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Abstract—Indoors localization, activity classification, and
behavioral modeling are increasingly important for
surveillance applications including independent liing
and remote health monitoring. In this paper, we stdy
the suitability of fish-eye cameras (high-resolutio CCD
sensors with very-wide-angle lenses) for the purpesof
monitoring people in indoors environments. The resks
indicate that these sensors are very useful for aoinatic
activity monitoring and people tracking. We identify
practical and mathematical problems related to
information extraction from these video sequencesnra
identify future directions to solve these issues.

[. INTRODUCTION

Assessment and classification of individuals’ dtigg is an

a device or a tag [8]. The requirement of wearirdpeice is
at odds with the notion of unobtrusive assessmaeudt ia
generally useless for tracking visitors in an ekldwelling.
The approach to indoor tracking described in gaiper
is based on imaging sensors, namely a CCD cameras
operating in the visible spectrum. The sensor ugethe
location tracking system is equipped with a widglarlens
and is mounted on or near the ceiling of the roonbé¢
monitored. The video frames are processed localxtract
location information. An individual's location estation is
performed in two steps. First, the areas with $icgmt
motion signal are detected using background suixireend
thresholding. The background subtraction used iis th
project is based on modeling each pixel with a Gians
mixture. Second, the location estimation and tmagkis

important component in many monitoring and assessmecomputed using filtering procedures based on state-

applications ranging from security to healthcare4]lIn
many of these systems it is necessary to distihgommal”
activities from those that deviate from the expégiatterns.
The application areas range from security to caresfders
and chronically ill. In fact, care for elders — amiethe rising
economic and social challenges — represents acpiartiy
important application area. One of the labor-intems
aspects of caring for elders is the necessity otigoously
monitoring their behavior and asserting that eveng is ok.
The ability to assess “ok-ness” is particularly ortant for
elders who live in their own homes. An automatitivity
monitoring system would provide the necessary métion
and would detect potential problems and adversatssich
as falls. Such system would have many other apfits
including security assurance. In security systeiisjs
critical to detect abnormal or illegal activitiesAnother
example involves context-aware computing
individuals’ locations, gestures and activities arged to
select the most appropriate information and apiitioa,
(see e.g., [5,6]). Such context aware interfaces umeful
components of cognitive aids for elders and cogelii
impaired individuals.

A fundamental component in any of these applicatio

is the ability to detect the locations and movemenft the
patients as well as the caregivers. There have ha@erous
attempts to estimate and track the location ofviddial as
well as his gestures and gross movements for thgopa of
pervasive healthcare (e.g., [7]). Most of prioeatpts have
been based on various wireless systems usingrémeggt of
signal to estimate distances. The results of ttesampts
generally yield limited accuracy that is typicallyot

sufficient for classification of activities. In aition, these
RSSI-based methods require each of the particiganmtear

EB, DE, UO, MP are with the Oregon Health and Sméebniversity (e-
mails: base@csee.ogi.edu, derdogmus@ieee.org, wzeEResee.ogi.ed
pavel@bme.ogi.edu).

estimation techniques (also known as Kalman fitigi

We note in passing that although privacy may be an
issue for some participants, there are two mitigafactors.
First, the image-based monitoring system may héip t
participants maintain independence. Second, thicjpents
are assured that no images are stored or trandnaititside
the local client PC; only location and movemeninestes,
together with activity classification are extractedm the
images and used for further processing. The vidamds
are discarded.

2. MOVING OBJECT DETECTION

In the presented work, we employ the background-
foreground separation approach to segmenting moving
bodies from video sequences. A K-component Gaussian
Mixture Model (GMM) is updated on-line to charadter

whereach of the 3 color features (RGB in this caseabse

empirical evidence suggests Gaussian clustersefitin/this
coordinate system [9]) for each pixel. The prema$ehis
approach is that a moving object obstructing thekgeound
scene at a pixel will introduce a color changesthill be
assessed to be a low-likelihood outcome of theiquéar
GMM model associated with the color distribution that
pixel. In-home environments, especially in the ca$ea
fisheye camera mounted on the ceiling and looking
vertically down, could be especially expected toveha
relatively tight clusters of color feature vectds steady
background objects (steady means stationary oorither of

a few seconds, adjustable by an algorithm parajneter
Consequently, if the current color vector of a piie far
from the Gaussian component centers, it will haviova
likelihood under the background model for that piaed
will be classified as foreground and vice versaeixally,

a pixel color value that is less than 2.5 standidations
from the mean of any of the K Gaussian componesnts i
decided to belong to the background. If a matchus;dhen



that mixture (weight of that particular componentan and
covariance) is updated with the new pixel colomealif no
match occurs then a new mixture model is created thie
mean at that most recent pixel value and an ihyitil@w-

weight, high variance value is imposed (this actedor the

possibility of a new stationary object, such asw piece of - :

furniture in our application, introduced to the Boament to L Y I, T & /
merge into the background over time). The leasbainte bk B y// ) sy
(smallest weighted) mixture component is eliminabgdthe Figure 1. A typical outp e resulf foregroun

introduction of this new component to prevent th¥ING OﬁjedCt dEteCtiO”I ?‘?‘Shet‘)j O”d thet_ G'\t’”\("j Es_ﬁgr‘:_”“dbmo%m

from exhibiting a growing number of components. shadow removal (right) and estimated @bjwcation based ¢
The abovge—mgention(ged background aF()japtation procedtf rticle filter with background subtraction (BG®sult (left). Ol

. R right, black cluster is the moving object arfutes cluster is th

is important to account a!so for small chang(_as SB6h qtimated shadow.

brightness variations besides the new entries te thy ‘-

background. For this purpose, an online updaterigihgo is &

used. The probability of observing a certain piaue for a

channel (a vector for R-G-B channels, or a scaddwesfor a s
single Gray level channel) afteframes is given as
K
p(ct) = 2 Wit G(CtimktEkt) 1)
k=1

Wherewk,t is _the weight of the™ component to the Gaus_su’;m,:igure Z.EThe viéw from fish-eye camera (left) apbject
mixture, W, is the mean vector of this component apgis  localization from foreground segmentation (rigi@h the right, th
the covariance matrix computed from the pixel valistory segmented foreground object is assumed to be distaperso
(we assume the covariance to be diagonal W[ﬂ%in its |"  whose feet are centered at a small radius and gle determine
diagonal entry). In our implementation, pixel csloare DYy the mode of the angular density of pixels in dheser. The
represented in the RGB space and a 3-dimensiorat coMde enables robustness to the inclusion of attaohgects suc
vector is modeled by the GMM in (1). Componentsthaf as the chair that the person is moving in this #am

GMM are ranked in descending order of weights. Fagstimate removed foreground detection result caselea in
background modeling, the first (most weighted) Gars Figure 1.

component is used and for foreground segmentatiom t
different foreground calculation schemes are impgletad: Ill. OBJECT LOCALIZATION AND TRACKING

() the usual way to calculate foreground, using tha fish-eye camera mounted on the ceiling directedically
information of mixture models, (i) difference befen o image a room naturally induces a polar cooreirsgstem
current frame and most-likely background image. ~ (see Figure 2), consequently, for dynamic trackofga
In (i), for each color channel, the following catimh is  moving object in a state estimation framework, the
checked to identify foreground pixels. Letbe the color measurement equation becomes nonlinear (Cartesian t
vector of a pixel. If the sum of the weights of Gsian polar coordinate frame transformation). Upon idgitty a
ComponentS for Wh|Cb'uk is within 2.5 standard deviations cluster of pixe's Corresponding to a foregroun(boblafter
(for each respective component) is less than astiotd ) shadow removal), these pixel locations are conuette
(0.7 in our implementation), that is polar coordinatesr(f) assuming the center of the frame to
|c —ﬂli( < 2_5g|i(,i =123 (2)  be the origin and the horizontal-right directiorzéro-phase
with counterclockwise angle measurement (clockwise
images due to y-axis being flipped). Based on eskten
bservation of standing and walking people, it éxluted
hat the body of the person occupies a clusterixalp that

then that pixel is marked as foreground.

In (ii), subtracting the current frame from the mos
likely background image (obtained approximately b
assigning the mean of the largest weight Gausssatha g . .
color of each pixel, denoted by BKG) yields an RGéo.m.] a radlal_maln.aX|s,. and .the edge of a foobines the
difference image that, when compared with a presga!n!mum-rad!us p|_xel n .th's cIL_lster._To .calcule_ltbe
threshold v in each color channel (set td for 2-level minimum-radius, first object orientation is estigal
channels), segments the frame into background ar(?dlentatlon of a moving object from the center ld image

foreground objects (by intersecting the binary segfation 'S calculgted by f|r_1d|ng the que of_the agg_lercbetyon,
result of each channel). Then, the foreground abjere énax (estimated with 1 resolution using a “dfixed-width

- : histogram estimate of the angle distribution of the

detected and labeled using connected componentsisal ) .

To reduce shadow ef?ects, foregroundppixels aradou foreground cluster). Then we project aII- foregromxi;ls t(?
as in (ii), and shadow regions are determined bypauing € line segment along ., and determine the distribution
foreground regions with their respective BKG pixelQf radii with a histogram (using 1-pixel-wide fixewins).
converted to HSV coordinates. This approach isdasethe Th_e smallest rad'.U$m‘"'. at which the hlstogra_m attains 10%
premise that shadow results in significant chamgeiiand ©f itS peak value is estimated to be the foot locatThe use
has relatively little effect on V and S [10]. A sk shadow of such a threshold on the density eliminates tifectke of



Ground Truth

shadow pixels misclassified as foreground. TheHteif the
person being typically larger than the width, theda is also
found to be a reliable estimate of the centerlixis af the ot

body when the person is in the scene from headdoThe
mode also is a more robust estimator for angle evetpto

the mean because a person moving an inanimate tobjec
might be perceived as one object by the foreground
segmentation algorithm. These observations arstrifited in Figure 3. KDE of radius err Figwe 4. Ground truth ¢

Figure 2. - _ ) vs radius. The black crc position for each frame in t
The position estimater i, fna) Obtained from each section is the error distributi test experiment.
frame is utilized as the measurement equation @freamic  for a particular radius.

state-model of the moving object to be tracked wath ) ] ) o

particle filter. The particle filter technique is sequential t@ngential velocity. Experimental data was fittethvkernel
Monte Carlo approach to recursive Bayesian statmation ~density estimates (KDE) and then simplified to uali
in dynamic systems and its computationally conweniand dependent Gaussians — it was observed that thenpens
efficient algorithms apply to linear and nonlineéynamic Were reasonably valid given the manually obtainssligd-
systems corrupted by Gaussian and non-Gaussiare ndiuth data. For instance, the radius dependentieofadial

distributions [11]. State dynamics and the measargm €7Or is summarized by the KDE shown in Figure & A
equation of our system model is given as analytical function was used to approximate eachthef

mean and standard deviation of the Gaussian raztius
models illustrated in this figure. Similarly, radidependent

o ) ) standard deviation was modeled for angular measmem
where the state transition is a linear Newton dynamodel gy or: the angle measurement error was found taeve-

with a spherical white random Gaussian acceleraolihe  mean regardless of position and speed. Finalljag been
measurement noise; is modeled to be state-dependentpserved that (assumption (iii) above) if a radialocity

additive V\_/hite Qaussian process. T_h_e state veclm‘_ists of component exists (subject walking directly to oragvirom
the two-dimensional Cartesian position and velogégtors e origin), then depending on the radial speed,das in

in the image plane, and the measurement vectonsters  5qjus measurement error must be compensated qdiep-

errorint ¥ 100 20 300 w00 ECT

St =FStq +ai A3)
zy =g(sy) +uy

the position vector in polar coordinates: size). This was included in the model as a lineduitive
s=[px Py Vx vy]T bias in the formav,, wherev, is the radial velocity vector

. (4)  (calculated from the state using:= pp'v/p'p). The noise
Zy = [Pr pe] model is continuously updated during particle filte

In particular, we modeh as a 4-dimensional Gaussianestimation iterations based on the current staimates and
with zero-mean and zero-variance in the first twdéhe models developed as described above.
dlrznen5|0n§ corrgspondlng to posm.on, apd with (h{ngnd IV. EXPERIMENTAL RESULTS
gyl covariance in the latter two dimensions correspand
to velocity (we seta‘a:]_/(ZTZ) pier/sZ), where 1T is the Particle filter (PF) estimation results are comganéth the
frame rate. The state transition matrix and thete®@n-to- single-frame based background subtraction (BGSkdas

polar measurement functions are: instantaneous estimates for each frame. The PF is
10T O implemented with 300 particles initialized to thereiground
010T \/ﬁ location estimate using BGS plus unit (pfxelariance
F= g9(s) = Px + Py (5) Gaussian perturbation. At time position estimate of an
0010 arctanf, / py) object is given by the weighted average of theetthighest
000 1 weighted particles (assuming unimodal state distidim,

The measurement noisg is modeled as a state-depende
Gaussian based on experimental data collected sasiloled
next. Ground truth position data of a subject wajkion
semicircles centered at the origin and lines pgs#inough

Itg(?atci)czlr?”c])f ht?]\ée n?izf)ginazcg?lrtﬁg ?getm;m{lr? gys{ﬂ)?égzg t represented with the intersection of centered eirgth the

semicircular walking trajectories consisted of ragtjual to fadial line that makes an angfha with the horizontal axis

18, 36, 54, and 72 inches (linch=2.54cm). The fine&S Shown in Figure 2. , _ ,
trajectories were placed at’,09¢, 135, and 186 all Ground truth of the object location over 2300 fesnis

merging at the origin. The following assumptionsreve 91Ven in Figure 4. Figures 5-8 show the erromirandp,

made: (i) the radial and angular measurement efraise) CVer time and ovep, andp, consecutively. Tracking with
of the frame-based estimates described in Secticarez F reduces the error in the mean especially inith some
independent, (i) both radial and angular noiserithistions outliers. Outlier regions are mainly resulted frtme system

are independent of angular position, but not rapsition, _mog_?l_ that is ulfed dlg this exper:cm(ant thalt haﬁb some
(iii) radial error also depends on radial velochyt not 'Mabllities to track sudden jumps of the angle witaa

n(‘plis is meant to approximate the mode). A singéene of
the object detection step is depicted in Figuraviere red
dot shows our position estimate based on the dustate,
whereas green dot represents the actual locatitreadbject
in this particular frame. The location of the dédelcobject is



subject passes near the origiAs a result, at small radii, an
object that moves across th&lile segment emerging from
the origin makes a sudden jump@rhat is not a multiple of
21 (typically aroundz). Figure 6 shows examples ofrad
transitions that occur around frames 520, 1350, 20D,
which leads to an improper update of particle wsigh
causing poor estimates. Although resampling previde
partial remedy for this problem, the best solutignto
modify the angular measurement noise model suchitha
becomes more uniform towards the origin; this adiom
will be implemented in the algorithm in the futufdgures
9-10 display the comparison of the erroppandpg in BGS
and PF methods with their correlation coefficiept
Although current model reduces the average ertw, RF
errors are still correlated with frame-based measents
obtained using BGS. This is due to the simplisiadom
walk model utilized in the dynamic model and in thture,

an adaptive acceleration prediction model

incorporated into the model allowing for a timeyiag

acceleration strategy and a smoother trajectorfii@ro
V. CONCLUSIONS

In this paper, we presented our initial experimerith fish-
eye cameras for indoor motion tracking. The redoliécate
accura
assessment of complex behavior and activity pattevith '
the proper application of video processing and ademp
vision techniques. Due to the ceiling-mount setup w
preferred in order to obtain a relatively simplenesical
(polar) coordinate system transformation betweer tt
images in the sequence and the 3-dimensional emagot,
the accuracy of localization and activity/pose sisation
is hampered when the person/object of interestiricilly
under the camera, at zero-radius in the image pl@he
radius dependent resolution of the imagée/girel) and
associated increased uncertainty with measuring a
tracking position and velocity need to be takew iatcount
for proper dynamic modeling and tracking using iphat
filters or equivalent technique. The results intBchat using
at least two fisheye cameras (for instance mountedhe
ceiling at opposite corners) will increase trackamcguracy
significantly. Future work will include multi-camer
tracking as well as automatic detection of evefitisiterest,
such as medication adherence and falls of the iohat

that these sensors are very promising for

being monitored.
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