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Abstract— There is evidence that brain signals associated
with perceptual processes can be used for target age
search. We describe the application of mixed effect
models (MEMS) to brain signature detection. We devep
an MEM detector for detecting brain evoked response
generated by perceptual processes in the human brai
associated with detecting novel target stimuli. We
construct the model using principal component analsis
and linear discriminant analysis (LDA) bases. We aopt
the LDA for dimension reduction. For parameter
regularization we use 10-fold cross validation andeport
experimental results from six subjects. Four out ofsix
subjects achieve very good detection performance thi
more than 0.9 areas under receiver operating
characteristic curves. The results demonstrate thathe
MEM can provide reliable inference on single-trial ERP
detection on the task of target image search.

I. INTRODUCTION

arget image search through large volumes of images

become an important issue in many domains. Recent6 05
researchers began to exploit brain signals assaciat *°;

with split second perceptual judgments as the basigisual
target image search [1-5]. The goal of our resedascto
develop algorithms for detecting electroencephalplyy
(EEG) evoked responses efficiently based on theaViand
cognitive systems of the human expert. Our systepfods
EEG as the main indicator to see if an image seefiyoby
the expert contains a target (object of interestlaon-
target (distractor) as shown in Figure 1. The ntask is to
detect the event-related potentials (ERP) as showvAigure
2, which generated from the human brain in respdose
critical events, such as interesting/novel vistiahgli in the
form of a target image. Our initial study [6] derstrates the
ERP-based image triage system is viable for taigege
search.

In this study, we present an alternative classifi
mixed effect model (MEM) to the task of detectingleed
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Figure 1. An illustration of the RSVP image displapdality is
shown on the left. On the right, the upper tracani€RP averag
over trials (in one representative channel) anddher trace is tr
average baseline EEG signal recorded in responsdistoacte
stimuli. Time-zero corresponds to stimulus onset.
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Figure 2: Images of ERP and n&RP signals over many trii
(each row) associated with targets and distradtorsubject #1 ¢
channel FP1, colors adjusted to match scales amrnagges. Time-
zero corresponds to stimulus onset in each tria¢ ffacs at th
bottom of each image are the EEG signals averagedtdals.

shape and image analysis [7]. It assumes that dis@mns
between levels or clusters are independent, bugreatsons
within each cluster are dependent. An advantagehef
MEM is the ability to genuinely combine the data by
introducing multilevel random effects. Thereforeistwell
suited for the analysis of longitudinal data andniédical
data.

Use of the mixed modeling techniques in the EEG
detection is exciting and promising. The most arajing
issue of detecting neural signatures is the higtedsionality

response potentials in EEG — ERPs. This is a novghy |ack of large training sets. Since it is imjpicad to have

application of the MEM. The MEM [7], first proposédxy
Laird and Ware [8] for solving the highly unbaladce
longitudinal problem, is a hierarchical model with
complex, multilevel and hierarchical structure.hbis been
widely used on the analysis of longitudinal datd §d
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extensive training, we attempt to train classifieessed on
data aggregated across multiple subjects. An MEM ca
easily meet this need by combining the random tffec
(within and between subject variance) and fixedeatff
(consistent patterns across subjects). This wovkals the
power of this statistical approach to the nontiaddl
statistical data — EEG data. The results estalilish the
MEM can be a reliable detector for the ERP pattemshe
task of visual target image search.



Il. MIXED EFFECTMODELS o N ¢ N
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2.1 Model description i=1 i=1
. . . . ~ 1N
In general, a linear MEM is written as, for each D=—73hb/ . ()
yi =X:.a+Z:b: +¢;: (1) N =1
i i iMi i a2 ~ .
wherei =1... N, Nis the number of individuals. E—s'Fe.Q.If g gnq D were available, we could calculate the
. . . sufficient statistics as follows:
* y; is an n;x1 vector of observations for théh N o N LT (N - ©)
individual and n; is the number of observations for th LIRS LE 6) .6)+ 2t barle  1y,a6)s ]
individual. N 1t _N {~ ATA A A]}
. . . bibj = b;{0) b;{e)+Var|b; |y; al0) 0, 7
« o is an px1 population fixed effects vector. El e El '( ) '( ) ar[ ' Iy,‘a( ) %

* Xjisann; x p population design matrix of fixed effects. whereg; (é):yi -xia(é)—zif)i (é)and b; (6) were obtained
* b; is akxlindividual random effects vector . We assumgrom ML estimation from Equation (3). We can derive

that the random effects are independent and hawerraal Varl_s- ly: &(é) 6] based on g0~ N(O 21 )
distribution b; ~N(0,D) where Dis a kxkmatrix of Y : o

positive definite covariance. yilei 0~ N(xia,ziDz_T) and yi;0~N(xia,021n +7,0Z").

* Z; is an n; xk individual design matrix of random ' A '
effects. Similarly we can calculaté/ar[bi |yi’a(0), 0] based on that
e g is an n; x1 vector of independent and identicallybi;9~N(o,D), yi Ibi:9~N(Xia’fzibiﬂzlni)and

distributed (iid) errors with zero mean and positilefinite
within-individual variance. We assume that theoeterms

have a normal distributione; ~N(0,021ni), where variance parameter estimates as:

yi;9~N(Xiu,021ni+ZiDZ_T). Thus we obtain the
|

I, denotes am; x n; identity matrix.
' - T A AT V(. V17t
Thus y; has a multivariate normal distribution Zsi(ﬂ) si(ﬂ)+_2tr {(ZiDZi) +(0' Ini) }
N (8)

R i=1 i=1
Yi ~N(Xioz,c721ni +ZiDZiT). In Equation (1)y; , X; and G2 = N
XN
Z; are known andx, b; and g; are unknown. The variance =
parameters,g?and D are unknown and subjected to be . 1N ()T . () z?zi . - _ 9)
estimated along with the population-averaged patame D = ng bil0) bilo)+ o2 +D

2.2 Model Parameter Estimation At the last iteration of EM algorithm (convergence® have

We apply expectation-maximization (EM) algorithn] f&r 52 a3ndD .
maximum likelihood (ML) estimates: the model parieng,

aandb;, and random variance parameterg,and D . lll. - ERP DETECTOR CONSTRUCTION

The classification study is to assess the MEM aisdicator

2.2.1 ML Estimation ofand b of the ERP. The goal is to evaluate the efficacj&M on

Writing Var(y;) asy, = 021ni +z,pz T, if all covariance the single-trial ERP detectionWe adopt the receiver
A2 . operating characteristic (ROC) curve to estimate th

parameterss” and D were known, thel; was known, we qyantitative efficacy.

could estimaten and b; . The log-likelihood function for the 3.1 Data Preparation

MEM could be maximized by the generalized leas@sesl The EEG data collection was the same as in [6]. iffagjes
estimator, were labeled whether or not they contained targetd
P [ § xTv-‘lx-)_l Sy (2) Ppresented at very high rates (durations were 6088, ms,
L A = or 150ms per image). The subjects performed target
If awere known, treatb; as fixed effects and use Ieastdeteﬁtion as shown in '29;11 by clicking on a WWE Sa?mci)jn
L ; as they saw a target. At the same time, we morit
square estgnaflfn, from Fquat|on (1), we have recorded their EEG signals by a 32-channel EEGesy$or
bj =DZj V; (yi _Xi“) ' ) subsequent analysis. The sampling rate is 256 Hz.
2.2.2 EM algorithm for ML estimates ofand D Six subjects were recruited for the study. Eachjesub
had one training session and one to seven tesbsesk the
M-step: If we were to observeb; and &, use sample aining sessions the images were randomly displayeile
variance, we could easily obtain simple closed-feptution in the test sessions the image chips were displayetie
using ML estimation of variance. natural spatial order of a broad-area image. Dutirytest
for subject #1, #2, #3 and #fke targetshat were not part



of the original broad-area image were introducetiomly
to keep the subject alert to prevent the boreddatee

3.2.3 Individual Design Matrix
We develop the individual design matrix using LDA a

ERP-degeneration. We included these fake targetsnwhdescribed in Section 3.2.1. We just simply selestiaset of

conducting the detection performance evaluatiomrrg lwere
around 50 targets in hundreds of distractors intthming
while there were two to twenty targets (includifiake

the eigenvectors associated with the large eigapgads the
individual design matrix. Here we set the numberthod
eigenvector equals one for simplicity (We invedighlarger

target9 within thousands of distractors in the test. Th@umber of the eigenvectors, but the performancese we

subjects were also asked to press a button as aodiney
recognized a target in the fast image sequencéhanioutton
responses (which typically occur after 500ms andndo
create overlapping brain activity with portion usked our
detectors) were utilized as confirmation of thespree of
the ERP in response to a target stimulus.

The procedures of data pre-processing [6] wereiegp

to obtain clean training data. We segmented the HB@E

close).

3.2.4 MEM Training
After we have the target population design matrix the

distractor population design matspd and the individual

| design matrixz ; , we can estimate the model parameters,

b; and variance parameters? ,D using EM algorithm for

into the task-relevant epochs (500 ms after eachgém ML estimation as discussed in the previous Sectidfe

trigger), filtered the data through a 1-45 Hz baasipfilter

derive a target MEM and a distractor MEM after the

and conducted data normalization. We adopted aidfs] training.

windowing scheme
windowing scheme in the test. For both training sesl, we
removed the distractors in the interval of one sdcbefore
and after the targets and selected the targetsfalitwing
button responses within 1.5 seconds. If there waie rthan
one targets in sequence, we only selected thedingét.

3.2 ERP detector —MEM

Our goal in classification is to build an ERP dé&eahat
uses the features as the input, and accuratelsirdisate the
EEG signals containing tHeRPversus theon-ERP

3.2.1Feature Dimension Reduction

We apply linear discriminant analysis (LDA) [10] tre 32-
channel EEG data for dimension reduction and ca@ajee
the selected channel projections in each epoclontm fa
feature vector as the input of the classifier. Ba target
cluster and the distractor cluster, we can meath@anean
and variance respectively. For the linear projetiof the
target cluster and distractor cluster, we can abtaé best

projection @ by maximizing the ratio of the between-class

scatter to the within-class scatter. The optimajeution ®
is the solution of generalized eigen decomposit&m,we
select a subset of the eigenvectors associatedtiétiarge
eigenvalues as the optimal projectien. The number of
eigenvectors of LDA can be determined by the users.

3.2.2 Population Design Matrix

We develop the population design matrices for tugedt
cluster and the distractor cluster respectivelyngigrincipal
component analysis (PCA) [10]. To create the talgptis
matrix, we first calculate the covariance matrix tafget
training data and calculate the eigenvectors agenealues.

in the training and a sequential

3.2.5 MEM Test
After we have the MEM models for the target clusted the
distractor cluster, we can subject the test paiteém the
models. For each test pattern, we have
Yot = Xia+Zb[* +¢, (10)
where b; ~ N (0,D)and ¢; ~ N(o,JZIni) . Since we have
p(y;rest |a’b;l'est)~ N(Xiu +Zib;re8t,dzlni )
maximize the posterior and obtain the optimal irdial
random effect parameter for the test pattern,

pTest” =DZTV(yiTeSt —Xia)- (11)

we can

After we obtainb[®st for the target model ant[®s for the

distractor model, we can apply them to the log liliad
function respectively,

L[bIQS‘*J: In(N(Xia vz bl o2, ))+In(N(0,D))

=In ng +InCp
]
. * *
-7 o 2T | (7 - s 2T

_ %b;l'est*-r D 1p ;I'est* , (12)

Where ¢ , and c, are constants. The discriminant values
g

of the MEM (the estimates of target likelihood) ate
difference between the log likelihood values of theget
model and distractor model.

3.3 Evaluation Criteria and Parameter Regularizatio
We adopt the area under the ROC curve (AUC) [10] to
quantify the ERP detection performance. We appéy 10-

Then we sort the columns of the eigenvector matrifeld cross validation for parameter regularization each

according to their associated eigenvalues andtsalsabset
of eigenvectors as the basis vectors by their cativel

energy contents. Similarly we can develop the patpah

design matrix for the distractor cluster. The patage of the
cumulative energy can be chosen by the users. Weraese
the same percentage of the eigen energy for boglettand
distractor population design matrices.

subject.We train the MEM classifier, choosing the optimal
number of eigenvectors of LDA (num_eigsl LDA) in
dimension reduction and the percentage of the cateal
energy (perc_eigs_PCA) in population design mafirixn
discrete sets that give the best validation peréome.
Validation performance is the average of the AUChfe
classifiers, each of which is trained on a différeime-fold
training set, and evaluated on a one-fold validasiet.
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4.1 Parameter Selection 3 —— Pere_sigsPCA 0! 3
. . R 0.94 =0~ Perc_eigs_PCA =0.65 3 om
We conducted the 10-fold cross-validation to selt@ } . mopeesgspoazr || b
. . . - = Perc_eigs_| =0. . —N_eigs. =
optimal parameters for each subject. We exhauytwelé oo srreesmroron |5 .Nélw
evaluated all combinations Pérc_eigs PCA=0.6:0.05:1; " ou i o Yo Dy A
N_eigsl LDA=1:1:6.) Figure 3 shows an example of the o === T o
N_eigsl_LDA Perc_eigs_PCA

validation results for selecting the optimal partane for . _—

- . . Fig. 3: The 10ld cross validation result for parame
subject #1 I_eigsl LDA=4, Perc_eigs PCAl). We regularization on subject #1. P
conducted the same procedures and obtained thenapti

parameters for each subject. o '
. 0.8|
4.2 Test Results 06 o
In our experiments, for four out of six subjects aghieved : ;
high detection performance. Having selected thenwmbt * o
regularization parameters, we sought to estimate ERP o 02
detection performance on andependentest set not used T 1 T 1
for training or adjusting regularization. We adaptbe AUC FPF FPF
to evaluate the test performance. Target imagesdidanot ! !
receive button responses from subjects were reméroeal 08 08
the analysis. We noticed that one particular taigage was 06 06
consistently missed by all subjects (no buttorkdatlowing ¢ | B L.
this target). We conjecture that some property lf®
investigated) of this target makes it challengiogdetect 04 oz e

visually in the high-speed presentation modality.e W %z i o6 os E— T
removed the targets without button clicks. Figurshbws FPF Fr

the ROC curves of the test results for six subjedte can ' '

see that four subjects witfake targets (overall target 0% o®

probability around 0.5%) achieve high detection os 06

performance with AUC >=0.9 while two subjects wigss & o, B o4

targets (overall target probability around 0.1%Yyéhdower o2 02

AUC. [—Auc =015
1V. DISCUSSION K 0.2 0.4 o 0.6 0.8 1 0 0.2 0.4 o 0.6 0.8 1

Fig. 4: Test ROC curves of six subjects. Thaxis is false positiv

Our results show that the viability of using the ME& to fraction (FPF) and the y-axis is true positive fiae (TPF).

make reliable inference for target image searchmniage
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target image search task using neural signals. MIT Press, invited, in press, 2007.

[51 R. van Rullen, S.J. Thorpe, “The time course \$ual
processing: From early perception to decision-n@gKin

This work was supported by DARPA and NGA under Journalof Cognitive Neuroscienck3(4):454-461, 2001.

contract HM1582-05-C-0046 and by NSF under gra@s£ [6] Y- Huang, D. Erdogmus, S. Mathan, M. Pavelarge-scale

0524835, ECS-0622239, and 11S-0713690. It has been 'Mage database triage via EEG evoked resporBesceedings

a rove(i for public relea,se distribution unlimitddhe data of the 2008 IEEE International Conferenceon Acassti

PP . P . ! Speech, and Signal Processihgs Vegas, 2008.

used in the experiments were collected at the Hoeky (7] £ pemidenkoMixed Models Theory and Applicatigndohn

Human-Centered Systems Laboratory (Minneapolis, MN) Wiley&Sons, New Jersey, 2004.

[8] N.M. Laird, J.H. Ware, “Random-effects modelsor f
longitudinal data, Biometrics 38, 963-974, 1982.

[1] J.S. Johnson, B.A. Olshausen, “Timecourse ofalesignatures [9] A.P. Dempster, N.M. Laird, D.B. Rubin, “Maximulikelihood

ACKNOWLEDGMENT

REFERENCES

of object recognition,” Journal of Vision,3:499-52003. with incomplete data via the E-M algorithmJournal of the

[2] S. Makeig, A. Delorme, M. Westerfield, J. Tovemsl, E. Royal Statistical Societyeries B 39, 1-38, 1977.
Courchense, and T. Sejnowski, “Electroencephalddcaprain  [10] R. Duda, P. Hart, D. StorkRattern Classification Wiley,
dynamics following visual targets requiring mantedponses,” New York, 2001.

Public Library of Science Biologp(6):747—-762, 2004.



