
 
 

 

 
  

Abstract— There is evidence that brain signals associated 
with perceptual processes can be used for target image 
search. We describe the application of mixed effect 
models (MEMs) to brain signature detection. We develop 
an MEM detector for detecting brain evoked responses 
generated by perceptual processes in the human brain 
associated with detecting novel target stimuli. We 
construct the model using principal component analysis 
and linear discriminant analysis (LDA) bases. We adopt 
the LDA for dimension reduction. For parameter 
regularization we use 10-fold cross validation and report 
experimental results from six subjects. Four out of six 
subjects achieve very good detection performance with 
more than 0.9 areas under receiver operating 
characteristic curves. The results demonstrate that the 
MEM can provide reliable inference on single-trial ERP 
detection on the task of target image search. 

I. INTRODUCTION 

arget image search through large volumes of images has 
become an important issue in many domains. Recently 
researchers began to exploit brain signals associated 

with split second perceptual judgments as the basis for visual 
target image search [1-5]. The goal of our research is to 
develop algorithms for detecting electroencephalography 
(EEG) evoked responses efficiently based on the visual and 
cognitive systems of the human expert. Our system exploits 
EEG as the main indicator to see if an image seen briefly by 
the expert contains a target (object of interest) or a non-
target (distractor) as shown in Figure 1. The main task is to 
detect the event-related potentials (ERP) as shown in Figure 
2, which generated from the human brain in response to 
critical events, such as interesting/novel visual stimuli in the 
form of a target image. Our initial study [6] demonstrates the 
ERP-based image triage system is viable for target image 
search.  
  In this study, we present an alternative classifier – 
mixed effect model (MEM) to the task of detecting evoked 
response potentials in EEG — ERPs. This is a novel 
application of the MEM. The MEM [7], first proposed by 
Laird and Ware [8] for solving the highly unbalanced 
longitudinal problem, is a hierarchical model with a 
complex, multilevel and hierarchical structure. It has been 
widely used on the analysis of longitudinal data [8] and 

 
Y. Huang, D. Erdogmus, and M. Pavel are with the Oregon Health and 

Science University (e-mails: huang@csee.ogi.edu, derdogmus@ieee.org, 
pavel@bme.ogi.edu). 

S. Mathan is with the Human Centered Systems Group, Honeywell 
Laboratories (e-mail: Santosh.Mathan@honeywell.com). 

 

shape and image analysis [7]. It assumes that observations 
between levels or clusters are independent, but observations 
within each cluster are dependent. An advantage of the 
MEM is the ability to genuinely combine the data by 
introducing multilevel random effects. Therefore it is well 
suited for the analysis of longitudinal data and biomedical 
data.  
  Use of the mixed modeling techniques in the EEG 
detection is exciting and promising. The most challenging 
issue of detecting neural signatures is the high dimensionality 
and lack of large training sets. Since it is impractical to have 
extensive training, we attempt to train classifiers based on 
data aggregated across multiple subjects. An MEM can 
easily meet this need by combining the random effects 
(within and between subject variance) and fixed effects 
(consistent patterns across subjects). This work reveals the 
power of this statistical approach to the nontraditional 
statistical data — EEG data. The results establish that the 
MEM can be a reliable detector for the ERP patterns on the 
task of visual target image search. 
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Figure 1: An illustration of the RSVP image display modality is 
shown on the left. On the right, the upper trace is an ERP averaged 
over trials (in one representative channel) and the lower trace is the 
average baseline EEG signal recorded in response to distracter 
stimuli. Time-zero corresponds to stimulus onset. 
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Figure 2: Images of ERP and non-ERP signals over many trials 
(each row) associated with targets and distractors for subject #1 at 
channel FP1, colors adjusted to match scales across images. Time-
zero corresponds to stimulus onset in each trial. The traces at the 
bottom of each image are the EEG signals averaged over trials. 
 



 
 

 

II. M IXED EFFECT MODELS 

2.1 Model description 

In general, a linear MEM is written as, for each i, 
 ,iiiii εbΖαXy ++=                                                    (1) 

where Ni ,...,1= , N is the number of individuals. 

•  iy  is an 1×in  vector of observations for the ith 

individual and in is the number of observations for the ith 

individual. 
• α  is an 1×p  population fixed effects vector. 

• iX is an pni ×  population design matrix of fixed effects. 

• ib  is a 1×k individual random effects vector .  We assume 

that the random effects are independent and have a normal 
distribution ),0(~ Db Νi  where D is a kk × matrix of 

positive definite covariance.  
• iZ  is an kni ×  individual design matrix of random 

effects. 
•  iε  is an 1×in  vector of independent and identically 

distributed (iid) errors with zero mean and positive definite 
within-individual variance.  We assume that the error terms 

have a normal distribution ),0(~ 2
ini Ν Ιε σ , where 

inΙ denotes an ii nn × identity matrix.  

 Thus iy  has a multivariate normal distribution 

),(~ 2 T
inii ii

Ν DZZΙαXy +σ . In Equation (1), iy , iX and 

iZ  are known and α , ib  and iε are unknown. The variance 

parameters, 2σ and D  are unknown and subjected to be 
estimated along with the population-averaged parameterα . 

2.2 Model Parameter Estimation 

We apply expectation-maximization (EM) algorithm [9] for 
maximum likelihood (ML) estimates: the model parameters, 

α and ib , and random variance parameters, 2σ and D . 

2.2.1 ML Estimation of α and ib  

Writing )( iVar y as T
iini i

DZZΙV += 2σ , if all covariance 

parameters 2σ̂  and D̂  were known, then iV was known, we 

could estimate α and ib . The log-likelihood function for the 

MEM could be maximized by the generalized least squares 
estimator,  
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If αwere known, treat ib  as fixed effects and use least 

square estimation, from Equation (1), we have  

 ( )αXyVDΖb ˆˆ 1
iii

T
ii −= −   .                                           (3) 

2.2.2 EM algorithm for ML estimates of 2σ and D  

M-step: If we were to observe ib  and iε , use sample 

variance, we could easily obtain simple closed-form solution 
using ML estimation of variance. 
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E-step: If 2σ̂ and D̂  were available, we could calculate the 
sufficient statistics as follows: 
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where ( ) ( ) ( )θbΖθαXyθε ˆˆˆˆˆˆ iiiii −−= and ( )θb ˆˆ
i  were obtained 

from ML estimation from Equation (3). We can derive 

( )[ ]θθαyε ˆ,ˆˆ,| iiVar  based on 
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Similarly we can calculate ( )[ ]θθαyb ˆ,ˆˆ| ,iiVar  based on that 

( )Dθb ,0~; Ni , ( )
iniiiii N ΙbZαXθby 2,~;| σ+ and 

),(~; 2 T
inii ii

Ν DZZΙαXθy +σ . Thus we obtain the 

variance parameter estimates as: 
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At the last iteration of EM algorithm (convergence), we have 
2σ̂ andD̂ .   

III. ERP DETECTOR CONSTRUCTION 

The classification study is to assess the MEM as an indicator 
of the ERP. The goal is to evaluate the efficacy of MEM on 
the single-trial ERP detection. We adopt the receiver 
operating characteristic (ROC) curve to estimate the 
quantitative efficacy.  

3.1 Data Preparation 
The EEG data collection was the same as in [6]. The images 
were labeled whether or not they contained targets and 
presented at very high rates (durations were 60ms, 100 ms, 
or 150ms per image). The subjects performed target 
detection as shown in Fig. 1 by clicking on a button as soon 
as they saw a target. At the same time, we monitored and 
recorded their EEG signals by a 32-channel EEG system for 
subsequent analysis. The sampling rate is 256 Hz.  

Six subjects were recruited for the study. Each subject 
had one training session and one to seven test sessions. In the 
training sessions the images were randomly displayed while 
in the test sessions the image chips were displayed in the 
natural spatial order of a broad-area image. During the test 
for subject #1, #2, #3 and #6, fake targets that were not part 



 
 

 

of the original broad-area image were introduced randomly 
to keep the subject alert to prevent the boredom-related 
ERP-degeneration. We included these fake targets when 
conducting the detection performance evaluation. There were 
around 50 targets in hundreds of distractors in the training 
while there were two to twenty targets (including fake 
targets) within thousands of distractors in the test. The 
subjects were also asked to press a button as soon as they 
recognized a target in the fast image sequence and the button 
responses (which typically occur after 500ms and do not 
create overlapping brain activity with portion used for our 
detectors) were utilized as confirmation of the presence of 
the ERP in response to a target stimulus. 

The procedures of data pre-processing [6] were applied 
to obtain clean training data. We segmented the EEG data 
into the task-relevant epochs (500 ms after each image 
trigger), filtered the data through a 1-45 Hz bandpass filter 
and conducted data normalization. We adopted a disjoint 
windowing scheme in the training and a sequential 
windowing scheme in the test. For both training and test, we 
removed the distractors in the interval of one second before 
and after the targets and selected the targets with following 
button responses within 1.5 seconds. If there was more than 
one targets in sequence, we only selected the first target.  

3.2 ERP detector —MEM 
Our goal in classification is to build an ERP detector that 
uses the features as the input, and accurately discriminate the 
EEG signals containing the ERP versus the non-ERP.   

3.2.1Feature Dimension Reduction 
We apply linear discriminant analysis (LDA) [10] on the 32-
channel EEG data for dimension reduction and congregate 
the selected channel projections in each epoch to form a 
feature vector as the input of the classifier. For the target 
cluster and the distractor cluster, we can measure the mean 
and variance respectively. For the linear projections of the 
target cluster and distractor cluster, we can obtain the best 
projection ω  by maximizing the ratio of the between-class 
scatter to the within-class scatter. The optimal projection ω  
is the solution of generalized eigen decomposition, so we 
select a subset of the eigenvectors associated with the large 
eigenvalues as the optimal projection ω . The number of 
eigenvectors of LDA can be determined by the users.  

3.2.2 Population Design Matrix 
We develop the population design matrices for the target 
cluster and the distractor cluster respectively using principal 
component analysis (PCA) [10]. To create the target basis 
matrix, we first calculate the covariance matrix of target 
training data and calculate the eigenvectors and eigenvalues. 
Then we sort the columns of the eigenvector matrix 
according to their associated eigenvalues and select a subset 
of eigenvectors as the basis vectors by their cumulative 
energy contents. Similarly we can develop the population 
design matrix for the distractor cluster. The percentage of the 
cumulative energy can be chosen by the users. Here we use 
the same percentage of the eigen energy for both target and 
distractor population design matrices.  

3.2.3 Individual Design Matrix 
We develop the individual design matrix using LDA as 
described in Section 3.2.1. We just simply select a subset of 
the eigenvectors associated with the large eigenvalues as the 
individual design matrix. Here we set the number of the 
eigenvector equals one for simplicity (We investigated larger 
number of the eigenvectors, but the performances were 
close).  

3.2.4 MEM Training 
After we have the target population design matrixt

i
X ,  the 

distractor population design matrixd
i

X  and the individual 

design matrix iZ , we can estimate the model parameters,α , 

ib  and variance parameters, 2σ , D  using EM algorithm for 

ML estimation as discussed in the previous Section. We 
derive a target MEM and a distractor MEM after the 
training. 

3.2.5 MEM  Test 
After we have the MEM models for the target cluster and the 
distractor cluster, we can subject the test patterns to the 
models. For each test pattern, we have
 i

Test
iii

Test
i εbΖαXy ++= ,                                         (10) 
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ini Ν Ιε σ  . Since we have 

( ) ),(~,| 2
in

Test
iii

Test
i

Test
i Νp ΙbΖαXbαy σ+ , we can 

maximize the posterior and obtain the optimal individual 
random effect parameter for the test pattern,
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Where 2σC and DC are constants. The discriminant values 

of the MEM (the estimates of target likelihood) are the 
difference between the log likelihood values of the target 
model and distractor model.  

3.3 Evaluation Criteria and Parameter Regularization  
We adopt the area under the ROC curve (AUC) [10] to 
quantify the ERP detection performance. We apply the 10-
fold cross validation for parameter regularization for each 
subject. We train the MEM classifier, choosing the optimal 
number of eigenvectors of LDA (num_eigs1_LDA) in 
dimension reduction and the percentage of the cumulative 
energy (perc_eigs_PCA) in population design matrix from 
discrete sets that give the best validation performance. 
Validation performance is the average of the AUC of nine 
classifiers, each of which is trained on a different nine-fold 
training set, and evaluated on a one-fold validation set.  



 
 

 

IV. RESULTS 

4.1 Parameter Selection 
We conducted the 10-fold cross-validation to select the 
optimal parameters for each subject. We exhaustively 
evaluated all combinations (Perc_eigs_PCA=0.6:0.05:1; 
N_eigs1_LDA=1:1:6.). Figure 3 shows an example of the 
validation results for selecting the optimal parameters for 
subject #1 (N_eigs1_LDA=4, Perc_eigs_PCA=1). We 
conducted the same procedures and obtained the optimal 
parameters for each subject. 

4.2 Test Results 
In our experiments, for four out of six subjects we achieved 
high detection performance. Having selected the optimal 
regularization parameters, we sought to estimate the ERP 
detection performance on an independent test set not used 
for training or adjusting regularization. We adopted the AUC 
to evaluate the test performance. Target images that did not 
receive button responses from subjects were removed from 
the analysis. We noticed that one particular target image was 
consistently missed by all subjects (no button click following 
this target). We conjecture that some property (to be 
investigated) of this target makes it challenging to detect 
visually in the high-speed presentation modality. We 
removed the targets without button clicks. Figure 4 shows 
the ROC curves of the test results for six subjects. We can 
see that four subjects with fake targets (overall target 
probability around 0.5%) achieve high detection 
performance with AUC >=0.9 while two subjects with less 
targets (overall target probability around 0.1%) have lower 
AUC.  

IV. DISCUSSION 

Our results show that the viability of using the MEMs to 
make reliable inference for target image search in image 
databases based on the ERP detection. The expected 
performance in terms of high AUC is limited by the 
imbalance between the prior probability of target and non-
target images. Similarly, generalization is limited by the low 
samples-to-parameters ratio. Future work will investigate the 
application of the MEM to cross subject ERP detection for 
the purpose of providing a quick training solution for the 
target image search task using neural signals. 
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Fig. 3: The 10-fold cross validation result for parameter 
regularization on subject #1. 
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Fig. 4: Test ROC curves of six subjects. The x-axis is false positive 
fraction (FPF) and the y-axis is true positive fraction (TPF). 


