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ABSTRACT

One common problem in signal denoising is that if the sig-
nal has a blocky, in other words a piecewise-smooth struc-
ture, the denoised signal may suffer from oversmoothed dis-
continuities or exhibit artifacts very similar to Gibbs phe-
nomenon. In the literature, total variation methods and some
modifications on the signal reconstructions based on wavelet
coefficients are proposed to overcome these problems. We
take a novel approach by introducing principal curve pro-
jections as an artifact-free signal denoising filter alternative.
The proposed approach leads to a nonparametric denoising
algorithm that does not lead to Gibbs effect or so-called
staircase typeunnatural artifacts in the denoised signal.

1. INTRODUCTION

Following the additive noise model, signal denoising prob-
lem can be defined as extracting themeaningfulpart of the
data from the observed signal by subtracting or suppress-
ing noise. Although in most of the scenarios this intuitively
refers to reconstruction of the original signal from the ob-
served signal that is contaminated with noise; in general,
the vagueness ofmeaningful partin the problem definition
here is indeed intended depending on what the problem spe-
cific meaningful information is.

Under the known noise model assumption, optimal fil-
tering in frequency domain is a well established topic [1].
Frequency domain filtering is conceptually simple, easily
analyzable, and computationally very inexpensive. How-
ever, the main drawback of this approach is obvious if the
signal and the noise are not separable in the frequency do-
main. Practically, in frequency domain filtering one should
compromise the discontinuities in the signal, since they will
be smoothed along with the noise.

As well as traditional frequency domain filtering tech-
niques, current signal denoising techniques include wavelet
transform and total variation based noise removal algorithms.
These techniques stem from the idea of preserving the high
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frequency components, namely discontinuities, of the sig-
nal while suppressing noise. Since piecewise smooth signal
structure is typical in visual images, total variation based
noise removal is first introduced in image denoising [2, 3].
Later, Vogel proposed a fixed-point iterative scheme to solve
the total variation penalized least squares problem [4].

Another way to achieve discontinuity preserving denois-
ing is to utilize discrete wavelet transform as an orthogonal
basis decomposition. This method is based on decompos-
ing the signal into orthogonal wavelet basis, perform either
soft or hard thresholding to wavelet coefficients, and trans-
form the data to the time/spatial domain by inverse discrete
wavelet transform. Note that any orthogonal decomposi-
tion of the signal can be used similarly for denoising. In
such techniques the performance of the denoising is typi-
cally measured by the rate of decay of the basis coefficients
sorted in the magnitude. In the context of piecewise smooth
signal denoising, wavelet decomposition is known to be su-
perior to other widely used choices like Fourier and co-
sine decompositions [5]. Earlier techniques based on hard
thresholding of the wavelet coefficients suffer from Gibbs
effect like artifacts around the discontinuities. This draw-
back is handled by soft thresholding of this wavelet coeffi-
cients [6], and later by applying previously mentioned total
variation based approaches in wavelet domain analysis [7].

Principal curves are defined by Hastie and Stuetzle [8]
as ”self-consistent finite length smooth curves passing from
the middle of data.” The literature on principal curves is
dense in algorithm design, but there is not much work on the
theoretical side. We recently proposed another definition
for principal curves, which describes the principal curve in
terms of the gradient and the Hessian of the data probabil-
ity density [9, 10] that yields constrained maximum like-
lihood type algorithms. This definition stems from a dif-
ferential geometric approach. In this paper, we utilize our
recently proposed principal curve projections to implement
a data-driven nonparametric nonlinear filter for artifact-free
piecewise continuous signal denoising. The resulting fil-
ter is based on the kernel density estimate (KDE) of the
data, where parametric variants are possible and conceptu-
ally very similar.



2. PRINCIPAL CURVES

We define the principal curve as follows:”a point in the
data feature space is on the principal curve if and only if the
gradient of the pdf is parallel to one of the eigenvectors of
the Hessian and the remaining eigenvectors have negative
eigenvalues”[9, 10]. In other words, the principal curve is
essentially theridgeof the pdf.

Although the details of the principal curve derivation is
omitted due to restricted space, we start with a simple il-
lustration of the concept here to motivate our proposition.
Consider the simple illustration in Figure 1. To find the
principal curve, we start with the density estimate of the
data. Figure 1a shows the dataset (blue) along with the prin-
cipal curve projections of all data samples (green). This is
exactly where the gradient of the pdf is parallel with one of
the eigenvectors of the Hessian of the pdf. More intuitively,
the principal curve can also be thought as the ridge of the
pdf. Underlying probability density along with the same
principal curve is presented in Figure 1b, again for the same
dataset.

Defining the principal curve in terms of the data pdf al-
lows us to leave all regularization constraints to the density
estimation step. This idea, in fact, is central to our approach
of connecting the known problems in the principal curve
fitting research to well-studied results in the density estima-
tion literature. In the next section, as we present our imple-
mentation, we will present brief examples of these natural
connections in the context of kernel density estimation.

3. PIECEWISE SMOOTH SIGNAL DENOISING
VIA PRINCIPAL CURVE PROJECTIONS

This section will present the details of the proposed prin-
cipal curve denoising filter, as well as the selection of the
kernel bandwidth, which is a critical step in the implementa-
tion. To utilize principal curve projections, one should start
with translating the signal into a suitable feature space. The
most intuitive selection is to use the samples of the noisy
signal itself along with the associated time indices. Assum-
ing that the observed signalx(t) is the original signal buried
in additive noise that is,x(t) = s(t) + n(t), this yields

xi =

[

x(ti)
ti

]

, t1 < . . . < tN (1)

whereti denote the sampling times. At this point, we as-
sume that the original signals(t) is sampled at least at the
Nyquist frequency. Sampling and reconstruction are well
established topics in signal processing, the details of which
will are out of the scope of this paper. Also note that, as long
as it preserves a blockwise continuous nature, the rest of the
paper does not depend on howx is constructed. Using time
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(a) curve dataset and its principal curve

(b) KDE of the curve dataset and with the principal curve

Fig. 1. A simple illustration of the principal curve concept

delayed versions of the observed signal or any other repre-
sentation of it based on orthogonal decompositions can also
be used. For now, we leave this further investigation as fu-
ture work and focus on the simple feature construct given in
(1).

Figure 2 depicts an illustrative piecewise smooth signal
with its noisy version as well as the kernel density estimate
of the noisy signal. Now consider the kernel density esti-
mate of the noisy signal which is given by

p(x) =
N

∑

i=1

KΣi
(x− xi) (2)

whereΣi denotes the covariance of the kernel function for
the ith sample1. Note that the density estimate ofx in the
vicinity of discontinuities is not effected much by the sam-
ples on the opposite side of the discontinuity. Although
these are close -or maybe even subsequent- samples along
the time axis, the discontinuity in signal value makes them
sufficiently distant in thex space. For unimodal additive
noise distributions (as in the case of additive Gaussian noise)

1This density estimate is given for the most general case of data-
dependent variable bandwidth KDE. For fixed bandwidth version, one can
just drop this data dependency.
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(b) KDE of the noisy signal inx space

Fig. 2. The underlying noiseless signal and its noisy coun-
terpart

the noiseless signal will most likely be asmoothersignal
passing through the middleof the observed noisy samples.
Hence, principal curve naturally fits into the context of arti-
fact free signal denoising of piecewise smooth signals.

As we proposed in earlier publications [9, 10], principal
curve projection can be achieved by a likelihood maximiza-
tion in a constrained space, and our earlier proposed algo-
rithms can directly be used to identify the principal curve.
However, particularly for this denoising application, we have
a much easier scenario due to the following:

1. Only the samples of the principal curve at time in-
dicest1 < . . . < tN are sufficient. Higher time reso-
lution or seeking for the portion of the principal curve
that lies outside the given time interval is unnecessary.

2. Unlike the general case of random vectors, the sec-
ond dimension, which represents the time indices of

signal samples is deterministic; in the case of uniform
sampling, we can model this density as being uniform
for theoretical analysis.

One can select the initialization of the algorithm and the
constrained space of the projection using these two simplifi-
cations. At this point, starting from the data samples them-
selves, and selecting the constrained space as thet = ti for
each data sample is our choice for the two following rea-
sons, under the assumption of a unimodal zero mean noise
density:

1. Selecting constrained space orthogonal to time index
guarantees that there is only one denoised signal value
at all time indices.

2. One important observation here is that at the peak of
the pdf in each constrained spacet = ti is very close
to principal curve.

With the above selections of the initialization and the
constrained space, the principal curve projection turns out
to be as simple as evaluating the mean shift update and pro-
jecting it onto the first dimension - the vertical axis in Figure
2a. Although it is close, the optimizer of the algorithm is not
on the principal curve. Therefore, we use the SCMS algo-
rithm [10] to project these points onto the principal curve,
and assign the signal values as the denoised signal by keep-
ing the time indices the same. We skip the derivation of
SCMS here, yet we still provide the details of implementa-
tion in Table 1, steps 5-10.

Mean shift is a very commonly used iterative procedure
that maps the data points to the corresponding peak of the
probability density, where the gradient is equal to zero and
all eigenvalues of the Hessian are non-positive [11]. Partic-
ularly for a Gaussian kernel function with fixed bandwidth,
taking the derivative of (2) with respect tox, and equating it
to zero, one obtains

p(x) =
∑

N

i=1
GΣi

(x− xi)

x
∑

N

i=1
Σ−1

i
GΣi

(x− xi)−
∑

N

i=1
xi Σ−1

i
Gσ(x− xi) = 0

(3)
Reorganizing terms and solving forx yields the well-known
mean shift update [11]

x← m(x) = (
N

∑

i=1

Σ−1

i
GΣi

(x−xi))
−1

N
∑

i=1

Σ−1

i
GΣi

(x−xi)xi

(4)
Finally, to achieve the desired projection, at each iteration
the update in the second dimension has to be removed. This
projection has a time complexity ofO(N) per sample per
iteration. Table 1 briefly presents the overall algorithm.
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Fig. 3. Two realizations of the same piecewise smooth signal for two different SNR levels are shown in (a) and (b), along
with their time difference histograms in (c) and (d).

Table 1. Principal curve signal denoising

1. Build the feature spacex, select the kernel bandwidth
σ of the Gaussian kernel.

2. Evaluate the mean shift update using (4).

3. Project the mean shift update to

[

1
0

]

, so that

the mean shift procedure remains in the constrained
space.

4. If convergence not achieved, go to step 2, if conver-
gence is achieved go to the next step.

5. For every trajectory evaluate the mean shift update in
(4).

6. Evaluate the gradient, the Hessian, and perform the
eigendecomposition ofΣ−1(x(k)) = VΓV.

7. Letv be the leading eigenvector ofΣ
−1.

8. x̃ = vvT m(x(k))

9. If |gT Hg|/‖g‖‖Hg‖ > threshold then stop, else
x(k + 1)← x̃.

10. If convergence is not achieved, incrementk and go to
step 6.

3.1. Selection of the Kernel Bandwidth

Selecting the bandwidth of the Gaussian kernel is a very
important step in the implementation that severely affects
the performance of the algorithm. Fortunately, literatureon
density estimation is rich on how to select the kernel width,
and methods in the literature extend from simple heuristics
to more technically sound approaches like maximum likeli-
hood [12, 13, 14, 15, 16].

All above mentioned techniques are general purpose ker-
nel bandwidth selection methods that blindly approach the
data. Particularly for this problem, one can also select the
kernel bandwidth by considering the actual physical mean-
ing of the data. If the amount of noise and the amount of
fluctuations at the discontinuities are at different scales, ker-
nel bandwidth selection can be achieved by observing prob-
ability density of the time difference of the signal. Figure
3 presents two realizations of a piecewise smooth signal at
different noise levels. Although this may not be the general
case for all noise levels, note that the noise distribution and
discontinuities are clearly identifiable in this difference his-
togram for the presented signals, where the difference val-
ues at the discontinuities seem like outliers of the Gaussian
noise distribution.

4. EXPERIMENTAL RESULTS

This section presents the performance of the proposed de-
noising algorithm. To be able to control the SNR level in
the experiments, synthetic examples are used, and denoising
performance is reported for different SNR values. Another
important point is, of course, the performance around the
discontinuities. As well as quantitative results, we present
the actual signal plots to provide a visual comparison of the
noisy and denoised signals at different SNR levels. At the
discontinuities, principal curve denoising does not yieldany
pseudo-Gibbs artifact effects like discrete wavelet denois-
ing techniques, or any oversmoothing like frequency do-
main filtering. As one can observe from the denoising on
the ramp-signal components, principal curve denoising also
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Fig. 4. MSE between the noiseless signal and output of the
denoising filter for different SNR levels

does not yield any staircase type effects like total variation
based methods.

Figure 4 presents the denoising results for the noiseless
signal presented in Figure 2 (blue) for different SNR lev-
els. We measure the performance MSE between the output
of principal curve denoising and the underlying noiseless
signal. Here we also compare the number of samples used
in the principal curve estimation. The principal curve pro-
jection depends on the accuracy of the underlying density
estimate. As the statistical variance of the density estimate
increases in low sampling rates, and the performance of the
principal curve denoising decreases.

For the same signals of different SNR and sampling rates,
which are compared in Figure 4, Figure 5 presents the noisy
and denoised time signal pairs. For all above experiments,
we use the maximum likelihood kernel size for each signal.
So, we learn the kernel bandwidth from the signal directly,
and use a different kernel bandwidth for each realization
of the signal. Maximum likelihood training automatically
adapts the kernel bandwidth according to the noise level
of the data, and evaluating the maximum likelihood ker-
nel bandwidth is a well-known topic and details are omitted
here [12].

As a final remark, note that we are not presenting any
comparisons with the other principal curve approaches in
the literature. Since, by definition, they are looking for
smooth curves, earlier principal curve algorithms are not
suitable for piecewise smooth signals, and oversmoothing
on the discontinuities would be unavoidable.

5. CONCLUSIONS

In this paper, we propose to use principal curves for artifact-
free denoising of piecewise smooth signals. The proposed

denoising filter can successfully preserve the sharp discon-
tinuities in the data under the additive unimodal noise as-
sumption, without introducing any smoothing, high frequency
Gibbs effect like artifacts or staircase type effects.

The proposed scheme allows one to translate common
problems in piecewise smooth signal denoising into selec-
tion of the kernel function. For example, as opposed to ear-
lier methods in the piecewise-smooth signal denoising that
are based on total variation or discrete wavelet transform,
principal curve based denoising is much easier to build an
online counterpart just by selecting a finite support kernel
function. For a KDE built using a kernel function of online
support, the subset of signal samples that affect the pdf on
a particular point of interest are clearly given, yielding an
online version of the algorithm directly. Adapting the prin-
cipal curve denoising for nonstationary or data-dependent
noise distributions is also straightforward. With the current
implementation, it is computationally more expensive than
earlier methods in the literature. At this point, KDE with
finite support kernel will save a lot of computational effort,
which can bring the computational cost up to linear time
complexity. All these are left as future prospects to investi-
gate.
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