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Abstract — The canonical sum-of-rank-one decomposition of tensors is a 
fundamental linear algebraic problem encountered in signal processing, 
machine learning, and other scientific fields. Current algorithms that 
emerge from CANDECOMP or PARAFAC formalisms rely on the basic 
definition of tensor decomposition that describes rank as the minimum 
number of vectors that are needed to reconstruct the tensor using outer 
product linear combinations, which is an extension of the same property 
of matrix rank. In this paper, we reinterpret the orthogonality condition 
of symmetric matrix eigenvectors as a geometric constraint on the 
coordinate frame formed by the eigenvectors and relaxing the 
orthogonality, we develop a set of structured-bases that can be utilized to 
decompose any symmetric tensor into its sum-of-rank-one (canonical) 
decomposition. The eigenvectors of order-p tensors are observed to form 
a frame where the angle between various pairs of eigenvectors are 
integer multiples of π/p. Validation of the proposed geometric structure 
and demonstration of decomposition accuracies obtained using these 
frames (at the level of a computer’s numerical-ε) are provided.  

I. INTRODUCTION  
In this paper, we propose a geometrical constraint for the 

eigenvectors of an n-dimensional order-p symmetric tensor. The 
particular cases of tensor decompositions corresponding to the well 
known n-dimensional order-2 tensors (matrices) and our recent 
solution for the 2-dimensional order-p tensors will be presented first 
to provide motivation and intuition. The proposition generalizes the 
geometrical orthogonal coordinate frame interpretation of symmetric 
real-valued matrix eigendecompositions to any-order symmetric 
real-valued tensors. This paper is important for the community to 
disseminate our proposal at an early stage in order to attract the 
interest and effort of other researchers working in the tensor 
decomposition field to developing the theoretical and practical 
aspects of the proposed tensor decomposition approach. 

Since tensors and their eigendecompositions are not yet widely 
known, we include a basic introduction to the relevant concepts, as 
well as an explanation of the traditional CANDECOMP/PARAFAC 
(CP) approaches that attempted to solve this problem in recent 
decades. Our goal is to achieve a reasonably self-contained text to 
attract the attention of readers who might be unfamiliar with the 
topic. Consequently, although our main interest is in symmetric real 
tensors, we will start by discussing the generalization of singular 
value decompositions of nonsymmetric matrices to arbitrary real-
valued tensors. The specific case of symmetric tensors is relatively 
simpler because one needs not deal with eigenvectors from left, 
right, and other index directions (modes), since all of these vectors 
corresponding to a singular value are identical for symmetric tensors 
(as the left/right eigenvectors of symmetric matrices are identical). 

We first describe tensors, their CP and Tucker decompositions, 
which are utilized to approximate a given tensor with a lower rank 
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tensor. Existing approaches tackle the problem of tensor 
decompositions from a low-rank approximation perspective in the 
sense that when tensor is approximated to some negligible error-
norm by adding some small number of terms (e.g., rank-1 tensors in 
CANDECOMP) the algorithm is assumed to converge and the 
resulting decomposition is happily used for data compression or 
denoising purposes. It is not difficult to see that these existing 
approaches, although emerging from the singular value 
decomposition and deflation practices, cannot be rigorously viewed 
as eigenvector decompositions, since (i) the starting point of such 
algorithms is not a rigorous definition of eigenvectors for an order-p 
tensor, which due to the isomorphism with order-p polynomial 
spaces would not have eigenvectors in the usual bilinear-algebraic 
sense, (ii) they yield decreasing reconstruction error-norms as the 
number of rank-1 terms is increased, however our experience 
showed that for randomly selected tensors, typically the algorithms 
keep on going to generating infinite terms if not stopped artificially 
(e.g., by checking reconstruction error-norm versus some threshold), 
and (iii) disturbingly, when one compares the best rank-1 
approximation to the best rank-2 approximation of a tensor, the 
rank-1 solution does not appear in the latter as a component, thus 
desirable deflation rules do not apply. 

Our goal, in this paper, is to motivate that the eigenvectors (more 
appropriately, invariant vectors) of a tensor should have a geometric 
constraint that enables them to form a frame of vectors, which then 
could be jointly rotated in the corresponding vector space in order to 
identify the correct orientation of the eigenvector frame and the 
corresponding eigenvalues. Tensor analysis emerges in many fields 
of applications such as signal [1] and image [2] processing, factor 
analysis [3], speech, and telecommunications. As tensors are related 
to higher-order statistics through joint moments and cumulants of 
vector-valued random processes, we believe, they will play an 
increasingly more important role in statistical signal processing. A 
useful tensor eigendecomposition definition accompanied by 
computationally efficient tensor eigendecomposition algorithms will 
be key to widespread utilization of these multilinear objects.  

II. TENSORS AND LOW-RANK APPROXIMATIONS 
The term tensor has different definitions in physics and 

mathematics. In mathematics it represents a nonlinear (e.g., 
polynomial) function or a multiway data array. In physics tensor 
fields that describe the properties of a system in a geometric space are 
referred to as tensors in short. In computer vision papers, it is possible 
to see traces of both nomenclatures, adding to the confusion. In signal 
processing, we refer to multiway arrays, thus tensors are 
generalization of scalars (order-0), vectors (order-1), and matrices 
(order-2) to arrays with more entry indices. In the literature, there is 
also some confusion about the use of the term tensor rank. While 
some would refer to vectors as rank-1 and to matrices as rank-2 
tensors, we use the term order-p to denote the number of indices 



required to identify an element (and also due to the link with order-p 
polynomials). Furthermore, in signal processing papers, typically, the 
term tensor-rank is utilized to indicate the number of rank-1 tensors 
(outer product of p vectors for nonsymmetric tensors or the p-times 
outer product of a single vector with itself for symmetric tensors) one 
needs to add to obtain the original tensor, similar to matrix rank as 
defined by the number of eigenvectors with nonzero eigenvalues. 
There are also multiple definitions of tensor rank; we are interested in 
the version that reduces to matrix rank in the usual sense. 

An order-p n-dimensional hypercube tensor is a mathematical 
object that has np elements and each of them can be reached by a 
unique p-element index vector. We can represent a tensor as a 
multidimensional and multiorder array of data that obeys certain 
transformation rules and operations on arrays such as addition, 
multiplication, permutation of indices, and elementwise operations. 
Inner product spaces can also be defined on tensor objects. The most 
widely recognized approaches for low-rank tensor decompositions 
can be presented by two models: (1) canonical decomposition 
(CANDECOMP) by Carrol and Chang [4] or alternatively parallel 
factor analysis (PARAFAC) by Harshman [3]; (2) the Tucker [5] 
model of decomposition. For CP model tensor can be represented as a 
sum of rank-1 tensors. The number of sum terms depends on error of 
decomposition and generally we can say that series of sums generated 
with this definition can have infinite terms. The advantage of this 
definition is that it leads to a list of linear combination coefficients 
that are interpreted like singular values. As opposed to the CP, 
Tucker’s proposed decomposition factors tensors as a finite sum, but 
not necessarily composed of rank-1 terms. This leads to the 
introduction of a nondiagonal core tensor. We use the following 
notational conventions: indices are denoted by i1,…,ip or similarly 
using other lowercase letters that will be clear from the context. We 
denote vectors by lowercase boldface letters, matrices and other 
higher order tensors with uppercase boldface letters. Various 
conventions are found in the literature since the community did not 
arrive at a consensus yet [6,7]. Let A be an order-p tensor of 
dimensions n1×n2×…×np. The kth mode (or way) of A is of 
dimension nk. For example a tensor of size 2×2×2 is 2-dimensional 
order-3 tensor. To avoid confusions, it will be assumed that nk>1 for 
each mode of a tensor (i.e., matrices are order-2 tensors, not order-3 
with a singleton mode). We denote the index of a single element of a 
tensor by subscripts: 

pii…1A . 

The CP representation of tensors in decomposed lower rank form 
uses the sum of rank-1 tensors. A rank-1 tensor is one that can be 
written as the p-way outer product of vectors: 

 (1) (2) ( )pλ= ⋅T u u uD D"D  (1) 

where λ is a scalar multiplicative factor and each u(k) is an nk-
dimensional vector. The D  symbol denotes outer product, so: 
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where ui denotes the ith entry of vector u. The best rank-1 
approximation problem for matrices is also the same as the 
Alternating Least Squares algorithm for fitting a rank-1 CP model. 
This approximation problem is that, given a tensor A, we want to find 
a tensor T as in (1) such that ||A-T|| is as small as possible, according 
to a suitable tensor norm (usually Frobenius, but other measures are 
employed).1 The higher-order power method computes a T that 
approximately solves this problem. This latter method works as 

                                                        
1 It is important to note that, as demonstrated by de Silva and Lim [10], the 
space of tensors might not have a norm that allows traditional signal 
processing understanding of “zero-error-norm iff identical objects” which is 
valid in Hausdorff spaces. Nevertheless, whether this mathematical 
inconvenience is a practical problem or not is yet to be discussed. 

follows: fix all u-vectors except u(1) and optimize for u(1) with a 
fixed-point iteration; after convergence, repeat the procedure for u(2), 
u(3), …, cycling through the indices until the specified number of 
iterations is exhausted (or some other stopping criterion is met). 
Details of this algorithm can be found in [8]. When the stopping 
criterion is met, the algorithm proposes a CP-type approximation to 
the original tensor A in a form that is the multilinear generalization of 
the best low-rank approximation problem for matrices: 

 (1) (2) ( )
1

r p
l l l ll

λ
=

= ⋅∑A u u uD D"D  (3) 

Here ul
(k) is the lth singular vector along the kth mode, and λl is a 

linear combination coefficient (also called singular value, but 
mistakenly in our belief, since low-rank approximations do not obey 
deflation invariance and these so-called singular values are not 
invariant in any sense). If exact equality is achieved as in (3) with the 
minimum possible integer r, then rank⊗A=r. The Tucker 
decomposition [5], alternatively referred to as a rank-(r1,r2, …, rp) 
decomposition [8], is the multilinear-rank tensor that is given by 
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Note that the sum of Tucker ranks trivially provides an upper 
bound for the tensor-rank of the type shown in (3). Here Λ is a tensor 
of dimensions r1×r2×…×rp. This tensor is often called the core array 
or the core tensor [9]. The higher-order orthogonal iteration 
algorithm [8], which is the multilinear generalization of the best rank-
r approximation problem for matrices, finds the best rank-(r1,r2,…,rp) 
approximation of a tensor. Also note that the CP decomposition is a 
special case of the Tucker decomposition where r=r1=r2=…=rp and 
Λ is a diagonal tensor. Also, the Tucker decomposition can be 
regarded as an inefficient CP decomposition. 

III. EIGENVECTORS OF A SYMMETRIC TENSOR 
We deal with the problem of real-symmetric tensors because the 

decomposition of such a tensor into a sum of rank-1 tensors utilizes 
basis tensors that are p-way outerproducts of the same vector. That is, 
if A is symmetric (the value of the entries at any permutation of a 
given index vector are identical, similar to symmetric matrices having 
the same value at permuted row-column index locations), the rank-1 
decomposition of this tensor is of the form 

 ∑ == r
l

p
ll1
DuA λ  (5) 

where uop denotes the p-way outer-product of the vector u (e.g., 
uo2=uuT). Similar to nonsymmetric matrices, arbitrary tensors can be 
subjected to various inner products along different modes in order to 
obtain symmetric tensors whose eigenvectors relate to the mode-
specific singular-vectors that one would seek for the rank-1 
decompositions (e.g., for a matrix A, the left and right singular 
vectors could be obtained as eigenvectors of AAT and ATA). 
Therefore, we believe as a first step, it is sufficient to focus on 
symmetric tensors. The latter also arises most commonly in higher-
order statistical signal processing problems in the form of moment or 
cumulant tensors thus are of specific interest themselves. 

Next we present solutions for three type of tensors; two of them 
are marginal cases of dimension and order, and the third is the 
general case of n-dimensional order-p tensor decompositions, which 
reduces to the former two as particular cases. 

A. Order-2 n-Dimensional Tensor 
Here we briefly describe well known theory about the 

eigendecomposition of symmetric matrices by Jacobi algorithm. A 
symmetric n-dimensional order-2 tensor is a symmetric matrix. Any 
eigenvector basis for a real symmetric matrix is orthogonal, and can 



always be made into an orthonormal basis. Thus a real n-dimensional 
symmetric matrix can be decomposed as 

 ∑ == n
l ll1

2DuA λ  (6) 

where U = {ul, l=1,...,n} is orthogonal n-dimensional basis. 

For numerical determination of (6) we can use, for instance, the 
Jacobi algorithm [11] that tries to find mr(n)= ( )2

n   rotation angles {θij, 
i=1,...,n-1, j=i+1,...,n}, such that we can construct a rotation matrix 
R(θij) in plane (i,j) with angle θij. A set of rotation matrices 
completely describes the orientation of the orthonormal basis in the 
n-dimensional space or, in other words, the eigenvectors in the 
decomposition of (6). This eigendecomposition solution consists of 
mr(n) rotation angles and n eigenvalues. The number of unique 
elements of a symmetric n-dimensional matrix A, n(n+1)/2, equals 
the sum n+mr(n). Solving for the rotation matrices R(θij), we can get 
the orthonormal system of eigenvectors U={ul, l=1,…,n}: 
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where ul is the lth column of matrix U. Due to orhtonormality of U, 
the eigenvalues are uniquely identified by the Frobenious inner-
product vector between the target matrix and the basis matrices: 
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B. Order-p 2-dimensional Tensor 
In this section we focus on the 2-dimensional case where unit-

length eigenvectors can be parameterized by one rotation angle. Let 
A be a 2-dimensional order-p real-symmetric tensor. The number of 
unique elements (not repeated due to symmetry) for this tensor can be 
shown to be p+1. Our goal is to find a decomposition of the type 
shown in (5) uniquely under certain acceptable permutations of the 
solution, such as the index shuffling of the eigenvectors and 
eigenvalues. For such uniqueness to be possible, the number of 
unique elements (equations) on the left-hand side of (5) must be equal 
to the number of parameters (unknowns) on the right-hand side. This 
implies that the number of eigenvalues, r, plus the number of 
parameters that characterize r corresponding vectors, s, (at least 1 
angle if all vectors are fixed relative to each other and at most r 
angles if all vectors are free to take arbitrary orientations, as assumed 
in CP) is equal to p+1: that is (r+s)=(p+1). 

It is desirable that the parameterization proposed for the 2-
dimensional symmetric order-p tensor holds for order-0, order-1, and 
order-2 tensors. For scalars (p=0), r=1 and s=0, since there are no 
vectors to parameterize. For vectors (p=1), r=1 (± the norm of the 
vector) and s=1 (the orientation angle of the vector in 2-dimensional 
space). For symmetric matrices (p=2), r=2 and s=1 (since both 
vectors are defined by one rotation angle and the vectors are always 
orthogonal to each other). Generalizing this pattern using induction, 
we require that r=p; that is, the number of eigenvalues for an order-p 
2-dimensional symmetric tensor is also p. Consequently, this leaves 
us only one parameter to characterize all corresponding eigenvectors: 
s=1. The latter is only possible if the eigenvectors form a fixed frame 
(relative pairwise angles are fixed a priori) and the whole frame is 
rotated at once using a single rotation angle (the free parameter) in 
order to achieve equality in (5). At the correct frame orientation, the 
eigenvalues obtained using the procedure in (8) will yield an exact 
decomposition of the tensor; at arbitrary frame orientations, these 
estimates of eigenvalues will not yield equality in (5). 

An additional property that we desire from the eigenvector frame 
is “rotation-invariance”. Considering again the 2-dimensional case, in 
particular, for vectors, if the basis vector is rotated by π radians, then 
one can change the sign of the scale factor (eigenvalue, or the norm 
parameter) to obtain the original vector; for matrices, if the 
orthogonal eigenvector frame is rotated by multiples of π/2 radians, 
the eigenvectors switch their indices and/or signs, thus simply 
switching the indices and signs of the corresponding eigenvalues 
results in the same matrix. In general, we want the eigenvectors of the 
order-p tensor to be separated by exactly π/p radians so that if the 
frame consisting of p vectors is rotated at angles that are integer 
multiples of this angle, the eigenvectors switch indices and/or signs, 
hence similar modification on the corresponding eigenvalues 
preserve the equality in (5). 

Incorporating these conditions into the design of the rank-1 sum 
decomposition on the right-hand side of (5), we obtain that real-
symmetric, 2-dimensional order-p tensor A has the following 
decomposition in the CP-sense, but utilizing a specific geometrical 
structure for its decomposition as opposed to the arbitrary vectors 
generated by some algorithms:2 

 ∑
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In this case, a simple line search for θ in the interval [0,π/p) is 
sufficient (since the reconstruction error norm will be periodic by this 
amount). For each value of this frame orientation angle, the 
eigenvalues can be obtained, for instance, via least-Frobenious-norm-
squared fitting (essentially least squares) in an analytical manner – 
the equations are omitted here for brevity. Employing the Gram-
Schmidt orthogonalization, the eigenvalue vector λ is uniquely 
identified by the inner-product matrix between the basis tensor pairs 
and the inner-product vector between the target tensor and the basis 
tensors as )()( 1 θcBθλ −= . Here the matrix B (invariant with respect 
to θ, since the pairwise angles between the eigenvectors are fixed by 
the frame) and the vector c are defined elementwise as follows, 
assuming the Frobenius tensor inner product as in (8): 

 F
p

ii
p
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where i,j=1,…,p. Specifically note that each entry of B reduces to the 
following: Bij=cosp((i-j)π/p). For symmetric matrices, this matrix is 
simply identity. 

C. Order-p n-Dimensional Tensor 
In this section we present eigendecomposition of n-dimensional 

order-p symmetric tensors that includes previous sections as 
particular cases. The number of unique elements of a symmetric n-
dimensional order-p tensor relies on the triangular numbers: mu(n,p)= 
( )

p
pn 1−+ . Based on the two special cases examined above we conclude 

that the decomposition of any symmetric tensor must consist of some 
fixed frame of vectors rotated in n-dimensional space and any angle 
between pairwise vectors must be constant and depends on order p. 
As in matrices, we need mr(n) rotation angles to characterize the 
orientation of the eigenvector frame. So we can decompose any 
symmetric n-dimensional order-p tensor as a finite sum of rank-1 
tensors as in (5), where the number of vectors is: r= ( ) ( )

2
1 n

p
pn

−
−+ . 

                                                        
2 Note that a symmetric 2-dim matrix can be expressed as the sum of two 
rank-1 matrices constructed using any set of two linearly independent vectors 
rotated properly, thus a CP decomposition with different error norm 
measures would yield different such decompositions. The situation is the 
same with tensors.  



To obtain the decomposition numerically, we construct a frame 
of r initial vectors U and optimize the rotation angles θ such that the 
Frobenious error norm is minimized. For a given candidate frame 
orientation, the eigenvalues are always obtained using (10). The 
frame consists of vectors that are rotations of, for instance, the first 
column of the n-dimensional identity matrix multiplied by a rotation 
matrix with all possible permutations of angles that are multiples of 
π/p in consecutive dimension index pairs. Specifically, this leads to a 
system of n(p-1) vectors: 
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where the rotation matrices are always multiplying from the left. We 
denote the matrix that is used to obtain each vector in the frame as 

11...kkn−
R . Here )/(1, pkiii π+R  is a rotation matrix in the plane 
(i,i+1) with angle kiπ/p and each index ki∈{0,…,(p-1)}. 

Note that the number of vectors in this frame is more than the 
number of vectors needed, r. Any subset that yields a full-rank B in 
(10) can be selected and utilized. The elimination procedure in Fig. 1 
yields the exact number of vectors prescribed and yields a full-rank 
B. After elimination and searching for the optimal frame orientation, 
the eigenvalues are obtained using (10) and the final eigenvectors are 
expressed as (all rotations multiply from left): 

 initial
n

i

n

ij
ij URU 













= ∏ ∏

−

= +=

1

1 1
)(θ  (14) 

IV. NUMERICAL DEMONSTRATIONS 
A visual illustration of the proposed eigenvector frame scheme 

for real-symmetric 2-dimensional order-p tensors and the frame of 7 
eigenvectors after the decomposition of a random 3-dimensional 
order-3 tensor is provided in Fig. 2 for illustration. The number of 
parameters to be determined (frame orientation angles and 
eigenvalues) is equal to the number of unique elements in the tensor. 
The reconstruction error Frobenius tensor-norm between the two 
sides of (6) are shown as a function of the frame angle in Fig. 3 (left) 
for 2-dimensional cases. As expected, for order 2, 4, and 7 tensors, 
the error completes 2, 4, and 7 cycles respectively. In Fig. 3, we also 
present the average normalized Frobenious error norm-squared per 
tensor entry for randomly generated tensors of orders 2 to 5 for 
dimensions 2 to 5.3 The optimal orientation is identified by a search 
procedure similar to stochastic annealing. The reconstruction error-
squared value averages around Matlab’s minimum of 10-32 (e.g., 
check Matlab’s internal eigendecomposition routine eig) for small 
order small-dimensional tensors. Errors of decomposition grows 
exponential due to the number of elements in the high-order high-
dimensional tensors growing combinatorially combined with fast 
numerical degradation due to matrix ill-conditioning. 

V. CONCLUSION  
In previous work on CP and Tucker decompositions of tensors, 

researchers have proposed numerical algorithms for determining low-
rank approximations to higher-order tensors in a manner similar to 
the low-rank representation capabilities of matrix eigenvectors. We 
propose a new direction to this problem by introducing geometric 
constraints to the eigenvector set for the general case of n-
dimensional order-p symmetric tensors. The ideas presented here will 
be generalized to nonsymmetric tensors in future publications. 
Numerically more stable techniques will also have to be developed. 

                                                        
3 Specifically, for a random tensor A and its reconstruction T with optimally 
selected θ, E[ ||A-T||F2 / ||A||F2]/np is calculated where expectation is the 
average across 1000 random symmetric tensors. 
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Figure 1.  A procedure for getting r vectors with a full-rank B. 
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Figure 2.  Illustration of the proposed eigenvector frame in terms of the 
angles and eigenvalues associated with each vector. (Left) for order-p 2-

dimensional tensors and (Right) for order-3 3-dimensional tensors. 
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Figure 3.  (Left) Frobenious norm squared of the reconstruction error for 

tensors of order 2 (dot), 4 (solid), and 7 (dash) versus θ∈[0,π). (Right) 
Average normalized reconstruction error-squared level for the proposed 
eigendecomposition technique for random tensors of orders 2 to 5 for 

dimensions 2 (square), 3 (diamond), 4 (circle), 5 (triangle). 


