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Abstract—Magnetic Resonance Imaging (MRI) has been Methods [7]. These methods do solve the 2D phase

widely used for both clinical diagnostics and in-wio research.
Although MRI images are acquired in the complex nurber
field, traditionally magnitude images are utilized for most
applications, while the phase of the complex numbsris ignored
due to various signal processing and visualizatiorissues.
However, there is substantial evidence that a phasef MRI

image can contain additional useful diagnostic infanation. For

example the phase of MRI image can be used to detexcessive
iron accumulation associated with many neurodegenative
disorders such as Alzeimer's and Parkinson diseasd?hase
wrapping and background phase variations are two ma

problems, which prevent clinical use of phase imagedirectly.
In this paper, we propose 2-D technique for phasemwrapping

and background phase correction based on spectraimage
segmentation and detrending algorithms. This methodhandles
various noise levels successfully, and most importdy, its

extension to 3-D volumetric MRI phase image procesgy) is
conceptually straightforward.

I. INTRODUCTION

unwrapping problem, but they are not easy to exparfD.
Furthermore, these methods are either path-deperaten
they easily get trapped in local minima. Huntleyeleped a
3D noise-immune unwrapping algorithm by extending a
branch-cut type 2D approach [8]. Although this path
independent algorithm has less ambiguity, the pbeded
unwrapping procedure exhibits low efficiency.

Another problem of phase images is the backgroilnasge
variations due to the magnetic field inhomogenegitgeross
an MRI image (see Figure 4a later in the text).dllguthe
background phase has slowly varying spatial charstics
while the signals of interest that relate to e.gni
concentrations in tissue have relatively high fieny
content. Intuitively, one needs a suitable highp&ker
design to remove the background phase variatiofter (a
phase unwrapping). However, in many cases, thegoaakd
phase shift and the ‘true’ signal phase overlafrequency
domain, thus linear highpass filters fail to ackiesptimal

M agnetic Resonance Imaging (MRI) has reVOIUtionizegeparation. Moreover, designing the cut-off freqyefor

clinical practice through its noninvasive

signal, however magnitude images are traditionatilzed,
while phase images are largely ignored and discadde to
various difficulties in processing and visualizitigem. It is
known from Fourier analysis of signals that the gghaf a
complex number carries significant information aedently
more researchers are realizing that in MRI usefidrmation
can be extracted from the phase data.

) ) im"’lgingsuch filters is typically heuristic; hence generafion of
capabilities. The MRI is acquired as a complex-gdlu

performance to different images is nontrivial.

In this paper, we propose a nonparametric nonlinear
method for solving these two problems, namely phase
unwrapping and background subtraction. Specifically
develop (i) a region based branch-cut algorithm ghase
unwrapping, and (ii) a region based kernel regoessi
approach for background phase variations correclibiese
two parts of the technique are applied sequenttallphase

The measured phase is normally wrapped onto thgeranages. Suitable image segmentation techniquesdbase
of [-m, +r], which does not reflecF the_ true relative phasQittarent criteria are employed for the two parBhase
values across space as seen in Figure 1. Thus phgsgranping is achieved by utilizing pixel-coordiaaand
unwrapping is required before visualization or fiert ,.q6.vaue as features in conjunction with a &patty
processing. Phase unwrapping in one dimensionti&/ial - gegigned wrapping kemel for pairwise affinity bdise
problem; however, in higher dimensionalities, it iSygtering: after over-segmentation with this tdghe, a

computational inten§ive and .noise §ensitiv§. Tlaeeemany segment-neighborhood graph is formed and segmeets a
2D phase unwrapping algorithms in the literatur@stof merged as the phase unwrapping is achieved by @ddin

which can be categorized as either branch-cut oghted 5,5 o riate integer multiple of 72 and updating the
least-square ryethods [3-6]. Chiglia and Romero @ef heighnorhood graph by merging the nodes correspgridi
the minimum L-norm solution, which connects two types ofy, o phase-aligned segments. This procedure is tepeatil

all segments are merged (single node is left ingtaph).
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This method does not rely on a specific path; thasps of
neighboring regions are corrected simultaneouslgrefore
it is more efficient compared to pixel-based unwiag
algorithms. Next, background phase correction ieaed
by segmenting relatively high-frequency peaks usihg
mean-shift procedure on position-phase features and
estimating/interpolating the background under thgian of



interest by obtaining a kernel regression solufimm the
region surrounding the hole generated by removing t
segment containing the desired phase signal anmastibg

it from the region of interest (see Figure 4b ia text).

The technique is easily extendable to 3D MRI preices
since it utilizes general nonparametric technigopsrating
in feature-space rather than the image-directiypeExnents
with MRI phase data demonstrate the effectivendsthe
proposed approach.
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Figure 1. Asample MRI slice that demonstrates phase wra,
(left) and the profile of phase along the line segtrshown (right).

A block diagram of the proposed method for phas
unwrapping and background subtraction is provided i
Figure 2. Next, we describe the details of the rtigm. We
will focus our discussion on brain MRI, but the lieiues
apply to images of other organs.
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A. Phase Unwrapping . - .
) . ) ) Figure 2. Block diagram of the propospHase unwrapping a
Mask generating: A brain MRI contains other physically background variations correction approach.

separate objects that are not of interest, sutheaskull and
empty space around the head. These regions contain
irrelevant image pixels that will not only increaske
computational load, but also decrease the perfarenahthe
any image processing algorithm due to high nonumifty of
phase across and along boundaries. A mask thatasepahe
brain is necessary before any further processihg.fiask is
generated from the corresponding magnitude imagieaa
of phase image. Specifically, we apply a threshmidthe
magnitude assuming empty space yields small-matmitu
values:
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Figure 3. An illustration of the contact map and tdontact matrix
for a hypothetical phase image segmentation outcome

. . . . . uniform on a 33 pixel region times a modruniform along

M is the_ mask image, Whlc.h cc_mtams b'”‘?‘FY vglubs, phase value with supportis employed. This kernel yields
means brqln, 0 means non-bram. ! 1S the amphtudﬁmxel an idealized sparse connectivity graph for pixel$ie
index, th is the threshold which is acquired from thealgorithm is as follows:
histogram of pixel magnitudes. The mask is smoatien “caculate affinity matr&=[A;] with A;=K(x-x), where
using a floodfill technique [9] using thienfill function in x is a 4-dimensional vector containing row and cefum
Matlab® in order to eliminate small holes in theskahat indices, intensity (wrapped phase value), and edge-
occur sporadically throughout the image. feature of a pixet.

Spectral  clustering algorithm for image segmentation: 2. Find the largest eigenvalue and the correspgndin
Spectral methods have been extensively studiednéahely eigenvectow of the affinity matrix.
used for dimensionality reduction and clusterin@,I1]. 3. For thei"” element in the largest eigenvector, which

Spectral clustering algorithms are special casegaafvise
affinity-based clustering, and they map data regwtesd in
the form of feature vectors to thiedimensional space 4,
spanned by the normalized eigenvectors of the igffin
matrix, which corresponding to thie largest eigenvalues, 5.
hence divides the data/image iktolusters. Determining the
number of clusters is a challenging problem. Farspecific
purpose, we revise the spectral clustering algorigo that
we do need to know before hand. We repeat the procedure

unwrapping algorithm uses

corresponds to th&" pixel, if the value is larger than a
threshold, we assign it to the clustgyrwherej=1,2,...

If pixel i is assigned to cluster; i step 3, set the" row

and column of the affinity matrix to 0.

Repeat step 2-4, until all elements in affimitgtrix are 0.
Phase unwrapping using branch-cut method: Our phase
the branch-cut approach.

till we partition all pixels of the image. The algbm

! Here,i andj are the pixel indeces atdis the affinity/kernel function.

specifically exploits two facts about phase wragpinThe joint kernel is the multiplication of 4 univate rectangular kemels.

: _ : For position the kernel is 3-pixels-wide, the phagensity kernel is#10-
boundaries the average phase difference along auc wide with a circular (modular) absolute-differen@nd the edge-feature

boundary .iS 2 and the segments must COI’ISiSt.Of connectg@nel is the thresholded binary edge value fohemxel. This kernel leads
sets of pixels. Consequently, a kernel that isamgpilar to a sparse affinity matrix also taking the phasapping into account
when measuring affinities.



However, unlike most of branch-cut methods
literature, which form a particular path and cotitbe phase
along this path pixel by pixel, our method unwréps phase
regionally. First, we rank the regions by decregsiumber
of pixels, which are acquired from image segmeoitaith the
previous subsection and relabel these clusterstiath

Ny2N,2Ng2 2N, (2)
whereN; is the number of pixels of tHéh (largest) region.
We define the Contact Map (neighborhood graph) téued
corresponding Contact Matrix (graph connectivitytmmig as
illustrated in Figure 3: if regions andj share a common
boundary, we say andj arein contact and assign 1 to the
corresponding element in the Contact Matrix (CM):

i, ] are Contact
CM :{
0 o/w

Given the largest region, region 1, we determine th
largest region that it has contact with, labelegiaej, and
the algorithm corrects the phase of all pixelségionj by
the amount, an integer multiple of 2uch that the average
phase difference along the boundary of regions d jais
closest to zero. Regions 1 apdare then merged and all
pixels inj are assigned the label 1. All region labels, cdnta
map, and matrix are updated accordingly. The pnoeed
then repeated until all regions are merged andpldise
wrapping boundaries are brought to an average rof. &y
correcting the phase of complete regions that spheese
wrapping boundaries simultaneously, this approactuces
computational requirements significantly comparegixel-
based branch-cut methods.
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B. Correction of Background Phase Variations

The most direct way to subtract the backgroundois t

apply a highpass filter on the phase image, sidwe t
background is a slowly varying signal over spacd #re
signal of interest related to local molecule comiiONS
exhibits high frequency content. However, by exangrthe
frequency response of the phase image, we find tthat
background and target signal components signifigant
overlap in frequency domain. Consequently, simphear
highpass filters fail to correct the background ftshi
Moreover, the cut-off frequency selection of thghmass
filter tends to be heuristic since exact frequepoyfiles of
the two signals are unknown and optimal Wienereffdt
cannot be designed.

We model the problem agp)=s(p)+b(p)+n(p), where
x(p) is the measuremer(p) is the desired signab(p) is the
unwanted additional background component, apj is the
measurement noise at positipnA synthetic example of the
signal along a line segment through a high ironeeoiration
region in the brain is presented in Figure 4a. #fisu
inspection of typical images reveals that the SNR
reasonably high. We first segment the regions whattain
the desired signal from the regions that contairdy on
background (Figure 4b), then estimate the backgtdonall
regions by fitting a nonlinear model to the datat ttontains
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Figure 4. (a) The measurement is composed of tme ofic
spatially abrupt desired signalunknown slowly varyin
background, and measurement noise. (b) On theneftdentify
segment boundaries which identify puraekground regions a
identifies a nonlinear fit from these segments, andhe right, th
desired local phase is extracted after backgroubttaction.

only background. Finally, we recover the desireghal by
subtracting the estimated background from the nreasent.
Mean-shift algorithm for image segmentation: To
separate the unwrapped phase image into the regibict
contain the desired signals (often in the form o$harp
bump) and the regions which contain only backgroundspha
variations, we employ the mean-shift algorithm adgorithm
perfectly suited for this purpose, because it iscijrally
designed to cluster data based on the existing snade
assigning data to the mode (bump) that its gradiscent
trajectory climbs to.

Mean-shift algorithm is a nonparametric clustering
technique that does not require prior knowledgeths
number of clusters. It finds the modes of denaitycfion by
moving every sample uphill using fixed-point grattiascent
updates until convergence to local maxima is acuei2].
Given N data samples of ddimensional random vectox,
i=1,...N, the probability densityf(x) is estimated using
kernel density estimation:

f(x):%ZiN:lK(x—xi) 4)

where K(x) is a symmetric unimodal kernel function
(typically a Gaussian) with an appropriately seddctidth
(typically circular covariance for Gaussian). Takirthe
derivative of (4) with respect t® and equating to zero, for
the Gaussian kernel, one obtains the fixed poidatg

o Erxs-n)/ELee-x) 6
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Figure 5. Reults of phase unwrapping with correction for baoked phase variations. (a) Original MRI phase aigth) Mask; (c
Unwrapped phase signal inside mask (d) Region tefést; (e) Mean-shift segmentation results ofaegif interest; (f) Top row: phase

around left-hemisphere globus pallidus (left tcht)gin the original,

after highpass filteringfter the proposed processing; bottom

cross-section of phase along indicated line segnf{ghtTop row: phase around right-hemisphere glopaltidus (kft to right) in th
original, after highpass filtering, after the prepd processing; bottom row: cross-section of phls® indicated line segment.

Kernel regression for background estimation: Kernel
regression is a nonparametric method for smoothingve
fitting and denoising [13] and is employed here as
nonparametric nonlinear means of background estimat
Assume that we segment the image into two regi@isgu
mean shift followed by merging of all clusters asponding
to the desired signal into one (S) and all backadociusters
into one (B). The phase value at any pixel coortgipacan
be represented as:

o)=Y LiciGp-p)) (6)
where the indeX runs over all pixels in B and; is a
Gaussian kernel. Using data paips ¢(p;)), one determines
the optimal combination coefficient veci¥[cy,C,,...C\] " as

c=(G + A1)ty (7)
whereG is the matrix consisting @(p;-p;) in its entries and
¢ is the vector of target phase values at theselgpireB.
The regularization parameter is introduced to prevent
overfitting to noise and is selected by 2-fold srealidation
on the pixels in B. Once the optimalis determined, the
background estimate in S can be evaluated for pixethis
region using (6) as well.

[ll. EXPERIMENTS ANDRESULTS

The proposed method is tested on brain MRI phate daconjunction with pixel

For illustration, we present results obtained on
representative scan. The original phase is shovigiure 5a
in which wrapping is observed near the boundarfethe
brain (in many cases wrapping occurs inside thenbaa
well). The generated mask is shown in Figure 5b tued

unwrapping result for the image portion under thesknis
shown in 5c. In this particular case, the phastodiens in
the globus pallidus region due to accumulationrofiiis of
interest and Figure 5d focuses on this region. Mshift
segmentation result of this region is shown infé@mn which
two clusters corresponding to the bump and the dracind
are manually selected by a human expert (only niauti®n
in the procedure at this stage since it is chaitengo
completely automate the procedure for determinirttatw
constitutes a peak of interest and what does nothals
requires anatomical and diagnostic knowledge). Heigbf
and 5g present the original phase on the left ayid globus
pallidus regions as well as results of backgroumdection
using the straightforward highpass filtering (wifsually
optimized cut-off frequency, since there is no gmburuth
available) and the proposed technique.

IV. CONCLUSION

In this paper, we proposed a semiautomated techrfiou
MRI phase image unwrapping and correction of bamigd
phase variations. The method tackles both unwrgpaid
background segmentation problems using customeringt
algorithms modified for the particular application.
Specifically for phase unwrapping a specific kemhesign in
coordinate and modular-phase
fhtensity difference metric allows the design ofsparse
connectivity matrix, thus a straightforward spelcttastering
solution. The background segmentation is achieyehéan-
shift which specializes in clustering modes/peaKks ao
distribution function by fixed-point gradient astepdates.



The main advantages of this method are: (i) phase
unwrapping algorithm is based on regions rathenm tigels;
therefore, it is more effective compared to pixaséd
branch cut and least-squares methods; (i) it is
nonparametric, therefore minimal assumptions reggrthe
image is made hence the technique is versatiig;it(iis a
dimension-independent method and can be easilyhaste
to 3D MRI processing in the same manner. The preghos
method has been applied to clinical brain MR phiasgges
for the purpose of isolating iron concentrationuoed phase
distortions in and around the globus pallidus from
background fluctuations due to tissue variability.
Experimental results showed that the techniquecefiey
unwraps the phase and removes the background phase
baseline in comparison to the straightforward hagsp
filtering approach.

We should note that the performance of segmentatio
algorithms is critical to the success of the pragbmethod.
Current segmentation algorithms (spectral and mne¥aft)
are computationally very demanding®{N?) for N pixels.
Our future research will focus on improving the eppeand
efficiency of segmentation without compromising the
robustness and accuracy. We will also extend topqsed
method to 3D MRI images.
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