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Abstract—We present a semi-supervised protocol for
segmentation of tumors and normal anatomy for applications in
Radiation Oncology. A primary goal in radiation therapy in
oncology is to deliver high radiation dose to the perceived tumor
while sparing the surrounding non-diseased organs.
Consequently, a critical task in the workflow of radiation
oncologists is the manual delineation of normal and diseased
structures on 3D-CT scans. In this paper, we compare the results
using a non-parametric snake technique with a gold standard
consisting of manually delineated structures. Structures include
tumors as well as normal organs including lungs, liver and
kidneys. This technique provides fast segmentation that is robust
with respect to noisy edges. In addition, this algorithm does not
require the user to optimize a variety of parameters unlike many
segmentation algorithms. We provide results that show the
improvement in overlap between the manually delineated gold
standard and the output of the segmentation algorithms using the
user input.

I. INTRODUCTION

ANCER is the second most frequent cause of death in the

United States. Radiation therapy is one of the most
effective treatments for many types of cancer, and is used in
the care of about half of all people being treated for cancer.
Ionizing radiation can be used to kill cancer cells and shrink
tumors, thereby either treating the cancer in curative intent or
proving relief of symptoms (palliation) [1]. A primary goal in
radiation therapy is to deliver high radiation doses to the
perceived tumor while sparing the surrounding healthy tissues.
Recent technological advances such as Intensity-modulated
Radiation Therapy (IMRT) [1, 2] or 3-dimensional conformal
radiation therapy allow radiation oncologists to deliver high
doses of radiation to the tumor while minimizing the dose
delivered to nearby areas, resulting in fewer side effects and
reducing toxicity.

A critical aspect of the treatment is the planning stage where
the radiation oncologist determines the area to be treated and
the dose profile that will be delivered. For radiation therapy
planning, multi-slice, three-dimensional computed tomography
(CT) scans are obtained from the patient. Typically, the
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radiation oncologist manually delineates (or “contours™) the
tumor and the neighboring organs on each slice of the CT
volume using a mouse or other pointing device.

Although there are many algorithms available for automatic
and semi-automatic contouring, radiation oncologists often
adjust the contours on the slices using their knowledge of
general anatomy, prior knowledge about the particular patient
and data from other sources like Positron Emission
Tomography (PET) scans. In addition, when tumors lie on the
walls of organs or are present in organs with similar density,
the edge of the object can be occluded or hard to discern.
These situations can degrade the performance of algorithms
that rely on clear boundaries or sharp differences in pixel
intensity.

Segmentation, especially for medical applications, is an
active area of research. Common algorithms include those
based on clustering, histograms, edge detection, region
growing, and level sets. Gradient vector flow (GVF) snakes [3]
are a popular class of algorithms in the active contours
(snakes) [4] category. The segmentation problem for snakes is
traditionally defined as a parametric energy minimization
problem. Traditional snakes are sensitive to noise and capture
range issues. Their initialization must be close to boundary
desired and their convergence can depend on the initial
position. GVF snakes solve many of these issues and are good
at detecting shapes with boundary concavities. However, they
are sensitive to the parameters of the algorithm and may need
to be tuned for each application. They can also be quite slow
as extracting the GVF field can be computationally expensive.
Both these issues can be problematic for medical applications
where the clinicians do not wish to tune algorithmic
parameters and real-time segmentation is required. In this
paper, we apply a fast, robust algorithm for segmentation in
multi-slice volumes that does not require many parameters to
be optimized. The segmentation is performed in near real-time.
The algorithm can take into account the user’s input in one or
more slices and propagate that to other slices. Non-parametric
snakes [5] are used as the basis for this procedure. This semi-
supervised method incorporates the knowledge from the
clinician along with the features of the image to provide a
robust algorithm that can deal with noisy or somewhat
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occluded edges.

II. IMAGE SEGMENTATION USING NO'{-?PARAMETRIC SNAKES

A. Proposed protocol

We envision the following flow for the semi-supervised
segmentation in clinical practice.
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B. Non-parametric Snakes

Non-parametric snakes are a recently proposed [S] kernel
density estimation (KDE) based segmentation technique that is
fast and relatively robust to noise. Let I be the CT image
volume in 3 dimensions such that [x,y,z]" is the location of a
pixel in space and /(x,y,z) is the intensity of the image at that
location. We consider a given slice, S, chosen by the user. We
want to segment the object in this slice contained in the image
I(x,y). In the implementation used in this paper, we use a
binary edge detector (Canny) with thresholds adjusted for the
organ of interest. Let E(s) be the edge image, where s is the
vector of pixel coordinates x, y, and z.

EG) = {E(s) =1 sisan efige pixel
E(s)=0 otherwise

In the general case, as described in [5], the KDE of the edge
map is constructed using the edge image E(s) via a summation
over the kernel functions centered at every point in the image.

1 N
D E(s)K; (s-s,)
edge i=1
where Negg is the number of pixels and

p edge (s) =

N
Nedge = ZE(S,)
i=1

However, in this application, we used a fixed-width
isotropic Gaussian kernel. We used the fixed-point algorithm
as described in [5] to achieve fast convergence. Specifically:

N
ZE(si)ngl (s—s;)s;
S« i=11v =m(s)
ZIE(si)Kazl(s—si)
i

This is similar to the mean shift described in [6] and can
avoid spurious maxima by a suitable choice of kernel size. For
continuous edgemaps, the algorithm becomes mean shift with
a weighted KDE model. Consequently, the algorithm primarily
seeks to converge to local maxima in the smoothed edge
distribution. Because the convergence speed of each
eigenmode in the vicinity of a local maximum is proportional
to the eigenvalue magnitude, if a ridge exists, the algorithm
practically converges to the ridge first and then climbs up the
ridge towards the peak. Another consequence of this behavior
is, as seen in some of the experiments in the next section, the
snake may not progress into low edge density regions along
the object boundary and also into boundary concavities
depending on the kernel size and the distance of the
initialization curve from the ridges. This drawback is
addressed by generating additional sample points using the
principal surface approach described below in section E.

C. User Intervention:

The segmentation on a given slice is reviewed and corrected
by the clinician. The algorithm allows the combination of
output of the edge detector and the user-defined segmentation
to create a new KDE for that slice. The respective weights are
user defined variables. This enhances the segmentation where
the edges are not discernable and where the clinician has
indicated the existence of an edge based on prior knowledge
from a different information source like a different imaging
modality or anatomical knowledge.

The new edge used for the non-parametric snake is a
weighted sum of these two edges, where the weights are user
determined as:

E new (S) = wedgeE edge (S) + W B, (S)

user~— user

wherew,, ., +w,,. =1

ige user

Eege are the edge pixels resulting from the edge detector
(Canny, in this case) and E,. be the user determined edge,
Wegge and Wy are the respective weights. Note that the user
does not need to specify an edge for the entire region of
interest but can chose to provide edge information in the case
of occluded or obscure edges.

D. Propagation

The final segmentation on a given slice either as
automatically detected or in a semi-supervised fashion in
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conjunction with the clinician, is propagated to slices above
and below that slice. This is used in two ways. Not
surprisingly, it is used as the initialization for the slices
immediately adjacent. However, it is also used for the KDE for
the next slice. The KDE on a given slice is the weighted sums
of the edges detected on that slice and the contours propagated
from neighboring slices, with lower weights for the slices that
are farther away along z orthogonal to the slice under
consideration. This incorporates the users’ edges without
requiring user input on all slices. By contouring a few selected
slices in a volume, a three dimensional object can be
segmented in a robust and fast manner using non-parametric
snakes.

N
E, thisSlice (S) = M)thisEdgeE thisEdge (S) + Z wi E i (S)
i=—N
where 2N is the number of neighboring slices that are used and

wedge+2fwi =1

E. Principal Curves

We expanded used the principal curves approach as
described in [7] to add points in sparse areas resulting from the
output of the non-parametric snakes. We used a Gaussian
kernel for the KDE using the updated edge map. This updated
edge map is the weighted sum of the output of the edge
detector, the user input (if applicable) and the contour from
neighboring slices. For each nearest neighbor pair of points in
the nonparametric snake, the midpoint s, of the line segment
connecting each pair is taken as an initial point. Let v, be the
major eigenvector of the local covariance of p,.(s) at s, and
g, be the gradient at this point. Let m(s) be the mean-shift
update direction as defined earlier. Starting from sy, we iterate
the following:

s « sign(v{ go)vovom(s)

This iteration has been shown to converge to the ridge of the
edge distribution, therefore is an interpolating sample from the
desired boundary. The process is repeated until a satisfactory
number of samples are obtained from the boundary. This may
be determined, for instance by considering the distribution of
nearest neighbor distances between the samples in the
nonparametric snake.

III. RESULTS

A. Automatic Segmentation on a Slice

Fig. 1 shows a section of a lung tumor that has been
contoured by a radiation oncologist. The output of the Canny
edge detector [8], using the appropriate threshold for lung
tumors, can be seen in Fig. 2. A crude initialization of the
nonparametric snake is also displayed. The probability density
estimate based on this edge map is shown in Fig. 3. In just 2
iterations, the non-parametric snake has segmented the tumor
as seen in Fig. 4. However, as can be observed, the user has
chosen a larger area for the segmentation, albeit by one to two
pixels.

Fig. 1. Lung tumor contoured by a radiation oncologist (in green),
considered the gold standard.

10 20 ED 40 50 60 70

Fig. 2. Canny edge detection (in blue) and initialization (in red)

Fig. 3 Probability density estimate of the edge map of the lung
tumor in Fig. 2.
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Fig. 4. Final result after two iterations of the non-parametric snakes
algorithm (in white) compared to hand-drawn contour (in green).

Fig. 5 shows the results of the non-parametric curves on the
right lung. Again, without any user input or tuning, the non-
parametric snake provides good segmentation in just two
fixed-point iterations. However, we can see in Fig. 5 that there
is a slight difference between the user’s contour and the output
of the non-parametric snake based segmentation, especially in
concavities. Poor initialization and clustering due to the mean
shift behavior can result in sparse points in the concavities.
This can be improved by interpolating using the principal
curves algorithm, as seen in part C below.

180 200

20 40 60 80 100 120 140 160

Fig. 5. Initialization (in red), automatic segmentation (white), user-
drawn contour (green)

We compared the performance of this automatic
segmentation algorithm on 100 slices from four different
patients. Overall, we achieved over 90% overlap with the gold
standard on lungs and over 85% overlap on lung tumors,
where a margin of one to two pixels can have a large impact
on the overlap percentage. However, this is dependent on the
initialization. Methods to reduce this dependence on the
initialization are presented in sections B, C and D.

B. Modified KDE Incorporating User Input

Fig. 6 demonstrates the impact of using the user-defined
contour in estimating the KDE on a given slice. In this case,
the Canny edge and the user-specified contour were given
equal weights. We can see the improvement in meeting the
gold standard compared to the completely automatic
segmentation.
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40

Fig. 6. Improved segmentation by incorporating user input:
Initialization (in red), automatic segmentation (white), user-drawn
contour (green), segmentation incorporating user input (cyan)

C. Propagation of Curves

The propagation of the contours to adjacent slices for
initialization improves the segmentation of neighboring slices
by providing an initialization that is very close to the expected
output. This reduces the requirements normally necessary for
the initializations. For instance, Fig. 7 shows a lung segmented
starting with a poor initialization. Although, the non-
parametric snake matches the user-drawn contour along most
of the perimeter, we can see the problems caused the initial
curve being far away from the edge at the concavities.

20 40 60 80 100 120 140 160 180 200

Fig.7. Poor initialization and clustering during iterations of the
non-parametric snakes can cause sparse points in concavities in lung:
initialization (red), final contour (white).

Fig. 8 demonstrates the effectiveness of the propagation
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method. In this case, the output of the automatic segmentation
from one slice was used as the initialization for the slice
above. The edge points for the slice of interest were a
weighted combination of the edge points as detected by the
Canny detector and the final contour from the previous slice.

20 40 60 B0 100 120 140 160 180 200

Fig. 8. Propagation of contours from adjacent slices greatly improves
segmentation: User-defined contour edge (green), final segmentation
(white)

Overall, we achieved over 95% overlap with the gold standard
on lungs and over 92% overlap on lung tumors by propagating
a contour to the slice immediately adjacent.

D. Principal curves

The non-parametric snakes algorithm in [5], being essentially
a mean-shift approach using weighted KDE, can cause the
points to cluster in regions of high density if the edges are non-
uniformly sampled along the ridge. We explored the use of
principal curves as a means to generate additional points in
areas of sparse data. In Fig. 9, the final non-parametric snake
has few points in the concavity. This can occur if the
initialization points are far from the KDE of the edge and the
kernel size is small.
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Fig. 9 Additional points using principal curves improve conformity
to object boundary: Canny edge (blue), final segmentation (white),
interpolation using principal curves (cyan).

Principal curves as defined in [7] can be used to generate
additional points along the ridge as detailed above. This
interpolation procedure can be repeated iteratively until the
minimum distance between adjacent points is below the
desired threshold. Figure 9 shows the effect of adding a just
one additional point between a pair of points whose distance
exceeded the threshold. This greatly improves the overlap with
the user-defined contour. Using principal curves reduces the
dependence of the initialization.

E. Comparison to other methods

We performed limited comparison of the automatic
segmentation using non-parametric snakes with a publicly
available implementation of the level set methods [8]. We
would like to note that only very limited optimization of the
parameters was performed. The parameters used for the tumor
example for the level set algorithm were: L = 5.0, p =0.001, v
= 3.0, and time step T = 200. The curve evolution used 300
iterations.

As seen in figure 10, the resulting segmentation was very
similar between the non-parametric snakes and the level sets.
The same initialization was used for both methods. The non-
parametric snake algorithm, requiring only two iterations, was
significantly faster than the level set, as implemented in [9].
On a Windows XP machine with 4GB of RAM, running
MATLAB version 7.0.1.15 R14, the average time for
segmenting lung tumors using the level set algorithm was 5.85
+/-0.3 seconds while the average time for the non-parametric
snakes was 0.64 +/-0.14 seconds.

The results on the lung were similar in that the level set
algorithm took almost 10 times as long as the non-parametric
snakes and the results were highly dependent on the
initialization and the parameters. The non-parametric snakes
took 1.53 +/-0.21 seconds.

30

10 20 40 50 60 70

Fig. 10. Comparison of level set (cyan) and non-parametric snakes
(white) with user-defined contour (green).

113



IV. CONCLUSION

Non-parametric approaches to snakes are an attractive
alternative for robust and fast segmentation for medical
applications. They do not require optimization of many
parameters, unlike many other segmentation algorithms. The
kernel width can be optimized automatically using leave-one-
out cross-validation if desired. They allow user input to be
combined with edge features for segmentation of noisy images
or in the case of missing edges. Propagation of contours
improves segmentation by improving the initialization and
providing a means for user input on one slice to be applied to
neighboring slices.

These preliminary results indicate that a semi-supervised 3D
object segmentation algorithm is feasible and only information
from a user about the desired object indicated in a few slices in
the form of reasonably accurate contours is sufficient to carry
these priors to other slices. Future work will involve improving
algorithm robustness and accuracy by incorporating better
edge features and experimentation with data from multiple
subjects. Due to the speed of the algorithms, our future plans
also include an interactive cooperative-segmentation
procedure that will not only benefit radiation oncologists, but
will have impact on general object segmentation in
multidimensional images and videos.
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