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ABSTRACT

Principal curves have been defined as self-consistent smooth
curves that pass through the middle of data. One of the im-
portant problems with most existing principal curve algo-
rithms is that they are seeking for asmooth curve. In real-
ity, data may take complicated shapes, which may include
loops, self-intersections, and and bifurcation points; hence,
a smooth curve passing through the data may not be a good
representor of the data. Generally, there is, in fact, a princi-
pal graph, a collection of smooth curves that represents the
dataset. We propose a nonparametric principal graph algo-
rithm, and apply it to optical character recognition, where
handling the above mentioned irregularities like loops and
self-intersections is a serious problem that appear in many
characters.

1. INTRODUCTION

By definition, the principal line, namely the first principal
component, is the best linear representor of the data in pro-
jected mean square error sense. Principal curves stem from
the reinterpretation of the principal line and the definition
of self consistency. The term self-consistency was intro-
duced by Hastie and Stuetzle [1] to describe the property
that each point on a smooth curve or surface is the mean
of all points that project orthogonally onto it. Using the
definition of self consistency, they provide a reinterpreta-
tion of the principal line. Since every point on the prin-
cipal line is the expected value of the points that orthogo-
nally project onto this point, the principal line is self con-
sistent, and they generalize this property by defining princi-
pal curves asself-consistent smooth curves passing through
the middle of data [1]. Based on the self-consistency crite-
rion that they define, starting from the first principal com-
ponent, they develop an iterative algorithm to find the prin-
cipal curve. However, there is no proof of convergence for
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Hastie’s algorithm, which makes the theoretical analysis im-
possible. It should also be noted that this definition of the
principal curve requires the the principal curve not to inter-
sect itself, which is quite restrictive.

It is probably safe to say that Hastie and Stuetzle’s lo-
cal conditional expectation based definition has been the
basis behind almost all principal curve algorithms so far.
There are various algorithms in the literature, based on prin-
cipal curve definitions that are derivatives of the original
Hastie-Stuetzle definition. Tibshirani approaches the prob-
lem from a mixture models point of view, and provides an
algorithm that uses expectation maximization [2]. Sandilya
and Kulkarni provide a regularized version of Hastie’s def-
inition by constraining bounds on the turns of the princi-
pal curve to avoid overfitting [3]. Kegl and colleagues de-
fine the regularization in another way by bounding the total
length of the principal curve [4]. Later, Kegl also applies
this algorithm to skeletonization of handwritten digits by
extending it into the principal graph algorithm [5]. Stan-
ford and Raftery propose another approach that improves
on the outlier robustness capabilities of principal curves[6].
Probabilistic principal curves approach, which uses a cu-
bic spline of mixture of Gaussians to estimate the principal
curves/surfaces [7], is known to be among the most success-
ful methods to overcome the a common problem of the prin-
cipal curve algorithms; the bias introduced in the regions of
high curvature.

One significant problem among the different approaches
mentioned above is that, by definition, they are seeking for
a smooth curve. In general, data may have loops, self in-
tersections, and bifurcation points, in which case there does
not exist asmooth curve passing through the data that can
represent the data sufficiently. In the presence of such ir-
regularities, there still exists a principal graph, a collection
of smooth curves, that can represent the data statistics suffi-
ciently.

In fact, Kegl’s principal graph algorithm is perhaps the
only method in the literature that can successfully handle
such irregularities [5]. In this approach, Kegl reshapes his
polygonal line algorithm [4] to handle loops, and self in-



tersections by modifying it with a table of rules and adding
preprocessing and postprocessing steps. The polygonal line
algorithm, which is the basis of the principal graph algo-
rithm, is based on the idea of bounding the length of the
principal curve to prevent overfitting, but there is an im-
portant problem: the optimal length to bound the principal
curve is unknown. Therefore to prevent overfitting -and too
much generalization on the other side- one needs to rerun
the algorithm several times with different length penalty and
convergence parameters until the satisfactory results of ob-
tained. At this point, modifying this algorithm with a table
of predefined rules that include parameters and thresholds
is nothing but further parameterizing the problem.

We recently proposed a mathematically more rigorous
definition of principal curves in terms of the data probability
density, which leads to a nonparametric algorithm that nat-
urally handles the loops and self-intersections with no addi-
tional effort [8]. We provide a subspace constrained mean
shift algorithm to find the projection onto the principal curve
[9]. In some applications like denoising, compression or di-
mensionality reduction, one needs to know the projection of
all data samples onto the principal curve/graph. However,
there are also applications that the principal curve/graphis
enough, where a computationally cheaper approximation of
the principal curve/graph suffice. For instance, optical char-
acter recognition is one such application.

We will develop a computationally inexpensive piece-
wise linear approximate of our principal graph definition.
We will first review our definition briefly, and then pro-
vide the piecewise linear subspace constrained mean shift
algorithm. We present results of the algorithm on notional
datasets, and apply it to optical character recognition as well.

2. LOCALLY DEFINED PRINCIPAL GRAPHS

Before we proceed to the proposed algorithm, we will briefly
review our definition of principal graphs. We will start with
the general definition of principal manifolds of intrinsic di-
mensionalityd, and continue with the one-dimensional prin-
cipal manifolds, namely the principal graphs.

A point is in thed dimensional principal manifold iff
the gradient of the pdf is orthogonal to at least (n-d) eigen-
vectors of the Hessian of the pdf, and the eigenvalues cor-
responding to these (n-d) orthogonal eigenvectors are nega-
tive. For one-dimensional principal manifolds, simply sub-
stituted = 1, and the general definition further simplifies to
the following statement:A point is on the principal graph
iff the gradient of the pdf is an eigenvector of the Hessian of
the pdf and the remaining eigenvectors of the Hessian have
negative eigenvalues.

We present an illustration in Figure 1. Kernel density
estimate of the data probability distribution, and the data
points projected onto the principal curve are shown on a
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Fig. 1. A simple illustration of the principal graph.

dataset that has a loop, a self-intersection, and a bifurcation
point.

In the next section, we will develop a fast nonparamet-
ric algorithm particulary based on kernel density estimation.
At this point, note that the definition of the principal graph
is independent of the density estimator used, and one can
also use other density estimation techniques to develop var-
ious algorithms based on this definition. Wherever suitable,
in some applications one can use Gaussian mixture model
based density estimates [10] that would lead to computa-
tionally cheaper algorithms very similar to the one that we
will develop here.



3. PIECEWISE LINEAR SUBSPACE
CONSTRAINED MEAN SHIFT

In this section, we will develop a computationally efficient
piecewise linear principal graph approximate, but before we
move on to the algorithm we will briefly mention the rea-
sons why we use KDE, and the selection of kernel band-
width, an important implementation step for KDE.

3.1. Natural Connections to KDE

One can see many natural connections between the open
ended problems in principal curve and surface fitting liter-
ature, and studies in KDE literature. These not only yield
direct answers to known problems in principal curve fitting,
but also will help to approach these problems in a more prin-
cipled way.

One obvious connection is the challenge of focusing to
a specific region while finding the principal curve; in other
words, solving for the principal curve in a region of interest.
This is an important challenge since the original principal
surface formulation itself is stated to be inefficient for large
sample sizes [1]. In KDE, using kernel functions of finite
support would handle this problem automatically, and the
support of the kernel function clearly defines which sam-
ples are necessary for the density estimate, hence for the
principal curve/graph, in a given region in the feature space.

Outlier robustness is another important issue in prin-
cipal curve literature. Principal curve approaches that are
based on least squares type methods are very sensitive to
noise. Therefore, outliers in the data require special atten-
tion, and Stanford and Raftery present results on outlier ro-
bustness along these lines by applying their principal curve
clustering algorithm to reconnaissance images [6]. Consid-
ering our approach, since everything imposed on the prob-
ability density estimate is directly imposed on the principal
curve as well, one can use variable bandwidth KDE to in-
crease noise robustness. In this approach, data dependent
kernel functions are evaluated for each sample such that the
width of the kernel is directly proportional with the likeli-
hood of that sample’s being an outlier. This can be imple-
mented in several ways, and the most commonly used meth-
ods are theK-nearest neighbor based approaches, namely:
(i) the mean/median distance to theK-nearest neighbor data
points, (ii) sum of the weights ofK-nearest neighbor data
points in a weighted KDE. At this point, note that to obtain
an asymptotically unbiased and consistent density estimate
the neighborhood parameterK should satisfy

lim
N→∞

K =∞ , lim
N→∞

K

N
= 0 (1)

Selecting the kernel functions in a data dependent manner,
by definition, makes our principal curve algorithm based on
KDE robust to outliers in the data.

3.2. Selection of the Kernel Bandwidth

Principal curve fitting methods exhibit the problem of over-
fitting. Overfitting is an issue that arises if the problem is
defined in terms of a finite number of samples. By defin-
ing the problem in terms of the data density, we assume that
the required regularization constraints should be enforced
by the density estimation step directly.

Considering our KDE based algorithms, this trade off
can be adjusted by setting the kernel width. There is a
rich literature about how to select the kernel function, and
one can use the literature and select a kernel that optimizes
certain criteria about the data, which is much more princi-
pled as compared to bounding the length or curvature of the
curve to provide the required regularization -the optimal
length or curvature is never known.

In KDE literature, one of the most common kernel op-
timization approaches is to use the leave-one-out cross val-
idation maximum likelihood procedure. Consider the ran-
dom vectorx with samples{x1, x2, . . . , xN}. The kernel
density estimate that leaves theith sample out of density
estimation is given by

pi(x) =
1

N

N∑

j=1, j 6=i

Kσ(x− xj) (2)

and the objective of the kernel bandwidth optimization prob-
lem is defined by maximizing the log-likelihood function
over all samples.

maxσ

∑N

i=1
logpi(xi) (3)

This optimization problem can be solved using a line search.
Combining the ML kernel with the variable width KDE ap-
proach mentioned previously is also straightforward. Let
CKNN

i denote the mean distance toK-nearest neighbor sam-
ples. One can select the variable bandwidth of theith sam-
ple asσi = αCKNN

i , whereα is a global scale constant op-
timized using the ML procedure given above. An anisotropic
counterpart of the above isotropic selection method can eas-
ily be obtained by definingCKNN

i as the covariance of
K-nearest neighbor data sampled instead of their mean dis-
tance, yieldingΣi = αCKNN

i .
KDE based implementation has also other advantages.

Anisotropic and/or variable size kernel functions naturally
implement many types of constraints that cannot be defined
by any bound on the length or the curvature of the curve.
Anisotropic kernels yield regularization constraints at dif-
ferent scales among different directions, and variable band-
width kernel functions define varying constraints through-
out the space, wherever necessary as the scale of the data
is changing throughout the space. In summary, KDE not
only connects the trade off between the projection error and
generalization into well studied results of density estimation



field, it also allows one to derive data-dependent constraints
that vary throughout the space from the data directly.

4. IMPLEMENTATION OF THE PIECEWISE
LINEAR SCMS ALGORITHM

Reviewing the definition of the principal graph, a point is
on a critical graph iff the local gradient is an eigenvector
of the local Hessian, since the gradient has to be orthogo-
nal to the other (n − 1) eigenvectors. Furthermore, for this
point to be in the principal curve, the corresponding (n− 1)
eigenvalues must be negative. Under the assumption of a
KDE, a modification of the mean-shift algorithm by con-
straining the fixed-point iterations to the directions of local
curvature at the current point in the trajectory leads to an
update that converges to the principal curves and not to the
local maxima. This is the SCMS algorithm that we pro-
posed earlier [8]. The algorithm is conceptually simple, but
computationally demanding. The bottleneck of the compu-
tational requirement of evaluating the eigendecomposition
of the local covariance at each step for all samples. In the
fast version we present here, we get rid of the eigendecom-
position of the covariance, and perform the projection for
a representative small subset of points -not necessarily data
points- in the feature space to obtain the principal curve ap-
proximate.

First simplification is to get rid of the covariance evalu-
ation and its eigendecomposition at each iteration. Instead,
one can use the eigendecomposition of the covariance at the
initial point and assume that the projection direction is not
changing significantly along the trajectory, or even cheaper,
one can also use the gradient at the initial point. One impor-
tant observation here is that, if the sought principal curveis
a flat ridge, then the gradient of the initial update of each
sample is very close to the sought eigenvector of the Hes-
sian, which yields a computationally much cheaper approx-
imate of the required subspace. Consider the example in
Figure 2, where the trajectories of the gradient (red) and
the trajectories of the ideal principal curve projection, the
greatest eigenvector of local covariance (blue) are shown,
along with the principal curve (green) of this three compo-
nent Gaussian mixture probability density.

The second simplification is to build the piecewise lin-
ear principal graph over a representative set of samples, in-
stead of evaluating the projections of all data samples. To
achieve this, we propose to employ a clustering of the data
and combine the cluster means through the principal graph.
By definition, the modes -the local maxima- of the pdf are
in the principal graph [8, 9]. At this point, since it maps all
points to the mode of the associated attraction basin, mean
shift [11] becomes a suitable way to achieve the required
clustering.

We will start with the KDE of this data set (using Gaus-

Fig. 2. Gradient (red) and principal curve projection trajec-
tories (blue) for a Gaussian mixture pdf.

Table 1. PL-SCMS Algorithm

1. Select the kernel size (using (3) or any other method)

2. Run mean-shift iterations in (5), to find the modes

3. For all mode pairs project the midpoint of the line that
connects these modes onto the principal curve by do-
ing the following:
- Evaluate the local covarianceΣ−1(x) given in (6)
- Find the greatest eigenvector of the local covari-
ancev, select the constrained subspace direction as
either v or -v, depending on which of these has a
positive inner product with the gradient given in (6):
d = v sign(gT v)
- Until convergence: iterate (5), and project the up-
date onto the constrained subspace directiond.

4. Go back to step 3 if the required depth is not obtained.

sian kernels for illustration)

p(x) = (1/N)
N∑

i=1

GΣi
(x− xi) (4)

whereΣi is the covariance for the Gaussian kernel, and the
mean shift update is given by

x← (

N∑

i=1

Σ−1

i GΣi
(x− xi))

−1

N∑

i=1

Σ−1

i GΣi
(x− xi)xi (5)

Iterating 5 until convergence, the modes, namely the zero
dimensional principal set, is obtained.

Once the modes of the pdf is obtained, the next task
is to combine these modes. Consider the gradient and the
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Fig. 3. Principal curve approximations on the semicircle datasetwith depths 0, 1, 2, and 4.

Hessian of the KDE,

g(x) = −N−1
∑N

i=1
ciui

H(x) = N−1
∑N

i=1
ci(uiuT

i − Σ−1

i )
where ui = Σ−1

i (x− xi) , ci = GΣi
(x− xi),

and Σ
−1(x) = −p−1(x)H(x) + p−2g(x)gT (x)

(6)

where the subspace constrained mean shift is nothing but
the same mean shift iteration given in (5), projected onto
the subspace selected by the gradient or greatest eigenvector
of covariance matrix, evaluated at the initial point, and the
convergence condition is checking if the gradient is parallel
to one of the eigenvectors by evaluating

|g(x)T H(x)g(x)|/‖H(x)g(x)‖‖g(x)‖ > 1− ǫ (7)

whereǫ is close to zero, depending on the required accu-
racy of the principal curve - typically 0.01. Also, a com-
putationally cheaper alternative for the stopping criterion
that does not use the gradient and the Hessian might be
‖VVT m(x(k + 1))− x(k)‖ < ǫ.

We select the subset of points to be projected in a se-
quential way, very similar to Kegl’s polygonal line algo-
rithm: for each pair of mode, we will project the midpoint
of the line segment that connects two projected points in the
piecewise linear approximate. This can be performed up to
adepth of m, leading to2m +1 points in between every pair
of mode.

If the data is not self intersecting, performing the piece-
wise linear approximation may not be necessary for all pairs
of modes. A cheaper alternative would be to check the con-
nectivity of the mode graph, and compute the piecewise ap-
proximate of the closest pair of mode in the list of uncon-
nected modes. We will present examples for each case. Ta-
ble 1 summarizes the PL-SCMS algorithm1.

5. EXPERIMENTAL RESULTS

This section presents our results on notional and real data.
For the toy data example, we will present the intermedi-

1Upon acceptance, the MATLAB implementation of the algorithm will
be made available on the author’s web page.

ate steps as well; for the OCR examples only the final re-
sults are given. In all experiments, we will use isotropic
fixed-bandwidth kernel functions, where the bandwidth of
the Gaussian kernel is determined with the ML procedure
as in (3).

5.1. Semi-circle dataset

This dataset has 500 samples, drawn from a uniform dis-
tribution along a circle with a Gaussian perturbation in the
radial direction. Figure 4a shows the data samples (blue)
along with the modes (green), that is the result of step 2 in
Table 1, and leads to the principal curve approximation of
depth 0. Figure 4b, 4c, and 4d presents the principal curve
approximates of depth 1, 2, and 4, respectively. The piece-
wise linear principal curve approximations are shown with
green.

5.2. Feature Extraction for OCR

Skeletonization of optical characters is a natural application
for principal graphs [5], and here we present how our algo-
rithm performs in this application. The dataset used in this
experiment consists of handwritten digits and this datasetis
provided by Kegl. For this experiment, we use the ML ker-
nel bandwidth given in Section 3.2, and the depth parameter
m = 2. Results are presented in Figure 4.

6. CONCLUSIONS

The piecewise linear approximate provided by our approach
is similar to the outcome of Kegl’s principal graph algo-
rithm; however, the difference is that once you estimate the
probability density of the data, the principal curve estimate
will not overfit the data no matter how dense you would like
to populate the points on the principal curve. The irregu-
larities like loops, self intersections, and bifurcation points
do not require special attention and are handled naturally
by the definition. The resulting algorithm has only a sin-
gle parameter, the kernel bandwidth, the optimal value of



Fig. 4. Principal graph results in optical characters

which can be obtained by an inexpensive ML training prior
to principal curve extraction.

In summary, the piecewise linear subspace constrained
mean shift provides a computationally much cheaper ac-
curate estimate of the principal graph that we define. In
the cases, where the projection of all data samples onto the
principal curve is required like in denoising, compression,
and dimensionality reduction, this approach might be insuf-
ficient, because it is specifically designed for applications
where a back projection of the data is not required and the
principal graph itself is sufficient, like in the case of optical
character recognition. The experimental results providedon
notional datasets and the optical character recognition ap-
plication show effectiveness and robustness of the proposed
approach.
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