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Abstract

A good distance measure for time series needs
to properly incorporate the temporal struc-
ture, and should be applicable to sequences
with unequal lengths. In this paper, we pro-
pose a distance measure as a principled solu-
tion to the two requirements. Unlike the con-
ventional feature vector representation, our
approach represents each time series with a
summarizing smooth curve in a reproduc-
ing kernel Hilbert space (RKHS), and there-
fore translate the distance between time se-
ries into distances between curves. Moreover
we propose to learn the kernel of this RKHS
from a population of time series with discrete
observations using Gaussian process-based
non-parametric mixed-effect models. Experi-
ments on two vastly different real-world prob-
lems show that the proposed distance mea-
sure leads to improved classification accuracy
over the conventional distance measures.

1. Introduction

Time series classification is a supervised learning prob-
lem aimed at labeling temporally structured sequences
of variable length. The most common approach re-
duces time series classification to a static problem by
suitably transforming the input sequences into vectors
in Euclidean space. One can either summarize each
time series with attributes pertinent to classification
(called feature extraction)(Keogh & Pazzani, 1998),
or use a properly sampled and aligned subsequence
(called sampling)(Parra et al., 2003). Unfortunately,
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the feature extraction method is still more art than sci-
ence, and the performance depends heavily on the de-
signer’s domain knowledge and the particular heuristic
implemented. The sampling method, although pre-
serving most of the information, is accused of ignoring
the important temporal structure of the series. In-
deed, the sampled sequences, if treated as vectors in
Euclidean space, lead to the same classifiers after any
permutation of the vector entries. Moreover, the sam-
pling strategy does not apply to situations where we
have only sparse observations that are made at irreg-
ular times.

In this paper, we propose a principled non-parametric
distance measure for time series by representing each
time series with a smooth curve in a reproducing kernel
Hilbert space (RKHS) with a kernel learned from data.
This new distance measure circumvents the limitations
of the two above mentioned strategies.

Paper Roadmap In Section 2, we give the back-
ground of the Bregman divergence, and then generalize
it to function space for a proper distance measure of
smooth curves. In Section 3 we propose a family of
new distance measures for time series with only dis-
crete observations. Section 4 is devoted to the non-
parametric mixed-effect model, which helps to further
specify the proposed distance measure. In Section 5,
we apply the proposed distance measure to two real-
world time series classification problems. Finally we
discuss the related work in Section 6.

2. Gaussian Processes and Functional

Bregman Divergence

The Bregman divergence is a natural generalization
of squared Euclidean distance and KL-divergence. A
Bregman divergence corresponding to a strictly convex
function φ(x) (called seed function) is defined as

dφ(x1||x2) = φ(x1) − φ(x2) − 〈∇φ(x2), x1 − x2〉 . (1)
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Bregman divergence is closely connected to the expo-
nential family (Banerjee et al., 2005). For any distri-
bution in the exponential family

p(x; θ) = exp(〈x, θ〉 − Φ(θ))p0(x),

we know that the log likelihood can be re-written as

log p(x; θ) = −dφ(x||µ(θ)) + φ(x) + log p0(x), (2)

where φ is the conjugate function of Φ

φ(x) = sup
θ
{〈x, θ〉 − Φ(θ)} (3)

and µ(θ) = ∇Φ(θ) is the expectation parameter corre-
sponding to θ. We go one step further to argue that
dφ(x1||x2) should be a proper model-weighted diver-
gence measure between any x1 and x2. It is straight-
forward to show that for multi-variate Gaussian dis-
tribution N (a,Σ), the corresponding Bregman diver-
gence is given by

dφ(x1||x2) =
1

2
(x1 − x2)

T Σ−1(x1 − x2), (4)

which is also suggested in (Tipping, 1999) as a model-
weighted distance for Gaussian distribution.

2.1. Extension to Function Space

We generalize our discussion on the Bregman diver-
gence and the exponential family to function spaces.
To facilitate our discussion, we adopt the language of
functional integral, which, although allegedly not rig-
orously defined, provides a powerful technique for de-
scribing the probability on functions (Simon, 1979).

Gaussian processes (GPs) (Rasmussen & Williams,
2006) generalize the multivariate Gaussian distribu-
tion to function space, which model any function f

with the following probability 1

p[f ] ∝ exp(−
1

2
||f − f0||

2
H), (5)

with f0 being the mean function and || · ||H the norm
for the reproducing kernel Hilbert space (RKHS) H.
We use K to denote the reproducing kernel, which
will also be noted as the covariance function for the
Gaussian process expressed in Eq.(5) (Seeger, 2004).
In regularization theory, the norm ||·||H is often related
to a particular type of smoothness of function, with
large (even infinite) ||f ||H for non-smooth function f .

After generalizing Eq.(1) to the functional case
(Frigyik et al., 2006), we get the Bregman divergence

1In the remainder of the paper, we use the square brack-
ets [ ] to distinguish functionals from common functions.

between function f1 and f2, with a seed functional g[·]

dg(f1||f2) = g[f1] − g[f2] −

∫
Dg[f2](f1(t) − f2(t))dt.

where Dg[f ] is the Fréchet derivative. The Gaussian
process expressed in Eq.(5) can be viewed as a member
of the exponential family extended to distributions on
functions (Altun et al., 2004). Then a direct general-
ization of Eq.(3) leads to g[f ] = 1

2
||f ||2H, which gives a

GP-related divergence for smooth functions

dH(f1||f2) =
1

2
||f1 − f2||

2
H. (6)

3. Distance for Time Series

We consider k time series, using yi to denote the Ni

observations from the ith time series made at times ti

yi
.
= [yi1, · · · , yiNi

]T , ti
.
= [ti1, · · · , tiNi

]T .

The subscript i on ti and Ni indicates that the obser-
vation times and even the number of observations are
generally different for each individual. The time series
are called synchronized if all the ti are the same.

We can define a distance measure for such time se-
ries by associating the observations {ti,yi} with a
(smooth) curve. We assume the observations for each
individual i is generated from a independent Gaussian
process fi with the same covariance function K (and
therefore H) and mean f0. The observation is modeled
as

yin = fi(tin) + ǫin, n = 1, 2, · · · , Ni, (7)

where ǫin is a white observation noise with standard
deviation σ for all i and n.

We choose to summarize each individual time series i

with the expectation of fi(t) given the discrete noisy
observation {ti,yi}.

f̂i(t) = E[fi(t)|yi, f0; ti,K] (8)

= f0 + K(t, ti)(K(ti, ti) + σ2
I)−1(yi − f0,i) (9)

where f0,i
.
= [f0(ti1), f0(ti2), · · · , f0(tiNi

)]T is the val-
ues of f0 at times ti, and K(ti, ti) is the Ni × Ni

matrix with the (n,m) entry being K(tin, tim). With

a smooth f0, we have ||f̂i||H < +∞, which can be

loosely interpreted as that f̂i is smooth according to
K. In Fig.1, we give an example of using such a curve
f̂ to represent the noisy observations (black crosses).

We then use the distance between f̂i and f̂j as the
distance between time series {ti,yi} and {tj ,yj}

2,

2Although E[||fi −fj ||
2

H|yi,yj ; ti, tj ] seems to be a rea-
sonable measure of distance, it goes to infinity since with
probability one a sample f from the a Gaussian process
with covariance function K has ||f ||H = ∞ (Seeger, 2004).
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Figure 1. Using smooth curve to represent noisy discrete
observations (black crosses). The smooth curve is obtained
using Eq.(9) with K being a Gaussian kernel and f0 = 0.

which is given by Eq.(6) as

dij =
1

2
||f̂i − f̂j ||

2
H. (10)

Since H is the RKHS induced by the kernel K, this
distance measure is well-defined

dij =
1

2
||f̂i − f̂j ||

2
H =

1

2

〈
f̂i − f̂j , f̂i − f̂j

〉

H

=
1

2
〈K(t, ti)vi−K(t, tj)vj ,K(t, ti)vi−K(t, tj)vj〉H ,

where vi = (K(ti, ti) + σ2
I)−1(yi − f0,i). Using the

reproducing kernel property

∀ tn, tm 〈K(tn, t),K(tm, t)〉H = K(tn, tm),

the distance measurement can be simplified as

dij =
1

2
vT

i K(ti, ti)vi+
1

2
vT

j K(ti, ti)vj−vT
i K(ti, tj)vj .

(11)

It is important to note that this distance does not re-
quire all the time series to be synchronized, an advan-
tage when sequences are of different lengths, or the
observations are made at different times, as shown in
our first experiment in Section 5. When the observa-
tions for all individuals are synchronized, we have ti =
t = [t1, t2, · · · , tN ]T with N as the total number of ob-
servations for each individual. Letting K = K(t, t),
we can re-write dij as

dij = vT
i Kvi + vT

j Kvj − 2vT
i Kvj (12)

= (vi − vj)
T K(vi − vj) (13)

= (yi−yj)
T (K + σ2

I)
−1

K(K + σ2
I)−1(yi−yj).(14)

Temporal Structure In Eq.(11)-(14), the temporal
regularity is incorporated in the distance via the kernel
K. It is most clear when we notice that K models the
correlation of f value at different time

K(ti, tj) = E[(f(ti) − f0(ti))
T (f(tj) − f0(tj))].

The norm ||fi − fj ||H measures the irregularity de-
fined by K, in contrast to the Euclidean distance∫

(fi(t)−fj(t))
2dt which only concerns about the point

wise difference between fi and fj . It is also important
to notice the particular temporal structure incorpo-
rated varies greatly with the choice of K. For example,
the widely used Matérn (including Gaussian) kernel or
rational quadratic kernel promote different types and
level of smoothness. On the other hand, the temporal
structure is often problem specific and hard to deter-
mine beforehand. In the next section, we will discuss
learning this temporal structure from the data.

4. Non-parametric Mixed-effect Model

In Section 3, we assume a Gaussian process with
known mean and covariance function. However in
practice it is often not the case. Instead we may want
to learn the characteristic of Gaussian process from
examples. One situation of interest to us is when a
population of similar time series are available. This
prior learning scheme is known in statistics as the em-
pirical Bayesian or the hierarchial Beyesian (Gelman,
2004). Particularly, the model is called mixed-effect
model when the hyper-prior is a Gaussian, on which
the maximum likelihood (ML) solution can be found
with Expectation-Maximization (EM) algorithm.

Traditional mixed-effect models are parametric, which
assume a θ-parameterized regression model for each
individual. Since the model parameters vary across
individuals, it is natural to consider them generated
by the sum of a fixed and a random piece θ = α + βi,
where α is called the fixed effect, and βi, called random

effect, is assumed distributed N (0,D) with unknown
covariance D. The fitting of mixed-effect model is to
find α, D, and the variance of observation noise.

In non-parametric mixed-effect models, the individual
regression models do not take a parametric form. In-
stead, we assume the observations are generated by
k smooth curves {f1, f2, · · · , fk} fluctuating around a

mean (fixed-effect) function f0. We use f̃i = fi − f0

to denote the deviation of fi from f0 (random effect).

The prior of both f0 and f̃i can be summarized with
the following equations:

p0[f0] ∝ exp(−
1

2
||f0||

2
H0

) (15)

pf [f̃i] ∝ exp(−
1

2
||f̃i||

2
H) i = 1, 2, · · · , k, (16)

where H and H0 are generally different Hilbert spaces,
with the corresponding reproducing kernel denoted as
K and K0. Also we assume the observation noise to be



A RKHS Framework for Pairwise Time Series Distances

white Gaussian with variance σ2, from which follows

p(yi|f̃i, f0; ti) ∝
ni∏

j=1

exp(−
(yin − f̃i(tin) − f0(tin))2

2σ2
).

We assume H0 (and thus the form of p0[·]) is pre-
determined, while the fixed effect f0 is to be de-
cided. Also unknown are the noise variance σ2 and the
Hilbert space H for random effects (or equivalently K).
Our learning task is therefore to jointly optimize over
{f0,K, σ} by maximizing the following probability of
Y = {y1,y2, · · · ,yk}.

p(Y|f0;K,σ)p0[f0] =

p0[f0]

k∏

i=1

∫
Dfi{p(yi|f̃i, f0;σ)pf [f̃i]}, (17)

where the integral
∫

Dω g[ω] is a functional integral
over ω (Simon, 1979). Using the Gaussian property,
Eq.(17) can be further reduced to a standard integral

p(Y|f0;K,σ)p0[f0] =

p0[f0]
k∏

i=1

∫
dfi{p(yi|fi, f0;σ)p(fi;K)}. (18)

where fi = [f̃i(ti1), f̃i(ti2), · · · , f̃i(tiNi
)]T collects the

values of fi on times ti and p(fi;K) is a standard mul-
tivariate Gaussian

p(fi;K) =

1√
(2π)Ni |K(ti, ti)|

exp(−
1

2
fT
i K(ti, ti)

−1fi). (19)

In general, there is no unique solution of K that max-
imizes p(Y|f0;K,σ)p0[f0]. Indeed, it is easy to verify
that if K(tin, tim) = K ′(tin, tim) for any individual i

and time index (n, m), we will have

p(Y|f0;K,σ)p0[f0] = p(Y|f0;K
′, σ)p0[f0].

This situation can be circumvented in two ways. First
we can restrain K in a particular parametric family,
such as the widely used Gaussian kernel. Second, we
can instead optimize only over the entry K(tin, tim) for
all individual i, and time index (n,m). Both strategies
will be addressed in this paper.

4.1. Optimization with the EM Algorithm

The task is to find the set M = {f0,K, σ} that
maximizes the probability p(Y|f0;K,σ)p0[f0]. As
shown in Eq.(18), we can rewrite the data likelihood
p(yi|f0;K,σ) using the {f1, f2, · · · , fk} as the latent
variables

p(yi|f0;K,σ) =

∫
dfip(yi|fi, f0, σ)p(fi;K), (20)

which enables us to employ the EM algorithm in find-
ing M. In the following, we will give the results of the
expectation step (E-step) and the maximization step
(M-step).

E-step: In each EM iteration:

Q(M,Mg) = E{fi |Y;Mg}[log{p(Y, {fi};M)p0[f0]}]

=

k∑

i=1

∫
dfi log p(yi, fi;M)p(fi|yi;M

g)

+ log p[f0],

where Mg stands for the parameters from the last
iteration. After some algebra, we can re-arrange
Q(M,Mg) into the following form

Q(M,Mg) = −
1

2
||f0||

2
H0

− n log σ

−
1

2σ2

k∑

i=1

ni∑

j=1

E{fi|Y;Mg}[(yij − f̃i(tij) − f0(tij))
2 ]

+
k∑

i=1

∫
dfi log p(fi;M)p(fi|yi;M

g). (21)

M-step: In M-step, we find the

M∗ = arg max
M

Q(M,Mg), (22)

and use M∗ to update the model parameters. The op-
timization in Eq.(22) can be divided into two separate
parts. The first three terms on the left hand side of
Eq.(21) is a function of only (f0, σ); The last (fourth)
term is a function of only K. To find the solution of
f0 and σ, we need to solve the following optimization
problem:

(σ∗, f∗
0 ) = arg min

σ,f0

{
1

2
||f0||

2
H0

+ N log σ+

1

2σ2

k∑

i=1

ni∑

j=1

E{fi|Y;Mg}[(yij−f̃i(tij)−f0(tij))
2]. (23)

Particularly, with any fixed σ, maximizing Q(M,Mg)
over f0 becomes a regularized regression problem

f∗
0 = arg min

f0

1

2
||f0||

2
H0

+

1

2σ2

N∑

i=1

ni∑

j=1

{(yij − E{fi|yi,Mg}[f̃i(tij)] − f0(tij))
2}.

The optimization over K is

K = arg max
K∈K

k∑

i=1

∫
dfi log p(fi;K)p(fi|yi;K

g) (24)
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= arg max
K∈K

−
k∑

i=1

{
1

2
log |K(ti, ti)|

+
1

2
tr(K(ti, ti)

−1(C g
i + µ

g
i (µ

g
i )

T ))}, (25)

where K is the set of feasible K, and µi is the posterior
mean E[fi|yi;M] that can be calculated as

µi = K(ti, ti)(K(ti, ti) + σ2
I)−1(yi − f0,i)

and Ci is the posterior covariance of fi

Ci = K(ti, ti) − K(ti, ti)(K(ti, ti) + σ2
I)−1K(ti, ti).

4.2. Parametric Covariance Estimation

We assume the covariance function K is of the para-
metric form K(x, y; θ). For example, the Gaussian ker-
nel with scale a and kernel width s

K(x, y; {a, s}) = a exp(−
||x − y||2

2s2
),

or as suggested in (Lanckriet et al., 2004) a convex
combination of a set of kernels {K1,K2, · · · ,KM}

K(x, y;λ) = λ1K1(x, y)+λ2K2(x, y)+· · ·+λMKM (x, y).

In this case, the optimization of K in the M-step can
be reduced to the following parameter estimation

θ∗ = arg max
θ

−
k∑

i=1

{
1

2
log |K(ti, ti; θ)|

+
1

2
tr(K(ti, ti; θ)

−1(C g
i + µ

g
i (µ

g
i )

T ))}, (26)

where p(fi; θ) = p(fi;K(ti, ti; θ)). This parametric
form of K is appealing in either one of the following
two situations:

• when the observation are sparse, since the para-
metric K is generally less prone to overfitting
compared to the non-parametric estimation, as
will be discussed in Section 4.3.

• when the time series are not synchronized (as in
Section 5.1) since the parametric K allows the
out-of-sample extension.

4.3. Non-parametric Covariance Estimation

When all the time series all synchronized, we have ti =
t, i = 1, 2, · · · , k. We can replace K(ti, ti) in Eq.(25)
with K ≡ K(t, t), and rewrite the optimization into
the matrix form

K = arg max
K∈P

−
N∑

i=1

{
1

2
log |K|+

1

2
tr(K−1(Cg

i + µ
g
i (µ

g
i )

T ))}. (27)

If we let P be the set of positive definite matrix, the
solution of Eq.(27) is simple

K =
1

k

k∑

i=1

(Cg
i + µ

g
i (µ

g
i )

T ). (28)

The non-parametric fitting of kernel matrix K is ap-
pealing since it does not assume a particular form for
the covariance matrix and thus can fully exploit the in-
formation in the samples. However it can only be used
when the time series are synchronized. One example
of this modeling choice is given in Section 5.2.

5. Experiments

We tested the proposed distance measure on two real-
world applications. The first one is an algorithm for
cognitive decline detection based on longitudinal clin-
ical observations of motor ability. The second one is
an target identifier system based on electroencephalo-
graph (EEG) signal.

In each experiment, we employ support vector machine
(SVM) (Burges, 1998) with Gaussian kernel defined as
follows

Gij = exp(−
dij

2r2
) (29)

where dij is the squared distance between the time
series i and j and the kernel width r is usually obtained
using cross-validation. It is easy to see the G is a
Mercer kernel.

5.1. Cognitive Decline Detection Based on

Longitudinal Data

Research by our group and others show that motor
changes, such as in walking and finger tapping rates,
can effectively predict cognitive decline several years
before impairment is manifest (Camicioli et al., 1998).
It would be useful to build a system to detect cogni-
tive decline (at least partially) from motor behavior,
since they can be obtained by unintrusive in-home as-
sessment (Hayes et al., 2004). Our research focuses on
using clinical motor behavior and data from the Ore-
gon Brain Aging Study (OBAS) (Green et al., 2000).
All 143 subjects in the cohort were healthy at entry,
and when the data were drawn 46 of them had de-
veloped into mild cognitive impairment, while 97 re-
mained cognitively healthy. We divide all the subjects
into the impaired group and the normal group accord-
ing to their state when the data were drawn from the
database. 3 We intend to predict whether a subject

3This grouping is potentially inaccurate due to the pos-
sibility that those cognitively healthy subjects can later
develop into dementia, which is known as right censoring
in survival analysis.
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Figure 2. Left panel: sample spaghetti plots of seconds
from two groups. Right panel: the population of seconds
data and the fit fixed effect model (red line).

would develop into cognitive impairment based on his
or her motor behavior before a clinical diagnosis (if
any). In this experiment, this task reduces to pre-
dicting the group membership for each subject. This
classification is difficult due to the fact that motor ob-
servations are sparse and noisy, as shown in Fig.2(left
panel). We examined four motor behaviors summa-
rized in Table 1. Usually as the subjects age or be-
come impaired, the seconds and steps increase, while
tappingD and tappingN decrease.

seconds # of seconds the subject takes to walk 9 m

steps # of steps the subject takes to walk 9 m

tappingD # of the tappings the subject does in 10

seconds with the dominant hand

tappingN # of the tappings the subject does in 10

seconds with the non-dominant hand

Table 1. Description of data.

We fit the non-parametric mixed-effect model to each
motor behavior with the parameterized kernel

K0(t1, t2) = exp(
||t1 − t2||

2

2s2
0

),

K(t1, t2; {a, s}) = a exp(
||t1 − t2||

2

2s2
),

where s0 is predetermined and {a, s} are to be learnt.
The right panel of Fig.2 shows the seconds time series
from the 143 subjects (black −◦−) and the fit fixed
effect (red line). Once the model is fit, the distance
between any two subjects i and j is calculated as in
Eq.(11).

For comparison, we also examined a parametric feature
based on the least-square (LSQ) fit coefficients for lin-

ear regression: xi = arg minx

∑Ni

j=1(x0 + x1tij − yij)
2

with x = [x0, x1]
T . This feature extraction is justified

by the observation that the intercept and the slope
of the motor behavior trajectory are predictor of fu-
ture cognitive decline and dementia (Marquis et al.,
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Figure 3. The ROC curve of SVM with two distance mea-
sures. SVM(P): SVM with proposed distance. SVM(L):
SVM with least-square features.

2002). Based on the LSQ feature we get another dis-
tance measure dij = ||xi − xj ||2. We employ a SVM
as the classifier with kernels calculated with Eq.(29).
Fig.3 compares the ROC curves using the proposed
distance measure and the Euclidean distance between
the LSQ features. It is clear that SVM with proposed
distance measure outperforms the SVM with the LSQ
features in terms of the area under curve (AUC). There
are two reasons for the superiority of the proposed dis-
tance over the LSQ feature:

• The simple heuristic features such as the intercept
and the slope cannot capture enough information
for the classification.

• The feature extraction is not robust enough for
the sparse and noisy observations.

5.2. EEG-based Image Target Detection

The system reported here exploits the perceptual ca-
pabilities of expert humans for searching objects of
interest (e.g., a golf course in a satellite image) within
large image sets. The technique uses event related po-
tentials (ERPs), neural signals linked to critical events,
such as interesting/novel visual stimuli. The basic idea
of the ERP-based image triage system is to collect
electroencephalograph (EEG) signals from a subject’s
scalp when he or she performs visual target detection,
and then detect the ERPs associated with the target
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stimuli. We focus on single-trial ERP detection using
32 EEG sensors, which is challenging due to the low
signal-to-noise ratio.

This detection task is then boiled down to classifying
the EEG segments into target-associated EPRs and
distractors. After proper alignment and sampling, the
EEG segments are transformed into synchronized se-
quence of length 4128, which are denoted yi for each
individual trial i. In this experiment, we collected the
EEG data from three human experts, each of them
performed 1 training session and 7 test sessions. In
each training session, the human expert was fed with
∼600 images with ∼50 targets among them. In each
test session, there are 1-4 targets within ∼3000 distrac-
tors. Fig.4 (left panel) shows single-trial EEG signals
associated with a target and a distractor stimulus.

Due to the high dimensionality, the EM algorithm will
be fairly slow due to the extensive use of inverse of
K (4128 × 4128). To keep the computation at a rea-
sonable level, we simplify the model by assigning a
flat prior to the fixed effect f0, or equivalently letting
||f ||H0

= 0 for any f . This simplifying assumption
instantly leads to the following results.

• The optimal solution of f0 is simply the data mean
f0 = 1

k

∑k
i=1 yi, as shown in Fig.4 (right panel).

• The data likelihood is independent of σ2 as long
as it is less than the smallest eigenvalue of K̂ =
1
k

∑k
i=1(yi − f0)(yi − f0)

T .

Based on the above two results, we can pick a σ and
then calculate the optimal covariance K with Eq.(28)
in one iteration.
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Figure 4. EEG data and the fit mixed-effect model. Left
panel: Example of target-associated and distractor-
associated EEG signals. Right panel: The population of
EEG signals (black −◦−) and the fit f0 (red curve).

Once the optimal f0 and K are obtained, the distance
between any time series i and j can be calculated us-
ing Eq.(14). In addition to directly using the distance,
we isometrically embed the time series {yi} into Eu-
clidean space while preserving the distance expressed
in Eq.(14). The embedded vectors, called ISO feature,

will then be used directly in linear classifiers. One
obvious choice is the non-degenerated linear transfor-
mation

xi = K1/2(K + σ2
I)−1yi (30)

where K
1

2 could be any matrix A ∈ R
N×N with

AAT = K. We tested both the proposed distance
and the (squared) Euclidean distance 4 ||yi − yj ||

2 as
the distance term dij in the Gaussian kernel G and
compared the performance of the SVM with the two
distance measures. In addition, we also tried a linear
logistic classifier (LLC) with both the raw feature yi

and ISO feature xi as the input. In our experiment,
the SVM parameters and kernel width were selected
using 10-fold cross validation.

Due to the extremely low probability of targets and
the high cost of misdetection, we aim for zero-miss and
minimum false alarm rate (MFAR), which is defined as
the percentage of false alarms among all classifications
while all targets are correctly detected. We test both
SVM and LLC on the 21 (=3 × 7) test sessions. Ta-
ble 1 summarizes the detection results when different
distance or features are used. The criteria of compari-
son include the average MFAR across the 21 sessions,
the number of sessions with low MFAR (≤ 10%)and
very low MFAR (≤ 2%). Clearly, the LLC with ISO
features outperforms the LLC with raw feature by giv-
ing low average MFAR, more low MFAR sessions, and
more very low MFAR sessions. The story is similar
when using SVM as the classifier: the proposed dis-
tance outperforms the the Euclidean distance on all
three criteria.

Clearly the temporal structure is important in de-
scribing the EEG signal, and thus plays a crucial role
in deciding the distances between EEG time series.
The proposed distance measure successfully incorpo-
rates the temporal structure information learnt with a
rather simple algorithm, and yields significantly better
classification than the Euclidean distance that simply
adds the index-by-index differences.

6. Related Work

The connection between Bregman divergence and ex-
ponential family is first proposed by (Forster & War-
muth, 2000), and later used by several authors in de-
riving a proper distance measure for either clustering
(Banerjee et al., 2005) or dimension reduction (Collins
et al., 2001). Our work also depends heavily on the
functional Bregman divergence, an idea first fully ex-
plored in (Frigyik et al., 2006). The non-parametric

4It would be fair to learn the covariance for a Maha-
lanobis distance. However, we have not performed this
comparison for the sake of simplicity.
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Aver. MFAR # ≤ 2% # ≤ 10%
LLC(I) 8.99% 12 16
LLC(R) 18.18% 2 12
SVM(P) 4.91% 13 19
SVM(E) 6.31% 7 16

Table 2. The detection results with different classifier set-
tings. Columns: AverMFAR: the average MFAR across 21
sessions; #≤ 2%: the number of sessions with MFAR≤ 2%;
#≤ 10%:the number of sessions with MFAR≤ 10%. Rows:
LLC(I): LLC with the ISO feature; LLC(R): LLC with
raw feature; SVM(P): SVM with the proposed distance;
SVM(E): SVM with Euclidean distance.

mixed-effect model is a natural generalization to the
hierarchical Bayesian Gaussian process proposed by
(Schwaighofer et al., 2005) to functional form where
synchronized and non-synchronized time series can be
treated in a unified framework.

This work can be viewed as a particular example of the
functional data analysis (Ramsay & Silverman, 1997).
Particularly, in an early effort towards the functional
PCA (Ramsay & Dalzell, 1991), the authors suggested
to map the discrete observations (ti,yi) to a smooth
function through the following regularized regression

f̂i(t) = arg min
f

1

2

Ni∑

n=1

(yin−f(tin))2+
1

2
λ||Df ||2, (31)

where D is a linear operator. The solution to Eq.(31) is
the expectation in Eq.(9) if we let λ = σ2 and K be the
Green’s function of the operator D∗D. The difference,
however, are that (1) our model also assumes a non-
zero mean (fixed effect) f0 and (2) the kernel K is
learned from a population of time series.
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