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ABSTRACT

Human brain signals associated with perceptual processes have
been shown to be useful for visual target image search. For
the purpose of online training, we develop a novel mixed ef-
fects evoked response detector, which is capable of combin-
ing individual random effects and population fixed effects, for
the analysis of neural signatures associated with targets. To
avoid numerical problems in high dimensional matrix compu-
tations, we develop equivalent dimension reduced expressions
for the mixed models. We construct the mixed effects evoked
response model using principal component analysis to pro-
vide bases for the population model and linear discriminant
analysis (LDA) to provide bases for the individual models.
In addition, the LDA is adopted for Elecroencephalography
channel dimensionality reduction. Data collected at different
time and experimental conditions from two subjects perform-
ing image search tasks are utilized to assess the quality of the
models. We also compare the proposed model with the sup-
port vector machine (SVM). The results demonstrate that the
mixed models approach the SVM and provide reliable infer-
ence on cross session evaluation for the single-trial evoked
response detection.

1. INTRODUCTION

Human brain signals associated with perceptual processes have
been shown to be useful for visual target image search. Ele-
croencephalography (EEG) has been widely used for detect-
ing cognitive disorders and other diseases. A brain’s electrical
response present in EEG signals to a stimulus, related to as-
pects of cognitive processing is referred to as an event-related
potential (ERP) [1]. The ERPs associated with human per-
ceptual judgments have been previously used for visual target
image search [2, 3, 4]. The major task of an ERP-based image
search systems is to detect the ERPs associated with the target
stimuli. The conventional approach for studying the ERPs is
trial averaging. However, this approach is not sufficiently ef-
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ficient for fast brain interfaces that exploit the ERPs, therefore
recent research focuses on single-trial ERP detection [5].

The main challenges of single-trial ERP detection are high
dimensionality and scarcity of training data. The ideal sce-
nario is to have enough training samples under controlled cir-
cumstances. However, it is infeasible in real applications to
have subjects perform a long training period with unchanging
experimental conditions. When multiple EEG measurements
are obtained from each individual at different times and pos-
sibly under changing experimental conditions, we normally
can not fully control the circumstances under which the mea-
surements are taken. There are considerable variations among
individuals in the number and timing of observations. There-
fore we need to seek a model suitable for aggregated data to
capture the population characteristics and also the individual
features as well.

A mixed effects model (MEM) [6] is a statistical hierar-
chical model. It was first proposed for the analysis of longi-
tudinal time-series data [7]. There are two sources of varia-
tion in the MEM: between-individual variations and within-
individual variation. By introducing multilevel random ef-
fects, the MEM easily handles data with multiple sources of
variation, such as EEG data. Specifically for designs of aggre-
gating data across multiple subjects/sessions, we can easily
use the population-averaged parameters to specify the com-
mon EEG signal type (consistent pattern across subjects/sessions),
and the subject-specific parameters to specify subject/session
individuality (individual variety with the within- and between-
subject/session variance). Therefore the MEM provides prin-
cipled basis for combining historical and new data and is con-
venient for online adaptation. To this end, we apply this statis-
tical approach to the classification of single-trial multichannel
EEG sequences.

In this paper, we present a mixed-effects ERP detector
that models single-trial ERP waveforms as varying individ-
uals from a population; thus the classifier attempts to ex-
plain fluctuations in the baseline ERP waveform via a hi-
erarchical Bayesian topology. To avoid numerical problems
in high dimensional matrix computations, we determine low-
dimensional calculations utilizing low-rank matrix properties.



This significantly reduces computational complexity. The pa-
per illustrates the performance of the model in the analysis
of cross session EEG dataset and compares the model to a
broadly used approach – support vector machine(SVM) [8]
for weighing the benefits of the proposed model. Results es-
tablish that the mixed-effects ERP detector can provide a reli-
able basis for visual target image search and EEG-based brain
interfaces in general.

2. MIXED EFFECTS MODELS

2.1. Model description

A general MEM is written as, for individual i of N ,

yi = Xiα+ Zibi + εi, (1)

where i = 1, . . . , N .

• yi is an ni × 1 vector of observations for the ith indi-
vidual and ni is the number of observations for the ith
individual.

• α is defined as a p× 1 population fixed effects vector.
• Xi is an ni×p population design matrix of fixed effects.
• bi is defined as a k×1 individual random effects vector.

We assume that the random effects are independent and
have a normal distribution bi∼N(0,D) where D is a
k×k matrix of positive definite covariance.

• Zi is an ni×k individual design matrix of random ef-
fects.

• εi is an ni × 1 vector of independent and identically
distributed (iid) errors with zero mean and positive def-
inite within-individual variance. We assume that the er-
ror terms have a normal distribution εi∼N(0, σ2Ini

),
where Ini

denotes an ni×ni identity matrix.

Thus model (1) can be written as yi∼N(Xiα, σ
2Ini +

ZiDZiT ). This means that yi has a multivariate normal dis-
tribution with mean Xiα and covariance matrix σ2Ini

+ZiDZiT .
In Equation (1), yi, Xi and Zi are known andα, bi and εi are
unknown. The variance parameters, σ2 and D are unknown
and need to be estimated along with the population parameter
α. These parameters are estimated using data from the whole
population.

2.2. Model parameter estimation

We use the expectation-maximization(EM) algorithm [9] to
obtain maximum likelihood (ML) estimates for the model pa-
rameters, α and bi, σ2 and D.

2.2.1. ML estimation of α and bi

Writing V ar(yi) as Vi = σ2Ini
+ ZiDZTi , if all covariance

parameters σ̂2 and D̂ were known, then Vi was known, we
could estimate α and bi. Assuming yi is independent for

each i, the joint density function of yi is

f(y;θ) =
N∏
i=1

exp[− 1
2 (yi −Xiα)TV−1

i (yi −Xiα)]

(2π)
ni
2 |Vi|

1
2

(2)

where θ = (α,D, σ). The log-likelihood function for the
MEM is given by

l(θ) = −1
2
{(

N∑
i=1

ni)ln(2π) +
N∑
i=1

[ln|Vi|

+ (yi −Xiα)TV−1
i (yi −Xiα)]}. (3)

If variances σ̂2 and D̂ were known, the log-likelihood func-
tion could be maximized by the generalized least squares es-
timator. Taking the derivative of l(θ) with respect to α and
equating to zero, we get

α̂ = (
N∑
i=1

XT
i V−1

i Xi)−1
N∑
i=1

XT
i V−1

i yi. (4)

If α was known, we can treat bi as fixed effects and use least
square estimation to obtain from Equation (1)

b̂i = DZTi V−1
i (yi −Xiα̂). (5)

2.2.2. EM algorithm for ML estimates of σ2 and D

M-step: If we were to observe bi and εi, we could easily
obtain simple closed-form solution using ML estimation of
variances,

σ̂2 =
N∑
i=1

εTi εi/

N∑
i=1

ni, (6)

D̂ =
N∑
i=1

bibTi /N. (7)

E-step: If σ2 and D were available, we could calculate the
sufficient statistics as follows:∑N

i=1 ε
T
i εi =

∑N
i=1 ε̂i(θ̂)

T ε̂i(θ̂)
+

∑N
i=1 tr{V ar[εi|yi, α̂(θ̂), θ̂]},

(8)

N∑
i=1

bTi bi =
N∑
i=1

{b̂i(θ̂)T b̂i(θ̂)+V ar[bi|yi, α̂(θ̂), θ̂]}, (9)

where ε̂i(θ̂) = yi − Xiα̂i(θ̂) − Zib̂i(θ̂) and b̂i(θ̂) were
obtained from ML estimation. Based on εi|θ∼N(0, σ2Ini

),
yi|εi;θ ∼N(Xiα,ZiDZiT ), and yi|θ ∼N(Xiα, σ

2Ini
+

ZiDZiT ), we can derive

V ar[εi|yi, α̂(θ̂), θ̂] = [(ZiDZiT )−1+(σ2Ini)
−1]−1. (10)

Similarly, based on bi|θ∼N(0,D), yi|bi;θ ∼ N(Xiα +
Zibi, σ2Ini

), and yi|θ∼N(Xiα, σ
2Ini

+ ZiDZiT ), we can
calculate

V ar[bi|yi, α̂(θ̂), θ̂] = (ZiTZi/σ2 + D−1)−1. (11)



Thus from (6) to (11), we obtain the variance parameter esti-
mates as:

σ̂2 =
N∑
i=1

ε̂i(θ̂)T ε̂i(θ̂)
N∑
i=1

ni

+
∑N
i=1 tr{[(ZiDZiT )−1 + (σ2Ini

)−1]−1}∑N
i=1 ni

,(12)

D̂ =
1
N

N∑
i=1

{b̂i(θ̂)T b̂i(θ̂) + (
ZiTZi
σ2

+ D−1)−1}. (13)

Upon convergence of the EM iterations, we obtain σ̂2 and D̂.

3. DIMENSION REDUCTION FORMULAS

The model parameter estimation equations in the previous
Section involves ni × ni matrix inverse and determinant cal-
culations. One can reduce the dimensionality of these calcu-
lations to k × k (k � ni) using the following exact rank-
reduction formulas.

3.1. Simplified formulas for log-likelihood function

Since Vi = σ2Ini
+ZiDZTi involves an ni×ni low-rank ma-

trix inversion. We can use the following dimension-reduction
formulas to exploit the relevant rank-k subspace:

V−1
i = σ−2Ini − σ−2IniZi(D

−1

+ ZTi σ
−2IniZi)

−1ZTi σ
−2Ini

= σ−2Ik − σ−4ZTi Zi(D−1 + σ−2ZTi Zi)−1,(14)

|Vi| = σ2(ni−k)|σ2Ik + DZTi Zi|. (15)

If matrix D is nonsingular, we can have the log of the deter-
minant as a function of D−1.

ln |Vi| = ln |σ2D−1 + ZTi Zi|
− ln |D−1|+ (ni − k) lnσ2.

(16)

3.2. Simplified formulas for σ2 and D

To avoid inverse matrices in Equation (10) and (11), by using
matrix inversion lemma, we have the following simplification,

[(ZiDZiT )−1 + (σ2Ini)
−1]−1 = σ2Ini − σ4IniV

−1
i (17)

(ZiTZi/σ2 + D−1)−1 = D−DZTi V−1
i ZiD. (18)

Therefore Equation (12) and (13) can be simplified as follows

σ̂2 =
∑N
i=1 ε̂i(θ̂)

T ε̂i(θ̂)∑N
i=1 ni

+ σ2 −
σ4

∑N
i=1 tr(V

−1
i )∑N

i=1 ni
(19)

D̂ =
∑N
i=1[b̂i(θ̂)

T b̂i(θ̂)]
N

+ D−
D(

∑N
i=1 ZTi V−1

i Zi)D
N

.

(20)

Using (14), we also obtain

ZTi V−1
i Zi = ZTi Zi(σ2Ik + DZTi Zi)−1. (21)

If (ZTi Zi)−1 exists, we can have

ZTi V−1
i Zi = [σ2(ZTi Zi)−1 + D]−1. (22)

Furthermore from (20),

N∑
i=1

ZTi V−1
i Zi = σ−2

N∑
i=1

ZTi Zi − σ−4
N∑
i=1

[(ZTi Zi)

(D−1 + σ−2ZTi Zi)−1(ZTi Zi)T ], (23)

3.3. Simplified formulas for α and bi

From (4),

N∑
i=1

XT
i V−1

i Xi = σ−2
N∑
i=1

XT
i Xi − σ−4

N∑
i=1

[(XT
i Zi)

(D−1 + σ−2ZTi Zi)−1(XT
i Zi)T ], (24)

N∑
i=1

XT
i V−1

i yi = σ−2
N∑
i=1

XT
i yi − σ−4

N∑
i=1

[(XT
i Zi)

(D−1 + σ−2ZTi Zi)−1(ZTi yi)], (25)

From (5),

ZTi V−1
i yi = σ−2ZTi yi − σ−4(ZTi Zi)(D−1

+ σ−2ZTi Zi)−1(ZTi yi), (26)

ZTi V−1
i Xi = σ−2XT

i Zi
T − σ−4(ZTi Zi)(D−1

+ σ−2ZTi Zi)−1(XT
i Zi)T , (27)

4. MIXED-EFFECTS ERP DETECTOR
CONSTRUCTION

We want to construct a single-trial ERP detector using MEMs.
We adopt the receiver operating characteristic (ROC) curve [10]
to assess performance quantitatively with a scalar measure.

4.1. Data preparation – cross session data

Two subjects were recruited for the study. The images were
presented at very high rate of 100 ms/image in the rapid serial
visual presentation paradigm. The subjects performed target
detection by clicking on a button (which typically occur af-
ter 500ms and do not create overlapping brain activity with
portion used for our detectors) as soon as they saw a target.
At the same time, we monitored and recorded their EEG sig-
nals by a 32-channel Biosemi system. The sampling rate was



Fig. 1. Images of ERP and non-ERP signals associated with
targets (left) and distractors (right). Time-zero corresponds to
stimulus onset in each trial. The bottom traces are the EEG
signals averaged over trials.

Fig. 2. Training structure of the mixed effects ERP detector

256Hz. Each subject had one morning session and one after-
noon session each day and five days in a row. Each session
contained 200 trials and each trial was 5 seconds. Images
were randomly displayed and 75% of the trials contained a
single target instance. Figure 1 shows the image plots of the
ERP and non-ERP signals corresponding to target and dis-
tractor stimuli for subject 1 at channel 1. One can observe a
clear ERP pattern corresponding to targets while no pattern
corresponding to distractors. To evaluate cross session per-
formance, we aggregated the data across sessions. We sim-
ulated the condition as a realistic scenario that each session
used as a test set was appended to the previous training ses-
sion and the new training session (aggregated training ses-
sion) would be used for future sessions. For instance, we
trained on session 1 and tested on session 2; then we trained
on sessions 1 + 2 and tested on session 3 and so on until
trained on sessions 1 + 2 + ...+ 9 and tested on session 10.

The procedures of data pre-processing [11] were applied
to obtain statistically independent (as much as possible) train-
ing data. We segmented the EEG data into the task-relevant
epochs (500 ms after each image trigger), filtered the data
through a 1-45 Hz bandpass filter and conducted data nor-
malization. We adopted a disjoint windowing scheme in the
training and a sequential windowing scheme in the test. For
both training and test, we removed the distractors in the inter-
val of one second before and after the targets and selected the
targets with following button responses within 1.5 seconds.

4.2. ERP detector – MEM

Our goal in classification is to build a mixed effects ERP de-
tector to accurately discriminate the EEG signals containing

the ERP versus the non-ERP. Figure 2 shows the training pro-
cedures of the models, which are used under the likelihood
ratio test framework for detection.

4.2.1. Feature dimension reduction

We apply linear discriminant analysis (LDA) [10] on multi-
channel EEG data for dimension reduction and congregate
the selected channel projections to form a feature vector as
the basis for the MEM based generative models for classifi-
cation. For each target sample xti or distractor sample xdi , we
can measure the mean (Mt,Md) and variance (Ct,Cd) for
the target cluster and distractor cluster,

Mt = 1/Nt
Nt∑
i=1

xti (28)

Md = 1/Nd
Nd∑
i=1

xdi (29)

Ct = 1/Nt
Nt∑
i=1

(xti −Mt)(xti −Mt)T (30)

Cd = 1/Nd
Nd∑
i=1

(xdi −Md)(xdi −Md)T . (31)

For linear projections, f(xti) = wTxti and f(xdi ) = wTxdi ,
we consider maximizing the objective function

J(w) = wTSbw/wTSww. (32)

where between cluster scatter matrix is Sb = (Mt−Md)(Mt−
Md)T and within cluster scatter matrix is Sw = (Ct + Cd).
The solution is given by a generalized eigendecomposition
expression:

w = eig(S−1
w Sb). (33)

We select the subset of the eigenvectors associated with the
largest eigenvalues as the optimal projections. The number of
the eigenvectors to be retained, (N eigs1 LDA), is selected
via crossvalidation.

4.2.2. Population design matrix

We develop the population design matrices for the target clus-
ter and the distractor cluster respectively using principal com-
ponent analysis (PCA) [10]. To create the target basis matrix,
we first calculate the covariance matrix of target training data
and calculate the eigenvectors and eigenvalues. Then we sort
the columns of the eigenvector matrix according to their as-
sociated eigenvalues and select a subset of eigenvectors as
the basis vectors by their cumulative energy contents. Sim-
ilarly we can develop the population design matrix for the
distractor cluster. The percentage of the cumulative energy
(Perc eigs PCA) can be chosen by the users. Here we use
the same percentage of the eigen-energy for both target and
distractor population design matrices.



4.2.3. Individual design matrix

We develop the individual design matrix using LDA as de-
scribed in Section 4.2.1. We just simply select a subset of the
eigenvectors associated with the large eigenvalues as the indi-
vidual design matrix. Here we set the number of the eigenvec-
tor equals one for simplicity (We investigated larger number
of the eigenvectors with crossvalidation, but the performances
were close).

4.2.4. MEM training

After we have the target population design matrix XT
i , the

distractor population design matrix XD
i and the individual de-

sign matrix Zi, we can estimate the model parameters,α,bi
and variance parameters, σ2,D using EM algorithm for ML
estimation as discussed in Section 2.2. We derive a target
MEM and a distractor MEM after the training as shown in
Figure 2.

4.2.5. MEM test

After we have the MEM models for the target cluster and the
distractor cluster, we can subject the test patterns to the mod-
els. For each test pattern, we have

yTesti = Xiα+ ZibTesti + εi (34)

where bi∼N(0,D) and εi∼N(0, σ2Ini
). Since we have

p(yTesti |α,bTesti )∼N(Xiα+ZibTesti , σ2Ini
), we can max-

imize the posterior and obtain the optimal individual random
effect parameter for the test pattern,

bTest
∗

i = DZTi V−1
i (yTesti −Xiα). (35)

After we obtain bTest
∗

i,target for the target model and bTest
∗

i,distractor

for the distractor model using appropriate design eigenvectors
in (35), we can employ the likelihood ratio test using the re-
spective model log-likelihood estimates:

l(bTest
∗

i ) = ln[N(Xiα+ ZibTest
∗

i , σ2Ini ] + ln[N(0,D)]
= ln(Cσ2) + ln(CD)− [yTesti − (Xiα+ ZibTest

∗

i )]T

× [yTesti − (Xiα+ ZibTest
∗

i )]
2σ2

− bTest
∗T

i D−1bTest
∗

i

2

where Cσ2 and CD are constants. The discriminant value of
the MEM (the estimates of target likelihood) is the difference
between the log likelihood values of the target and distractor
models.

4.3. Parameter regularization

We employ 10-fold cross validation [10] for parameter reg-
ularization for each subject. We train the MEM classifier,
choosing the optimal N eigs1 LDA in dimension reduction
and Perc eigs PCA in population design matrix from discrete
sets that give the best validation performance. Validation per-
formance is the average of the the area under the ROC curve

Fig. 3. 10-fold cross validation results for MEM model
parameter selections on subject 1. Left panel is varying
N eig1 LDA for fixed Perc eigs PCA and right panel is vary-
ing Perc eigs PCA for fixed N eig1 LDA.

Fig. 4. ROC cures for subject 1 (left) and 2 (right) on Test
Session 9 using MEM. FPF is false positive fraction and TPF
is true positive fraction

(AUC) of nine classifiers, each of which is trained on a dif-
ferent nine-fold training set, and evaluated on a one-fold val-
idation set. We also apply the same technique for parame-
ter (kernel size σ2 and cost parameter C) regularization for
SVM [11].

5. RESULTS

5.1. MEM on cross section data

Exhaustive 10-fold crossvalidation to search for the optimal
parameters on a discrete set ofN eig1 LDA = [1, 2, 3, 4, 5, 6,
7, 8] and Perc eigs PCA = [80%, 85%, 90%, 95%, 100%]
was performed for the MEM.The results are shown in Figure
3 for subject 1 session 1. In this case, the optimal parameters
are N eig1 LDA = 6 and Perc eigs PCA = 100% for
subject 1. The same procedure was applied to each training
session for each subject.

In the experiments, both subjects achieved high detection
performance. Figure 4 shows the ROC curves of the test re-
sults for two subjects on their respective test session 9. We
can see that both subjects achieve high detection rates with
AUC = 0.99 for subject 1 and AUC = 0.95 for subject 2.

5.2. Comparison of MEM and SVM

We also conducted exhaustive 10-fold crossvalidation to search
for the optimal parameters on a discrete set of σ2 = [0.05, 0.1



Fig. 5. 10-fold cross validation results for SVM model pa-
rameter selections on subject 1. Left panel is varying σ2 for
fixed C and right panel is varying C for fixed σ2.

Fig. 6. Area under ROC(AUC) for different number of train-
ing sessions for subject 1 (left) and 2 (right) using MEM and
SVM. (By the time of submission, the last three SVM test re-
sults for subject 2 are not ready. Those are corresponding to
the last three dots in dash line of right panel. They will be
ready by the time of paper acceptance.)

, 0.5, 1, 5, 10] and C = [100, 101, 102, 103, 104, 105] for the
SVM. We obtained optimal parameters on each training ses-
sion for each subject. Figure 5 shows the validation results
for subject 1 session 1. In this case, the optimal parameters
are σ2 = 1 and C = 100. We applied the same procedure to
each training session for each subject.

Both the MEM and the SVM achieve high detection per-
formance and the AUC exhibits a generally increasing trend
with the inclusion of additional training data from subsequent
sessions except the SVM on subject 2. Figure 6 demonstrates
the increasing AUC. The SVM shows slightly better perfor-
mance than the MEM as expected based on that discrimina-
tive methods often result in better performance than genera-
tive models in classifications due to optimal decision bound-
aries [12]. However, the MEM is more adaptive for the pur-
pose of online training.

6. DISCUSSION

Our results on the cross session dataset of the real application
demonstrate the viability of the MEM on cross session single-
trial ERP detection. Given a reasonable amount of cross ses-
sion training data, the mixed ERP model achieve excellent
generalization performance in terms of high AUC. The re-
sults prove that the MEM approaches the problem of char-

acterizing between session variation in signal statistics. Our
dimension(rank)-reduced version of the mixed effects model
significantly lowers the computational complexity fromO(n2

i )
to O(k2) (k << ni). Comparing to the SVM, a discrimina-
tive learning method, the MEM is more adaptive because it
offers to encode prior knowledge about the data structure in
a very direct way. Future work will investigate the applica-
tion of the mixed effect ERP models for online training in the
ERP-based brain interfaces by imposing hyper priors across
sessions to allows the fixed effect parameters and random ef-
fect variances to be different for each session.
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