrodes to the existing set,calK, and SFFS
iterates until it reaches a local optimum. As is the case for
FS, the selection in each iteration is based on the AUC of a
Bayes-MOG classifier using 10-fold cross validation. In each
iteration, the SFFS performance metric is given by,

JK =
1

10

10∑

i=1

fAUC (fBayes−MOG(xk∈K,m∈M,1:N , Cm∈M))

(5)
which is identical to (4) since the difference between the 2
methods is only howK is updated in each iteration.

III. COMPARISON

The 5 feature selection methods are compared using 5
different datasets, which are briefly described in Table II.
All 5 datasets were collected using an EEG system manufac-
tured by Biosemi (Amsterdam, Netherlands) and they were
collected at a sample rate of 256 Hz using either 32 or 64

electrodes. The electrode locations used in all 5 datasets are
listed in Table III (we discard the 32 extra electrodes from
each of the 64-electrode datasets). The locations are givenin
spherical coordinates. The first column represents the degrees
of inclination from Cz (where positive values correspond to
the right hemisphere) and the second column represents the
degrees of azimuth (from T7 for the left hemisphere and
from T8 for the right hemisphere, positive values correspond
to anti-clockwise rotations). The pre-processing consists of
filtering the data using a sixth-order Butterworth band pass
filter with cutoff frequencies of 1 and 40 Hz.

To compare the methods we do the following. First, we
find, for each electrode selection method, the optimal set of
12 electrodes for each subject of each of the first 4 datasets
(producing a total of6 + 2 + 10 + 10 = 28 results per
method). Second, we combine the 28 results in order to
produce a single optimal set, which we refer to as the overall-
optimal set, of 12 electrodes per electrode selection method
(the process of combining results across subjects/datasets is
discussed below). Third, we test each solution using the fifth
dataset (where we use a Bayes-MOG classifier and 10-fold
cross validation).

As stated above, separate performance metric results are
obtained for each subject of each dataset. For the Erg
method, it is trivial to combine these results across multiple
subjects/datasets since the performance metric is computed
for each electrode separately. For the other 4 methods, on
the other hand, the performance metric is only computed for
sets of electrodes. The set of optimal electrodes is expected
to differ, if only slightly, from one subject/dataset to thenext
and it is not feasible to compute the performance metric for
all possible combinations. Hence, to combine results across
subjects/datasets for MI, PFA, FS, and SFFS, we measure
(for each method separately) the percentage of time each
electrode is included in one of the 28 optimal sets.
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Fig. 1. AUC for all 5 electrode selection methods for 1, 3, 12, and 32
electrodes.



TABLE II

L IST OF DATASETS

Dataset Subjects Image Duration(s) in (ms) Target Masks
1. 6 300 POL No
2. 2 60, 100 SAM sites No
3. 10 50, 100, 150, 200 SAM sites Yes
4. 10 50, 100, 150, 200 SAM sites Yes
5. 3 100, 150 SAM sites No

TABLE III

L IST OF ELECTRODES

Electrode Name Location Electrode Name Location
1. Fp1 -92 -72 17. O2 92 -72
2. AF3 -74 -65 18. PO4 74 -65
3. F7 -92 -36 19. P4 60 -51
4. F3 -60 -51 20. P8 92 -36
5. FC1 -32 -45 21. CP6 72 -21
6. FC5 -72 -21 22. CP2 32 -45
7. T7 -92 0 23. C4 46 0
8. C3 -46 0 24. T8 92 0
9. CP1 -32 45 25. FC6 72 21
10. CP5 -72 21 26. FC2 32 45
11. P7 -92 36 27. F4 60 51
12. P3 -60 51 28. F8 92 36
13. Pz 46 -90 29. AF4 74 65
14. PO3 -74 65 30. Fp2 92 72
15. O1 -92 72 31. Fz 46 90
16. Oz 92 -90 32. Cz 0 0

IV. RESULTS

Fig. 1 shows the AUC (averaged over 10 cross validation
sets and the 3 subjects of the fifth dataset) for the overall-
optimal set of 12 electrodes for each method. The error
bars indicate the minimum and maximum values (over the
3 subjects). The dashed line in this figure is the mean AUC
when all 32 electrodes are used. For sake of comparison,
we also include results for the overall-optimal set of 1 and 3
electrodes. All 5 methods perform nearly the same when each
uses its overall-optimal set of 12 electrodes. If we consider
the performance of 1, 3, and 12-electrode solutions then,
for our data, the SFFS and Erg methods perform noticeably
better than the MI and FS methods and much better than the
PFA method.

Fig. 2. Scalp plot where larger values correspond to increased importance.

TABLE IV

L IST OF 12 OPTIMAL ELECTRODES FORSFFS

Electrode Name % Optimal Electrode Name % Optimal
15 O1 0.56 16 Oz 0.47
11 P7 0.55 30 Fp2 0.47
12 P3 0.51 18 PO4 0.45
1 Fp1 0.50 17 O2 0.44
32 Cz 0.49 20 P8 0.44
14 PO3 0.48 3 F7 0.42

Fig. 2 shows a scalp plot corresponding to the SFFS
method. Larger values (lighter shades of gray) indicate that
the electrode in question is considered more important. To
improve visualization, we normalized the results in this figure
so that they span the range of 0 to 1. Notice that the results
are spatially smooth even though we made no attempt to en-
force spatial smoothness. Table IV shows the overall-optimal
set of 12 electrodes for the SFFS method. Also shown in this
table are the percentage of times each of the 12 appeared in
the 28 optimal solutions corresponding to all combinationsof
subjects/datasets. For sake of comparison, the worst electrode
appears in 15% of the 28 optimal solutions.

V. DISCUSSION

The Erg method is neither discriminative (whereas the
FS and SFFS methods are) nor does it take into account
what electrodes were selected previously (whereas all 4 other
methods do, albeit in a greedy fashion). Nevertheless, it
performs nearly as well as SFFS.

The results in Fig. 1 indicate that it may be possible to
reduce the number of electrodes even further without a large
loss in detection performance. However, keep in mind that it
is not uncommon for one or more electrodes to be dropped
during a recording session (an electrode is “dropped” when
its impedance becomes unacceptably high, which renders
the associated signal unusable). Using a larger number of
electrodes provides robustness against dropped electrodes.
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