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Abstract— Tracking of lung tumors is imperative for im-
proved radiotherapy treatment. However, the motion of the
thoracic organs makes it a complicated task. 4D CT images
acquired prior to treatment provide valuable information re-
garding the motion of organs and tumor, since it is manually
annotated. In order to track tumors using treatment-day X-
ray images (kV images), we need to find the correspondence
with CT images so that projection of tumor region of interest
will provide a good estimate about the position of the tumor
on the X-ray image. In this study, we propose a method to
estimate the alignment and respiration phase corresponding
to X-ray images using 4D CT data. Our approach generates
Digitally Reconstructed Radiographs (DRRs) using bilateral
filter smoothing and computes rigid registration with kV images
since the position and orientation of patient might differ
between CT and treatment-day image acquisition processes.
Instead of using landmark points, our registration method
makes use of Kernel Density Estimation over the edges that
are not affected much by respiration. To estimate the phase
of X-ray, we apply template matching techniques between the
lung regions of X-ray and registered DRRs. Our approach
gives accurate results for rigid registration and provides a
starting point to track tumors using the X-ray images during
the treatment.

I. INTRODUCTION

Radiotherapy is an effective treatment technique for lung
cancer. However, the movement of lung tumors during nor-
mal respiration makes it difficult to accurately irradiate the
tumor. Precise lung tumor localization is vital to efficiently
treating the tumor and avoiding unnecessary radiation expo-
sure of normal tissues. Estimating the motion model of the
tumor may lead to improved treatment planning and dose
calculation throughout the therapy. 4D Computed Tomogra-
phy (CT) images taken prior to treatment (to develop the
patient’s treatment plan) provide valuable information about
the movement of the thoracic organs and the tumor. For each
radiotherapy treatment session, a set of kilovoltage X-ray im-
ages (kV images) are acquired to aid in the alignment of the
treatment target relative to the radiation beam. However, the
position and orientation of the patient might differ between
CT and treatment-day image acquisition processes. Further,
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kV images are typically acquired at an arbitrary phase of
the respiration cycle. The problem is further compounded by
the fact that soft-tissue targets (e.g., tumor) are not readily
identified on kV images, thus making it difficult for the
operator to determine the optimal patient alignment. In order
to accurately deliver the planned radiation treatment, a spatial
match between the alignment of soft-tissue targets between
the CT and kV image must be achieved. In this study, we
propose a method to estimate the respiration phase of a given
treatment X-ray image, which yields an estimate of tumor
position by taking the projection of the corresponding 4D
CT phase.

Respiratory gating technique is sometimes used to over-
come the affect of tumor motion. Cui et al. [2] proposed
a correlation based method for gating in lung cancer radio-
therapy. They compare various template matching schemes,
considering single and multiple templates and template clus-
tering. In another study [3] template matching over a search
region was used to track the tumor over X-ray images.
They define the position of the tumor as a weighted sum
of tumor locations in the reference templates, where weights
are determined based on correlation scores. Rottman et al.
[6] presented a multi-region tracking algorithm to track lung
tumors over CT projections and in-treatment portal image
movies. They used correlation as a similarity measure to find
the most likely position of the tumor among the candidate
landmark points which are generated by choosing regions of
maximal texture.

Zeng et al. [8] proposed a non-rigid motion estimation
method to register a conventional breath hold X-ray with
the projection views acquired from a Cone Beam CT. They
deform the projection of the reference frame to register it
with each frame of CBCT sequence, where the reference is
a conventional CT taken during the breath hold condition.
Chen et al. [1] presented a 3D-2D registration method by
searching over possible rotation and translations and using
correlation between X-ray and DRR strips as a similarity
measure. The method involves constructing the DRR par-
tially to create a Digitally Reconstructed Radiograph (DRR)
strip corresponding to the boundaries of the skull.

The contributions of this paper are: (i) a bilateral filtering
based interpolation technique for generating DRRs that can
filter out undesired tissue intensities and maintain edges of
internal lung structures, (ii) a multi-DRR to X-ray edge-
distribution registration algorithm based on kernel density
estimation, and (iii) a region-of-interest-based correlation



coefficient score technique that yields high confidence res-
piration phase estimates for X-ray images given 4D CT
projections in the same plane. The goal of this study is to
investigate the feasibility of automatic transfer of regions-of-
interest from 4D CT images to treatment-day kV images to
identify soft-tissue target alignment accurately prior radiation
delivery.

II. METHOD

4D CT data contains the 3D CT images of a patient for
each phase of the respiration cycle. The physicians label
this data to make an initial treatment plan, hence we have
information regarding the position and structure of the organs
and tumors for the CT images. Once, we affiliate the X-ray
image with one of the CT images, we are able to make an
estimation about the position of the tumor by taking the
projection of the Region of Interest (ROI) of the tumor.
In order to find the relation between 4D CT data and X-
ray image, we first generate DRRs in the X-ray plane by
calculating the projection of CTs in the beam’s eye view.
Next, we achieve rigid registration between DRRs and X-
ray, since patient position and orientation may be different
in CT and X-ray acquisition sessions. Lastly, we relate the
X-ray with one of the CTs and answer the question ’which
respiration phase of the 4D CT, the X-ray image corresponds
to’. This enables us to determine the most likely position of
the tumor on the X-ray by getting the projection of the tumor
region from the corresponding CT phase.

A. Generation of DRRs

Generation of DRRs involves the simulation of the X-
ray image given phase 3D CT data. In order to construct
the DRR, rays are passed through the CT originating from
the position of the X-ray source. Intensity integration over
the simulated rays will give us the intensity value at the
position which the ray falls on the simulated receiver. Hence,
interpolation techniques are necessary to assign CT intensity
values to the points on the simulated rays. One basic method
is to use zero-order hold. Basically, this technique assigns
the intensity value of the nearest voxel to point. Assume q
is an arbitrary point on the ray and v is the closest voxel to
point q. Then, the intensity value of the point q is assigned
as I(q) = I(v) where I(x) represents the intensity value of
point x. Note that Euclidean distance is used and the position
of the voxel is assumed to be the center.

A better technique for interpolation involves bilateral fil-
tering [7]. This method assigns the weighted sum of intensity
values of the nearest K voxels to the point. Given d(p,q)
representing the distance between points p and q, and Nq

as the set of nearest K voxels to the point q, the intensity
value at point q is

I(q) =
∑

p∈Nq

wpI(p) (1)

where

w̃p = exp
−1

2
(
d(p,q)

σ
)2 (2)

wp =
w̃p∑

r∈Nq
w̃r

(3)

In comparison to the zero-order hold method, this tech-
nique might give smoother DRRs, since it weights the inten-
sity values of the neighbors with an exponential function 1.
We can extend the weight term by taking the diversity among
intensity values of the neighboring voxels into consideration.
In order to increase the impact of intensity values that are
closer to the color of the nearest voxel, we extend the weight
term in the following way

wp ∝ w(p)
p w(c)

p (4)

w(p)
p = exp(−d2(p,q)/(2σ2

p)) (5)

w(c)
p = exp(−d2(I(p), I(v))/(2σ2

c )) (6)

where the final weight wp is normalized to add to unity
over the contributing neighbor voxels, and d(p,q) and
d(I(p), I(q)) are the distance between coordinates and
intensities respectively. The latter version of the weight
improves the effect of nearest intensities that resemble to the
nearest voxel of the current point to be interpolated, which
is expected to be closer to the true color of the point. This
allows the DRRs to be generated using an edge preserving
fashion.

B. Rigid Registration

After the construction of DRRs we have the projection
of CTs corresponding to phases of a respiration cycle. As-
suming that the patient does not move during CT acquisition
process 2, we are interested in finding the rigid registration
between the DRRs and the X-ray image. Hence, we need
landmark points that are not affected by respiration. How-
ever, accurate selection of single points (such as corners or
intersections of edges) is hard for an operator/technician due
to the high levels of noise on the images (especially in the
kV X-ray images). Instead, we prefer to utilizing highlighted
edges that are stationary in the DRRs across respiratory
phases, and by utilizing kernel density estimation over the
edge pixels we are able to find the rigid transformation
between the stationary anatomy visible in the DRRs and the
X-ray images.

Consider a general weighted variable-width kernel density
estimate (KDE) obtained from samples x1,x2, . . . ,xN ∈
Rd. KDE is given as

ζ(x) =

N∑
i=1

wiGΣi(x− xi) (7)

1Note that this process, when weights of neighboring voxels are selected
by a decaying kernel by distance, essentially corresponds to kernel or spline
interpolation.

2We have verified visually that across DRRs for different phases of
respiration, the bony anatomy that does not move with respiration remain
stationary and well registered to each other. Consequently, registration
across DRRs for different phases is not required in our particular datasets -
however, the procedure described in this section can be utilized to achieve
such a registration if needed in other situations.



where wi is the weight and Σi is the variable kernel covari-
ance of the Gaussian kernel GΣi(xi) = CΣie

− 1
2xT

i Σ−1
i xi for

the ith data sample xi. Consider a function f : Rd → Rd
between the selected edges of DRRs and X-ray. A rigid
transformation can be written as y = f(x) = R(x + t)
where R is a d-by-d rotation matrix and t ∈ Rd is the
translation vector. The parameters of the rigid registration
(R, t) are selected such that the inner product between the
density functions ζ1(x) and ζ2(f(x)) is maximized, where
ζ1 and ζ2 are the KDE estimates of a single phase DRR and
X-ray respectively. Inner product between two scalar valued
functions can be written as

I(ζ1(x), ζ2(f(x))) =

∫ ∞
−∞

ζ1(x)ζ2(f(x))dx

=

∫ ∞
−∞

N1∑
i=1

wiGΣi
(x− pi)

N2∑
j=1

vjGΓj
(x− (R(qj − t))dx

=

N1∑
i=1

N2∑
j=1

wivj

∫ ∞
−∞

GΣi
(x− pi)GRTΓjR(x− (qj − t))dx

=

N1∑
i=1

N2∑
j=1

wivjGΣi+RTΓjR(pi − qj + t)

(8)

Here pi and qj represent edge sample coordinates selected
from various phases of the DRRs and the X-ray. wi and vj
are the weights 3, Σi and Γj are the variable size kernel
covariances of the the samples pi and qi respectively. In
order to find the rigid transformation parameters, we em-
ployed a direct search method [5] that is available in Matlab.
Specifically we solve argmax

R,t

∑
l I(ζDRRl

, ζX−ray).

C. Phase Estimation

Once we obtain the rigid registration between the X-ray
and the DRRs, with the observation that lung regions change
more during respiration, the similarity between lung regions
of DRRs and X-ray is used to estimate the respiratory phase
that corresponds to the particular X-ray image. We compute
the correlation coefficient (denoted by ρ) between each DRR
and X-ray over lung regions that are automatically found by
the projection of lung boundaries given for the CT.

Assume Ii is the selected image patch on the ith DRR and
T is the reference patch corresponding to the X-ray. Corre-
lation coefficient between Ii and T , ρ(Ii, T ), is computed
as

ρ(Ii, T ) =
E[Ii · T ]√

E[Ii · Ii]E[T · T ]
(9)

and E[I · J ] represents the correlation between image I and
J obtained by pixel-wise inner product.

E[I · J ] =
∑
p

I(p)J(p)− 1

N

∑
p

I(p)
∑
p

J(p) (10)

where N is the number of pixels in each patch.
The DRR corresponding to the actual phase of the X-ray is

expected to show the maximum correlation coefficient among
all available DRRs. We employ the Jackknife leave-one-out

3Selected to be equal here, but could also be adopted from the image using
an edge level estimator such as the magnitude of the intensity gradient at
this position.

mean and variance estimates [4] to obtain the expected lung-
region correlation coefficient between each DRR and X-ray
image and its variance in order to see whether the difference
between correlation values are statistically significant.

Suppose ρpi is the correlation coefficient of the X-ray and
the pth DRR computed by leaving the ith pixel out over
lung region and N is the number of pixels inside the region.
Sample average of the correlation coefficient is

ρ̂p =
1

N

N∑
i=1

ρpi (11)

Jackknife estimate of the variance is,

var(ρp) =
N − 1

N

N∑
i=1

(ρpi − ρ̂
p)2 (12)

and the unbiased Jackknife estimate of the correlation coef-
ficient is,

ρ̃p = Nρp − (N − 1)ρ̂p (13)

where ρp is the correlation coefficient computed using all
pixels.

III. EXPERIMENTS AND RESULTS
The experiments are carried out on 4D CT and X-ray

images of 2 patients in coronal view. For the construction of
DRRs, bilateral interpolation with spatial and intensity values
is used, since it gives smoother DRRs in comparison to the
zero-order hold method, while preserving edges. Bilateral
interpolation method might be computationally expensive,
as number of neighboring voxels, K, increases. Hence,
after observing some results for different values of K, we
preferred to set number of neighboring voxels to 10. In
order to enhance the contrast of images, we applied adaptive
histogram equalization as a post-processing step. Figure 1
displays the generated DRRs for one of the CTs of the
patients along with the X-ray images.

At the rigid registration process, an operator manually
selected edges from bony structures that are not affected by
breathing and therefore remain stationary across DRRs. The
rigid registration solution is computed using the edge density
correlation method described above and using edges from all
DRRs simultaneously to reduce sensitivity to manual edge
tracing errors. Figure 2 shows the selected edges on the X-
ray image and the correlation coefficient between X-ray and
one of the registered DRRs. Upon determining the optimal
rigid registration solution between the DRRs and the X-ray
using the registering technique presented above, each pixel’s
local correlation coefficient in a 15x15 region surrounding it
is computed between the DRRs and the X-ray. We observe
high correlations on the edges selected for rigid registration,
which shows the accuracy of the registration algorithm. Note
that manual selection of landmark edges is not tedious and
this process very much fits within the clinical work flow.

We compute the Jackknife estimate of correlation coeffi-
cient between the X-ray and DRRs over lung regions, which
move fast during breathing. Figure 3 shows the projection
of the lung region in the CT onto the X-ray image. The plot



Fig. 1. Generated DRRs for one of the CTs of each patient (top left and
bottom left), X-ray images (top right and bottom right)

Fig. 2. Selected edges for registration on X-ray(left), correlation values
between X-ray and one of the registered DRRs based on a 15x15 sliding
window around each pixel(right)

of Jackknife estimates of correlation coefficient for DRRs
can be seen in Figure 4. As seen in the figure, standard
deviation values are very small compared to the difference
between unbiased correlation coefficient estimates. Thus, the
peak at phase 4 provides a statistically reliable information
to estimate the phase of the X-ray. Based on the plots, one
can conclude that X-rays for both patients correspond to
phases 3, 4 and 5 of the respective treatment planning 4D
CT images.

IV. CONCLUSION

We have proposed a method to transfer regions of interest
from 4D CT images to treatment-day kV images in order
align soft tissues prior to radiation delivery. Our approach
estimated the respiration phase corresponding to a given
coronal plane X-ray taken during treatment preparation.
Given 4D CT data that is used for initial treatment planning,
the method generates DRRs using bilateral interpolation

Fig. 3. Projected lung regions for patient 1 (left) and patient 2 (right)

Fig. 4. Jackknife estimate of correlation between X-ray and each DRR
over the lung regions for patient 1 (left) and patient 2 (right). Bars represent
3 times standard deviation for each correlation coefficient. Note that phases
are indexed from 0 to 9 and phase 1 corresponds to end exhale CT for both
patients.

and computes the rigid registration between these for each
respiratory phase and the X-ray image by using kernel
density estimation over manually selected landmarks which
lay over the edges not affected from breathing. Our regis-
tration method gives accurate results in preliminary studies
shown here. Correlation coefficient between the lung regions
of X-ray and registered DRRs gives important information
regarding respiration phase.

In the future, we aim to use the estimated phase to initial-
ize the tracking of tumors in the X-ray video that is taken
on treatment day. Tracking of tumor will provide crucial in-
formation regarding its trajectory on the particular treatment
day. This will enable the physicians to observe/estimate the
motion of the tumor in real time and irradiate it efficiently.
Since our dataset consists of images from the coronal plane,
a 2D registration method was sufficient. We will extend our
registration method to find the rotation and translation of
patient in 3D so that phase estimation technique can benefit
from X-ray images in the sagittal plane as well. This will
also allow 3D tumor trajectory modeling.
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