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ABSTRACT

We introduce a new method for finding circles in images.
The proposed method assumes a given pixel is the center of
a prospective circle, attempts to fit a circle at that location
to the data, and then it scans over all possible pixels. The
score at each assumed center location is found by traversing
a trellis structure. The trellis allows for gaps in the prospec-
tive circles and it enforces a global all or none constraint.
The proposed method is compared to a binary matched fil-
ter using real visible-spectrum satellite images, where the
targets are the circular-shaped silos of surface-to-air missile
sites. The proposed method performs noticeably better than
the binary matched filter for the data used in this study.

1. INTRODUCTION

Computer vision is the field of study in which the goal is
to develop algorithms that obtain information from images.
Example applications include, but are not limited to, auto-
matic target recognition [1], target classification [2], docu-
ment recognition [3], pose estimation [4], tracking [5], event
detection [6], and autonomous vehicles [7]. One approach
to full-scale computer vision is to build models for a set of
primitive shapes, such as circles and rectangles. Herein we
introduce a method for finding circles that uses a trellis to
compute the cost of fitting a circle to the data.

2. TRELLIS-BASED CIRCLE DETECTION

An overview of the proposed trellis-based circle detector is
given in Table I In this tablew = 2r − 3 is the width of
the search window (hencer = w+3

2 ), B is the set of pixels
of the original image that that pertain to the current search
window, (xo, yo) denotes the center of the search window
(which is assumed to be the center of a prospective circle),
Jmin is the cost of the least cost path through the trellis
(this value depends on, among other things, the location of
the search window),lx is the number of rows of pixels in the

original image, andly is the number of columns of pixels in
the original image.

TABLE I. PSEUDO-CODE FOR THE PROPOSED METHOD

1. Letxo = r
2. Letyo = r

(a) LetB = {(x, y) | |xo − x| < r, |yo − y| < r}
(b) Tessellate the elements ofB (see Table II)
(c) Find the outer border of eachBn (see Table III)
(d) Find the least cost trellis path (see Table IV)
(e) LetJ(xo, yo) = Jmin

(f) Let yo ← yo + 1
(g) Go to Step 2(a) untilyo+r > ly

3. Letxo ← xo + 1
4. Go to Step 2 untilxo+r > lx

The tessellation step, outer border determination step,
and trellis step are explained further in the subsequent sec-
tions. The raw output of this algorithm is a map of the
least cost values. These values are then sorted so that the
smallest cost appears first in the list. The first (estimated)
positive corresponds to the lowest cost. Second and subse-
quent positives are added by proceeding down the list. A
prospective positive is added to the list only if it does not
exceed a maximum amount of overlap with all the previ-
ously selected positives (each of which is represented by an
appropriately centered(w × w) window). Additions to the
list of positives are made until a stopping criterion is met.
One option for the stopping criterion is to use a maximum
cost threshold. A second option is to find a pre-determined
number of positives per image.

2.1. Tessellation

The tessellation step divides the portion of the image con-
tained in the search window,B, into N + 1 mutually ex-
clusive and collectively exhaustive blobs, where the pixels
belonging to a single blob are chosen based on proximity,
similarity of grayscale values, and correct approximate size.



The motivation behind this step is that, in the absence of
significant contextual information, human observers tend to
group neighboring pixels having similar grayscale values.

The tessellation is performed using the pseudo-code shown
in Table I, wherepi,j(C = c) is the grayscale value of pixel
(i, j) having classc, px,y is the grayscale value of pixel
(x, y) having an unknown class, the neighbors to pixel(i, j)
are given by(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1), σ
is the standard deviation of the original image, andδ is a
user-defined scale parameter.

TABLE II. PSEUDO-CODE FOR TESSELLATION

1. Letc = 1
2. Find an unlabeled pixel(i, j) and label it with classc

(a) Find all unlabeled neighbors to all classc pixels
(b) Label each neighboring pixel(x, y) with classc if

|pi,j(C = c)− px,y| < δσ

(c) Go to Step 2(a) until all neighbors are checked
3. Letc← c + 1
4. Go to Step 2 until all points have been labeled
5. Discard blobs that are too small or that extend to any
edge of the search window

The tessellation producesN mutually exclusive blobs,
which are denotedBn for n = 1, . . . , N . TheN th blob, by
definition, equals the empty set. It is used below to allow
for gaps in the target circle. UsingBN+1 to denote all the
pixels from discarded blobs we have,

B =

N+1
⋃

n=1

Bn (1)

After the blobs have been defined we then find the outer
border of each blob.

2.2. Determination of Outer Border

The outer border of each blob is a set of pixels, with at most
one pixel per radial zone (described below), that are farthest
from the assumed center,(xo, yo). Hence, the outer border
depends on the location of the search window. The sym-
bol Θ is used to denote the set of pixels that constitute the
current search window. Determination of the outer border
also depends onM mutually exclusive radial zones, which
are denotedΘm for m = 1, . . . ,M . The set of pixels that
constitute a single radial zone depends on the minimum-
allowed radius,rmin, the width of the (square) search win-
dow,w, and a user-defined radial resolution parameter,M .
The radial zones are defined such that the angles between
the leading edge of the radial zones and the abscissa are eq-
uispaced from0 to 2π radians. An example whereM = 40

andw = 67 pixels is shown in Figure 1. The extent of the
black circle in the center of this figure roughly corresponds
to twice the minimum-allowed radius (this circle becomes
distorted as the minimum-allowed radius is reduced). Us-
ing ΘM+1 to denote the mutually exclusive set of pixels
that constitute the circular center of the search window we
have,

Θ =

M+1
⋃

m=1

Θm (2)

The appropriate range of values forM depends onrmin

andw. Increasing the value ofM increases the radial res-
olution of the search. However, the resolution cannot be
increased indefinitely since the pixels have a non-zero ex-
tent. The values ofrmin andw should be chosen based on
prior knowledge, or lack thereof, of the expected range of
radii of the target circles. For maximal resolution and ig-
noring computational complexity, the value ofM should be
chosen to be the largest value such that allM radial zones
extend contiguously fromΘM+1 to one of the edges of the
search window.

The outer border of each blob,Rn, is determined using
the pseudo-code shown in Table II, whereRn is the set of
pixels constituting the outer border for blobBn.

TABLE III. PSEUDO-CODE FOR OUTER BORDERS

1. Letn = 1
2. LetRn = ∅,m = 1

(a) ComputeAm,n = Θm ∩Bn

(b) Find pixel(xm,ym) having the largestd(Θm,Bn)

d(Θm, Bn) = max
(x,y)∈Am,n

{

(x− xo)
2 + (y − yo)

2
}

(c) Rn ← {Rn ∪ (xm, ym)}
(d) Letm← m + 1
(e) Go to Step 2(a) untilm > M

3. Letn← n + 1
4. Go to Step 2 untiln > N

The parameterd(Θm, Bn) represents the distance be-
tween the assumed center of the prospective circle and the
farthest pixel that is in bothΘm andBn.

2.3. Trellis

It is expected that each target is represented by more than
one blob. Hence, we need to select a set of up toN blobs.
Due to combinatorial explosion it is impractical to try all
possible combinations for largeN . For this reason we use a
greedy approach. Our approach uses a trellis to calculate the
total cost for many of the possible paths. It allows for the
existence of gaps in the target circle and it is constrained
so that a blob is either always used or never used. This



Fig. 1. Example of the radial zonesΘm, whereM = 40
andw = 67.

approach is similar to maximum-likelihood sequence de-
tection (MLSD) [8] and the hidden Markov model (HMM)
[9]. The main differences are the introduction of a gap cost
and the all or none constraint, the latter of which prevents
the proposed approach from considering all possible paths
through the trellis since it is a global constraint (as opposed
to a local constraint, the cost of which can be determined at
each step of the trellis).

The costs of many of the possible paths are determined
using the pseudo-code shown in Table IV. In this tableJm is
the vector ofN costs at themth row of the trellis,Jm(n) is
thenth element ofJm (which corresponds to the path that
passes through the border of blobBn located in radial zone
Θm), T (Θm,Bn,Θm−1,Bk) is the transition cost, andTgap

is the cost of a gap.

TABLE IV. PSEUDO-CODE FOR TRELLIS

1. Letm = 2 andJ1 = [0 0 · · · Tgap]
2. Calculate the new cost vector

Jm(n) = min
k
{Jm−1(k) + T (Θm,Bn,Θm−1,Bk)}

T (Θm,Bn,Θm−1,Bk) =






[d(Θm,Bn)−d(Θm−1,Bk)]
2

(n<N)
Tgap (n=N)
∞ (invalid path)

3. Letm← m + 1
4. Go to Step 2 untilm > M

5. LetJmin = min
k

JM (k)

As can be seen from the table thenth element of the
current cost,Jm(n), equals the sum of one element of the
most recent previous cost,Jm−1(k), and the cost of transi-
tioning fromJm−1(k) to Jm(n), the latter of which is de-
notedT (Θm,Bn,Θm−1,Bk) and equals the squared differ-

ence between successive radii (whenn < N ). The infinite
transition cost is used to enforce the all or none constraint.

3. RESULTS

The testing is performed using 7 real, grayscale, visible-
spectrum satellite images. The typical size of the images is
(3 ∗ 104 × 2.7 ∗ 104) pixels. Each image has one surface-
to-air (SAM) site and each SAM site contains 6 silos. Due
to the size of the images both methods were performed in
two stages. The first stage uses data that were first down-
sampled by a factor of 16 (4 along each axis). The sec-
ond stage uses the full-resolution image, but it only evalu-
ates theL10% best locations found in the first stage, where
L10% = 0.10(lxly)/w2 is 10% of the ratio of the number
of pixels in the image to the number of pixels in the search
window. For the proposed method the minimum blob size
is 5 in the first stage and15 in the second stage, no over-
lap is allowed among all the positives, andδ is chosen as
the value that produced a mean blob size closest to 20 for
the first stage and 140 for the second stage. This choice
of stopping criterion allows the two methods to be directly
compared even though they use different metrics.

The binary matched filter method first makes the image
contained in the search window binary and then it estimates
the correlation of the resulting image with a binary circu-
lar filter (having a mean of0 and a standard deviation of
1). More specifically, for each location of the search win-
dow two new images are created,A1 andA2. For bothA1

and A2 the image pixels contained in the search window
are converted to eitherα0 or alpha1, whereα1 > α0 and
the two values are chosen so that the resulting image has a
mean of0 and a standard deviation is1. The difference be-
tween the two is thatA1 assignsα1 to the set of pixels that
are at leastβ standard deviations above the mean andα0 to
all other pixels, whereasA2 assignsα1 to the set of pixels
that are at leastβ standard deviations below the mean. The
final output of the method is a map of the maximum of the
two correlation coefficients (the first correlation coefficient
is the correlation betweenA1 and the circular filter and the
second is the correlation betweenA2 and the circular filter).
We usedβ = 1 to create the figures below.

Figure 2 shows an example where the search window
is centered on a silo. This figure also shows the outputs of
several different steps of the proposed trellis-based method.
The bottom right subfigure represents the union ofR6 and
R12, which happens to correspond to the lowest cost path
through the trellis for this particular search window. Figure
3 shows the silo detection ROC curve for both stages of both
methods. The performance of stage 2 necessarily equals the
performance of stage 1 (for the same method) when stage 2
uses all of the positives found in stage 1. Figure 4 shows the
SAM site detection ROC curve. For this figure we conclude



Fig. 2. Upper left: example silo (downsampled by 16). Up-
per right: image formed after the pixels are classified. Each
color represents a different class. Lower left: the border of
the6th blob,R6. Lower right: the union ofR6 andR12.

Fig. 3. Silo detection ROC curve.

that the SAM site has been found is there are any positives
found within the SAM site, e.g., if 1 or more of the 6 silos
that constitute the SAM site are found.

4. CONCLUSIONS

We have introduced a trellis-based method for finding cir-
cles. The proposed method performed better than a standard
binary matched filter on the satellite data that we tested.
The most noticeable weakness with the proposed method
is that it also found multiple square-shaped objects, such
as houses. We expect that the method can be improved by
either adding a square/rectangle detector or by including in-
formation on the distribution of the error between the shape
that corresponds to the lowest cost and the best-fit circle
since the distribution of the error between a circle and a
square is much different than the distribution of the error
between a circle and a noisy circle.

Fig. 4. SAM site detection ROC curve.
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