
 
 

 

  

Abstract—Magnetic Resonance Imaging (MRI) has been 
widely used for both clinical diagnostics and in-vivo research. 
Although MRI images are acquired in the complex number 
field, traditionally magnitude images are utilized for most 
applications, while the phase of the complex numbers is ignored 
due to various signal processing and visualization issues. 
However, there is substantial evidence that a phase of MRI 
image can contain additional useful diagnostic information. For 
example the phase of MRI image can be used to detect excessive 
iron accumulation associated with many neurodegenerative 
disorders such as Alzeimer’s and Parkinson disease. Phase 
wrapping and background phase variations are two main 
problems, which prevent clinical use of phase images directly. 
In this paper, we propose 2-D technique for phase unwrapping 
and background phase correction based on spectral image 
segmentation and detrending algorithms. This method handles 
various noise levels successfully, and most importantly, its 
extension to 3-D volumetric MRI phase image processing is 
conceptually straightforward. 

I. INTRODUCTION 

agnetic Resonance Imaging (MRI) has revolutionized 
clinical practice through its noninvasive imaging 

capabilities. The MRI is acquired as a complex-valued 
signal, however magnitude images are traditionally utilized, 
while phase images are largely ignored and discarded due to 
various difficulties in processing and visualizing them. It is 
known from Fourier analysis of signals that the phase of a 
complex number carries significant information and recently 
more researchers are realizing that in MRI useful information 
can be extracted from the phase data. 

The measured phase is normally wrapped onto the range 
of [–π, +π], which does not reflect the true relative phase 
values across space as seen in Figure 1. Thus phase 
unwrapping is required before visualization or further 
processing. Phase unwrapping in one dimension is a trivial 
problem; however, in higher dimensionalities, it is 
computational intensive and noise sensitive. There are many 
2D phase unwrapping algorithms in the literature, most of 
which can be categorized as either branch-cut or weighted 
least-square methods [3-6]. Chiglia and Romero proposed 
the minimum L0-norm solution, which connects two types of 
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methods [7]. These methods do solve the 2D phase 
unwrapping problem, but they are not easy to expand to 3D. 
Furthermore, these methods are either path-dependent or 
they easily get trapped in local minima. Huntley developed a 
3D noise-immune unwrapping algorithm by extending a 
branch-cut type 2D approach [8]. Although this path-
independent algorithm has less ambiguity, the pixel based 
unwrapping procedure exhibits low efficiency.  

Another problem of phase images is the background phase 
variations due to the magnetic field inhomogeneities across 
an MRI image (see Figure 4a later in the text). Usually, the 
background phase has slowly varying spatial characteristics 
while the signals of interest that relate to e.g. iron 
concentrations in tissue have relatively high frequency 
content. Intuitively, one needs a suitable highpass filter 
design to remove the background phase variations (after 
phase unwrapping). However, in many cases, the background 
phase shift and the ‘true’ signal phase overlap in frequency 
domain, thus linear highpass filters fail to achieve optimal 
separation. Moreover, designing the cut-off frequency for 
such filters is typically heuristic; hence generalization of 
performance to different images is nontrivial.  

In this paper, we propose a nonparametric nonlinear 
method for solving these two problems, namely phase 
unwrapping and background subtraction. Specifically, we 
develop (i) a region based branch-cut algorithm for phase 
unwrapping, and (ii) a region based kernel regression 
approach for background phase variations correction. These 
two parts of the technique are applied sequentially to phase 
images. Suitable image segmentation techniques based on 
different criteria are employed for the two parts. Phase 
unwrapping is achieved by utilizing pixel-coordinate and 
phase-value as features in conjunction with a specifically 
designed wrapping kernel for pairwise affinity based 
clustering; after over-segmentation with this technique, a 
segment-neighborhood graph is formed and segments are 
merged as the phase unwrapping is achieved by adding an 
appropriate integer multiple of 2π and updating the 
neighborhood graph by merging the nodes corresponding to 
the phase-aligned segments. This procedure is repeated until 
all segments are merged (single node is left in the graph). 
This method does not rely on a specific path; the phases of 
neighboring regions are corrected simultaneously, therefore 
it is more efficient compared to pixel-based unwrapping 
algorithms. Next, background phase correction is achieved 
by segmenting relatively high-frequency peaks using the 
mean-shift procedure on position-phase features and 
estimating/interpolating the background under the region of 
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interest by obtaining a kernel regression solution from the 
region surrounding the hole generated by removing the 
segment containing the desired phase signal and subtracting 
it from the region of interest (see Figure 4b in the text).  

The technique is easily extendable to 3D MRI processing 
since it utilizes general nonparametric techniques operating 
in feature-space rather than the image-directly. Experiments 
with MRI phase data demonstrate the effectiveness of the 
proposed approach.  

II. METHOD 

 A block diagram of the proposed method for phase 
unwrapping and background subtraction is provided in 
Figure 2. Next, we describe the details of the algorithm. We 
will focus our discussion on brain MRI, but the techniques 
apply to images of other organs. 

A. Phase Unwrapping 

Mask generating: A brain MRI contains other physically 
separate objects that are not of interest, such as the skull and 
empty space around the head. These regions contain 
irrelevant image pixels that will not only increase the 
computational load, but also decrease the performance of the 
any image processing algorithm due to high nonuniformity of 
phase across and along boundaries. A mask that separates the 
brain is necessary before any further processing. The mask is 
generated from the corresponding magnitude image instead 
of phase image. Specifically, we apply a threshold on the 
magnitude assuming empty space yields small-magnitude 
values: 
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M is the mask image, which contains binary values, 1 
means brain, 0 means non-brain. I is the amplitude, i is pixel 
index, th is the threshold which is acquired from the 
histogram of pixel magnitudes. The mask is smoothened 
using a floodfill technique [9] using the imfill function in 
Matlab® in order to eliminate small holes in the mask that 
occur sporadically throughout the image.  
Spectral clustering algorithm for image segmentation: 
Spectral methods have been extensively studied and widely 
used for dimensionality reduction and clustering [10,11]. 
Spectral clustering algorithms are special cases of pairwise 
affinity-based clustering, and they map data represented in 
the form of feature vectors to the k-dimensional space 
spanned by the normalized eigenvectors of the affinity 
matrix, which corresponding to the k largest eigenvalues, 
hence divides the data/image into k clusters. Determining the 
number of clusters is a challenging problem. For our specific 
purpose, we revise the spectral clustering algorithm so that 
we do need to know k before hand. We repeat the procedure 
till we partition all pixels of the image. The algorithm 
specifically exploits two facts about phase wrapping 
boundaries – the average phase difference along such a 
boundary is 2π and the segments must consist of connected 
sets of pixels. Consequently, a kernel that is rectangular 

uniform on a 3×3 pixel region times a mod-2π uniform along 
phase value with support π is employed. This kernel yields 
an idealized sparse connectivity graph for pixels. The 
algorithm is as follows: 
1. Calculate affinity matrix A=[A ij] with A ij=K(xi-xj), where 

x is a 4-dimensional vector containing row and column 
indices, intensity (wrapped phase value), and edge-
feature of a pixel.1  

2. Find the largest eigenvalue and the corresponding 
eigenvector v of the affinity matrix.  

3. For the ith element in the largest eigenvector, which 
corresponds to the ith pixel, if the value is larger than a 
threshold, we assign it to the cluster Cj, where j=1,2,… 

4. If pixel i is assigned to cluster Cj in step 3, set the ith row 
and column of the affinity matrix to 0. 

5. Repeat step 2-4, until all elements in affinity matrix are 0. 
 Phase unwrapping using branch-cut method: Our phase 
unwrapping algorithm uses the branch-cut approach. 

 
1 Here, i and j are the pixel indeces and K is the affinity/kernel function. 

The joint kernel is the multiplication of 4 univariate rectangular kernels. 
For position the kernel is 3-pixels-wide, the phase intensity kernel is π/10-
wide with a circular (modular) absolute-difference, and the edge-feature 
kernel is the thresholded binary edge value for each pixel. This kernel leads 
to a sparse affinity matrix also taking the phase wrapping into account 
when measuring affinities. 

Figure 1. A sample MRI slice that demonstrates phase wrapping 
(left) and the profile of phase along the line segment shown (right). 
 
 

Figure 2. Block diagram of the proposed phase unwrapping and 
background variations correction approach. 
 
 

 
Figure 3. An illustration of the contact map and the contact matrix 
for a hypothetical phase image segmentation outcome. 



 
 

 

However, unlike most of branch-cut methods in the 
literature, which form a particular path and correct the phase 
along this path pixel by pixel, our method unwraps the phase 
regionally.  First, we rank the regions by decreasing number 
of pixels, which are acquired from image segmentation in the 
previous subsection and relabel these clusters such that 
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where Ni is the number of pixels of the ith (largest) region. 
We define the Contact Map (neighborhood graph) and the 
corresponding Contact Matrix (graph connectivity matrix) as 
illustrated in Figure 3: if regions i and j share a common 
boundary, we say i and j are in contact and assign 1 to the 
corresponding element in the Contact Matrix (CM): 
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Given the largest region, region 1, we determine the 
largest region that it has contact with, labeled region j, and 
the algorithm corrects the phase of all pixels in region j by 
the amount, an integer multiple of 2π such that the average 
phase difference along the boundary of regions 1 and j is 
closest to zero. Regions 1 and j are then merged and all 
pixels in j are assigned the label 1. All region labels, contact 
map, and matrix are updated accordingly. The procedure is 
then repeated until all regions are merged and all phase 
wrapping boundaries are brought to an average of zero. By 
correcting the phase of complete regions that share phase 
wrapping boundaries simultaneously, this approach reduces 
computational requirements significantly compared to pixel-
based branch-cut methods. 

B. Correction of Background Phase Variations 

 The most direct way to subtract the background is to 
apply a highpass filter on the phase image, since the 
background is a slowly varying signal over space and the 
signal of interest related to local molecule concentrations 
exhibits high frequency content. However, by examining the 
frequency response of the phase image, we find that the 
background and target signal components significantly 
overlap in frequency domain. Consequently, simple linear 
highpass filters fail to correct the background shift. 
Moreover, the cut-off frequency selection of the highpass 
filter tends to be heuristic since exact frequency profiles of 
the two signals are unknown and optimal Wiener filters 
cannot be designed. 
 We model the problem as x(p)=s(p)+b(p)+n(p), where 
x(p) is the measurement, s(p) is the desired signal, b(p) is the 
unwanted additional background component, and n(p) is the 
measurement noise at position p. A synthetic example of the 
signal along a line segment through a high iron-concentration 
region in the brain is presented in Figure 4a. Visual 
inspection of typical images reveals that the SNR is 
reasonably high. We first segment the regions which contain 
the desired signal from the regions that contain only 
background (Figure 4b), then estimate the background for all 
regions by fitting a nonlinear model to the data that contains 

only background. Finally, we recover the desired signal by 
subtracting the estimated background from the measurement. 
 Mean-shift algorithm for image segmentation: To 
separate the unwrapped phase image into the regions which 
contain the desired signals (often in the form of a sharp 
bump) and the regions which contain only background phase 
variations, we employ the mean-shift algorithm, an algorithm 
perfectly suited for this purpose, because it is specifically 
designed to cluster data based on the existing modes and 
assigning data to the mode (bump) that its gradient ascent 
trajectory climbs to. 
 Mean-shift algorithm is a nonparametric clustering 
technique that does not require prior knowledge of the 
number of clusters. It finds the modes of density function by 
moving every sample uphill using fixed-point gradient ascent 
updates until convergence to local maxima is achieved [12]. 
Given N data samples of a d-dimensional random vector xi, 
i=1,…N, the probability density f(x) is estimated using 
kernel density estimation: 
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where K(x) is a symmetric unimodal kernel function 
(typically a Gaussian) with an appropriately selected width 
(typically circular covariance for Gaussian). Taking the 
derivative of (4) with respect to x and equating to zero, for 
the Gaussian kernel, one obtains the fixed point update: 
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Figure 4. (a) The measurement is composed of the sum of a 
spatially abrupt desired signal, unknown slowly varying 
background, and measurement noise. (b) On the left we identify 
segment boundaries which identify pure-background regions and 
identifies a nonlinear fit from these segments, and on the right, the 
desired local phase is extracted after background subtraction. 



 
 

 

 Kernel regression for background estimation: Kernel 
regression is a nonparametric method for smoothing, curve 
fitting and denoising [13] and is employed here as a 
nonparametric nonlinear means of background estimation. 
Assume that we segment the image into two regions using 
mean shift followed by merging of all clusters corresponding 
to the desired signal into one (S) and all background clusters 
into one (B). The phase value at any pixel coordinate p can 
be represented as: 
 ∑ = −= N
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where the index j runs over all pixels in B and, G is a 
Gaussian kernel. Using data pairs (pj,φ(pj)), one determines 
the optimal combination coefficient vector c=[c1,c2,…cN]T as 
 ( ) φIGc 1−+= λ  (7) 

where G is the matrix consisting of G(pi-pj) in its entries and 
ϕϕϕϕ is the vector of target phase values at these pixels in B. 
The regularization parameter λ is introduced to prevent 
overfitting to noise and is selected by 2-fold cross validation 
on the pixels in B. Once the optimal c is determined, the 
background estimate in S can be evaluated for pixels in this 
region using (6) as well.  

III. EXPERIMENTS AND RESULTS 

The proposed method is tested on brain MRI phase data. 
For illustration, we present results obtained on a 
representative scan. The original phase is shown in Figure 5a 
in which wrapping is observed near the boundaries of the 
brain (in many cases wrapping occurs inside the brain as 
well). The generated mask is shown in Figure 5b and the 

unwrapping result for the image portion under the mask is 
shown in 5c. In this particular case, the phase distortions in 
the globus pallidus region due to accumulation of iron is of 
interest and Figure 5d focuses on this region. Mean shift 
segmentation result of this region is shown in 5e, from which 
two clusters corresponding to the bump and the background 
are manually selected by a human expert (only manual action 
in the procedure at this stage since it is challenging to 
completely automate the procedure for determining what 
constitutes a peak of interest and what does not as that 
requires anatomical and diagnostic knowledge). Figures 5f 
and 5g present the original phase on the left and right globus 
pallidus regions as well as results of background correction 
using the straightforward highpass filtering (with visually 
optimized cut-off frequency, since there is no ground truth 
available) and the proposed technique.  

IV. CONCLUSION 

In this paper, we proposed a semiautomated technique for 
MRI phase image unwrapping and correction of background 
phase variations. The method tackles both unwrapping and 
background segmentation problems using custom clustering 
algorithms modified for the particular application. 
Specifically for phase unwrapping a specific kernel design in 
conjunction with pixel coordinate and modular-phase 
intensity difference metric allows the design of a sparse 
connectivity matrix, thus a straightforward spectral clustering 
solution. The background segmentation is achieved by mean-
shift which specializes in clustering modes/peaks of a 
distribution function by fixed-point gradient ascent updates. 
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 (f) (g) 
Figure 5. Results of phase unwrapping with correction for background phase variations. (a) Original MRI phase signal; (b) Mask; (c) 
Unwrapped phase signal inside mask (d) Region of interest; (e) Mean-shift segmentation results of region of interest; (f) Top row: phase 
around left-hemisphere globus pallidus (left to right) in the original, after highpass filtering, after the proposed processing; bottom row: 
cross-section of phase along indicated line segment; (g) Top row: phase around right-hemisphere globus pallidus (left to right) in the 
original, after highpass filtering, after the proposed processing; bottom row: cross-section of phase along indicated line segment. 



 
 

 

 The main advantages of this method are: (i) phase 
unwrapping algorithm is based on regions rather than pixels; 
therefore, it is more effective compared to pixel-based 
branch cut and least-squares methods; (ii) it is 
nonparametric, therefore minimal assumptions regarding the 
image is made hence the technique is versatile; (iii) it is a 
dimension-independent method and can be easily extended 
to 3D MRI processing in the same manner. The proposed 
method has been applied to clinical brain MR phase images 
for the purpose of isolating iron concentration induced phase 
distortions in and around the globus pallidus from 
background fluctuations due to tissue variability. 
Experimental results showed that the technique effectively 
unwraps the phase and removes the background phase 
baseline in comparison to the straightforward highpass 
filtering approach. 

 We should note that the performance of segmentation 
algorithms is critical to the success of the proposed method. 
Current segmentation algorithms (spectral and mean shift) 
are computationally very demanding – O(N2) for N pixels. 
Our future research will focus on improving the speed and 
efficiency of segmentation without compromising the 
robustness and accuracy. We will also extend the proposed 
method to 3D MRI images. 
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