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ABSTRACT
Principal manifolds are essential underlying structures that mani-
fest canonical solutions for signi�cant problems such as data de-
noising and dimensionality reduction. The traditional de�nition of
self-consistent manifolds rely on a least-squares construction error
approach that utilizes semi-global expectations across hyperplanes
orthogonal to the solution. This de�nition creates various practical
dif�culties for algorithmic solutions to identify such manifolds, be-
sides the theoretical shortcoming that self-intersecting or nonsmooth
manifolds are not acceptable in this framework. We present local
conditions for critical and principal manifolds by introducing the
concept of subspace local maxima. The conditions generalize the
two conditions that characterize stationary points of a function to
stationary surfaces. The proposed framework yields a unique set of
principal points which can be partitioned into principal curves and
manifolds of any intrinsic dimensionality. A subspace-constrained
�xed-point algorithm is proposed to determine the principal graph.

Index Terms� Principal curves, unsupervised learning, mani-
fold learning, dimensionality reduction, feature extraction, denoising

1. INTRODUCTION

For a jointly Gaussian random vector, principal components analy-
sis (PCA) yields the optimal projection hyperplanes which satisfy
least-squares reconstruction error and maximum likelihood projec-
tion properties simultaneously. Traditional extensions of the concept
to identifying principal manifolds of one or more intrinsic dimen-
sions have typically exploited the least-squares reconstruction error
aspect in conjunction with various smoothness and self consistency
constraints for the nonlinear solutions. This yields satisfactory re-
sults if the high dimensional data can be modelled as a Gaussian or
other unimodal symmetric perturbation orthogonal to a smooth reg-
ular manifold. These solutions can be determined locally or globally
in terms of parametric or nonparametric models [1, 2, 3].

The self-consistent principal curves and surfaces as de�ned by
Hastie [4] and studied by various researchers [5, 6, 7, 8] have been
the foundation of most existing techniques due to the traditional ap-
peal of 2ndorder statistical optimality criteria. Algorithm conver-
gence proofs are dif�cult to construct due to the nature of the de�-
nition which leads to intersecting orthogonal subspaces of the curve
for different points and the smoothness requirement might impose
arti�cial constraints on the solution for certain data distributions as
we will illustrate later. Algorithms to �nd principal curves inspired
by Hastie's de�nition include Tibshirani's mixture-model expecta-
tion maximization approach [5], Sandilya and Kulkarni's bounded
curvature approach [6], Kegl and colleagues' piecewise-linear ap-
proach [7], and Stanford and Raftery's outlier robust algorithm [8].

There are two contributions of this paper: (i) following our ear-
lier work [9], we present the concept of critical surfaces of intrinsic
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Fig. 1. A 2-dimensional pdf of a Gaussian mixture with 3 compo-
nents is presented. The trajectories of gradient-ascent (red), local
covariance-eigenvector that yields the proposed principal curve pro-
jections (blue), and the principal tree (green) are shown.
.

dimension d ≤ n, where n is the dimensionality of the space in
which the data is embedded; (ii) a subspace-constrained mean-shift
algorithm to determine the principal curves for a KDE model. The
principal surfaces with desirable best approximation properties re-
side as subsets in these sets. The de�nition yields a unique principal
set for a given density model; therefore, constraints on smoothness
can be and must be imposed on the density model rather than the
manifolds. This has advantages and disadvantages; since the regu-
larization problem is transferred from curve/manifold generation to
density modelling, extensive existing know-how on density model
�tting can be exploited, however at the full dimensionality of the
data rather than the intrinsic dimensionality of the desired manifold.

We start with an illustration to motivate the reader. The de�ni-
tions provided below lead to a generalization of the usual two con-
ditions for stationary points into two conditions that a point x ∈ Rn

needs to satisfy to be an element of the d-dimensional principal sur-
face of a data distribution p(x). For instance, the local conditions
that state a point is a local maximum iff the gradient is equal to zero
and all of the eigenvalues of the Hessian are negative generalizes to
a point is on the d-dimensional principal surface iff the gradient is
in the span of d eigenvectors of the Hessian and all remaining (n-
d) eigenvectors have negative eigenvalues. The general conditions
contain criteria for local maxima as special case for 0-dimensional
principal set and one can prove a de�ation property for subsequent
dimensionalities of critical sets (includes minor, saddle, and princi-
pal surfaces). Furthermore, we will also observe that the conditions
for a point being an element of the principal curve reduce to: (i) the
gradient is an eigenvector of the Hessian, (ii) the eigenvalues of the
remaining eigenvectors are negative. The subspace-constrained den-
sity maximization algorithm, inspired by mean-shift, achieves con-
vergence to a �xed point that satis�es the conditions for being in a
local principal surface that is consistent with the de�nition by per-
forming the mean-shift update after projecting it to the span of the



local eigenvectors of the Hessian at the current point on the iteration
trajectory. While regular mean-shift trajectories converge to the local
maxima of a pdf as an EM update, the subspace-constrained mean-
shift updates converge to a point in the principal surface of desired
dimensionality (e.g., principal curve along a ridge of the pdf). A
comparison of such trajectories following local Hessian eigenvectors
to obtain the principal curve and local gradient directions to obtain
the local maxima are presented in Figure 1 on a Gaussian mixture.

2. CRITICAL AND PRINCIPAL SETS

The proposed development of the local theory of principal curves
and manifolds is inspired by the geometry of curved surfaces embed-
ded in higher dimensional Euclidean spaces. Similarities with differ-
ential geometric concepts regarding principal curves of m-dimensional
Riemannian manifolds embedded in n-dimensional Euclidean spaces
exist. In the context of probabilistic data models, we interpret the pdf
of an n-dimensional random vector as an n-dimensional manifold
and generalize the concepts of critical and principal lines.

We assume that a pdf p(x) for a random vector x ∈ <n is pro-
vided (either known or estimated from data). Furthermore, we as-
sume that p(x) > 0 for all x, is continuous, and at least twice dif-
ferentiable. Let g(x) be the transpose of the local gradient of this
pdf, and H(x) be the local Hessian of this pdf evaluated at x. Also let
{(λ1(x), q1(x)), . . . , (λn(x), qn(x))} be the eigenvalue-eigenvector
pairs of H(x), sorted such that λ1(x) ≥ λ2(x) ≥ . . . ≥ λn(x).

De�nition 2.1. A point x is an element of the d-dimensional
critical set, denoted by Cd iff g(x) is orthogonal to at least (n-d)
eigenvectors of H(x), where orthogonality of two vectors means null
Euclidean inner product.

Lemma 2.1. Critical points of p(x) constitute C0.
This lemma illustrates that for d = 0 the proposed de�nition of

critical sets reduces to the traditional de�nition of critical points.
Lemma 2.2. Cd ⊂ Cd+1.
A natural consequence of this lemma by induction is: C0 ⊂

. . . ⊂ Cn, where Cn = <n. This property of critical sets makes
it possible, in theory, to utilize de�ation or in�ation procedures to
construct these substructures. Note that, by de�nition, Cd is a union
of
�

n
d

�
submanifolds, which intersect each other at various submani-

folds of critical sets with lower dimensionalities.
De�nition 2.2. A point x ∈ Cd but x /∈ Cd−1 is called a regular

point of Cd. A point x ∈ Cd−1 is called an irregular point Cd.
Lemma 2.3. If x is a regular point Cd, then there exists an

index set I ⊂ {1, . . . , n} with cardinality |I| = (n − d) such that
〈g(x), qi(x)〉 = 0 iff i ∈ I . If x is an irregular point of Cd, then
|I| > (n− d).

Lemma 2.4. Let x be a regular point of Cd and I be an index set
with cardinality |I| = (n − d) and such that 〈g(x), qi(x)〉 = 0 iff
i ∈ I . The tangent subspace of Cd at x is Cd

‖ (x) = span{qi(x)|i /∈
I} and the normal subspace of Cd at x is Cd

⊥(x) = <n − Cd
‖ (x) =

span{qi(x)|i ∈ I}.
So far, we have de�ned the critical sets as unions of submani-

folds of the pdf manifold and we have characterized the tangent and
normal Euclidean subspaces to these submanifolds at every point.
However, we have not characterized the critical manifolds as locally
maximum, minimum, or saddle. This characterization has to utilize
the sign of the eigenvalues of the local Hessian and will lead to the
de�nition of locally maximal principal sets as the canonical solution
for dimensionality reduction in a maximum likelihood manner.

Theorem 2.1.(Subspace Stationarity) Let x be a regular point
of Cd and I be an index set with cardinality |I| = (n− d) such that
〈g(x), qi(x)〉 = 0 iff i ∈ I . The following statements hold:

1. local maximum in Cd
⊥(x) iff λi(x) < 0 ∀i ∈ I .

2. local minimum in Cd
⊥(x) iff λi(x) > 0 ∀i ∈ I .

3. saddle point in Cd
⊥(x) iff ∃λi(x) < 0 and ∃λi(x) > 0; i ∈ I .

Relaxing the inequalities to include zero-eigenvalues would re-
sult in platitude points as usual. However, for the purposes of the
following de�nitions, inequalities are kept strict.

De�nition 2.3. A point x is an element of the: (1) principal set
P d iff x is a regular local maximum point in Cd

⊥(x); (2) minor set
Md iff x is a regular local minimum point in Cd

⊥(x); (3) Saddle set
Sd iff x is a regular saddle point in Cd

⊥(x).
Lemma 2.5. (P d, Md, Sd) is a partition of Cd.
Lemma 2.6. (1) x ∈ P 0 iff x is a local maximum of p(x). (2)

x ∈ M0 iff x is a local minimum of p(x). (3) x ∈ S0 iff x is a saddle
point of p(x).

This lemma states that the modes of a pdf (now called principal
points), form the 0-dimensional principal set. Note that the modes
of a pdf provide a natural clustering solution for data. In fact, the
widely used mean-shift algorithm [11] utilizes this property to arrive
at a nonparametric clustering solution for a given data set in a manner
similar to the Morse-Smale decomposition of the vector space.

Lemma 2.7. P d ⊂ P d+1. Md ⊂ Md+1.
The importance of this property is that the principal and minor

sets can be, in principal, constructed by a procedure similar to de�a-
tion. One can determine the peaks P 0 and the pits M0 of a pdf p(x)
and then trace out P 1 and M1 by following the eigenvectors of the
local Hessian via a suitable differential equation with P 0 and M0

initial conditions. The same could be done for each element of P 1

and M1 as initial conditions to suitable differential equations to de-
termine P 2 and M2, etc. The procedure outlined above, in general,
requires numerical integration of nonlinear differential equations to
identify the lines of curvature, which provide a natural local coor-
dinate frame on the manifold. However, this process might be un-
suitable for learning applications where computational complexity
is a constraint. We have experimented with this approach, employ-
ing Runge-Kutta order-4 as the integration technique, to determine
P 1. The error accumulation, especially at high curvature points of
P 1, prevent accurate determination of P 1 by brute force numerical
integration using a �xed integration step size and this method is not
preferred for practical purposes. Still, these lines of curvature pro-
vide a natural optimal nonlinear projection scheme.

De�nition 2.4. A point x ∈ (P d, Md) but x /∈ (P d−1, Md−1)
is called a regular point of (P d, Md). A point x ∈ (P d, Md) and
x ∈ (P d−1, Md−1) is called an irregular point of (P d, Md).

Lemma 2.8. Let x be regular point of (P d, Md) and I be an in-
dex set with cardinality |I| = (n−d) such that 〈g(x), qi(x)〉 = 0 iff
i ∈ I . The tangent subspace to (P d, Md) at x is (P d

‖ (x), Md
‖ (x)) =

span{qi|i /∈ I} and the normal subspace of (P d, Md) at x is (P d
⊥(x),

Md
⊥(x)) = span{qi|i ∈ I}.

So far we have achieved the following: (1) a self-consistent lo-
cal de�nition of critical, principal, minor, and saddle sets of a pdf is
presented and the relationships between them are established, (2) the
concept of critical nets is generalized to encompass manifolds with
dimensionality higher than one, (3) a unifying framework between
maximum likelihood clustering, curve and surface �tting, and man-
ifold learning using de�ation. Theorem 2.1 establishes generalized
conditions for a point being in a critical (stationary) submanifold
utilizing local gradient and Hessian spectral information, of which
the usual stationary point conditions remain as special cases. The
de�nitions demonstrate that in general a globally smooth and maxi-
mally likely dimensionality reduction manifold that passes through
the data is not feasible. As will be illustrated with examples below,



the principal sets for optimal dimensionality reduction might form
irregular, self-intersecting manifolds in the global scheme, although
their local existence and uniqueness is guaranteed by the theorem.

De�nition 2.5. Let x be a point in P d (Md). Let 〈g(x), qi(x)〉 =
0 for i ∈ I = {1, . . . , n}−Ic, where I is some index set with cardi-
nality d. De�ne the local covariance matrix of p(x) to be Σ−1(x) =
−p−1(x)H(x)+p−2g(x)Tg(x)] and assume that its eigendecompo-
sition is {γi(x), vi(x)} for i ∈ {1, . . . , n}. Assume that the eigen-
values with index i ∈ IC of the local covariance matrix satisfy the
following: γ1 > . . . > γm > 0 > γ(m+1) > . . . > γn−d. Then,
the local ranking of principal directions at x from principal to minor
follow the same ranking of indices.

For the special case of Gaussian distributions, the local covari-
ance de�ned above becomes constant over the data space and equal
to the data covariance. Thus, the local principal directions are aligned
with the global principal directions and following these directions
starting from any point, takes one to the corresponding subsurface
of Cd−1. Proofs of the theorems are omitted due to restricted space
and will be included in a future journal publication1.

3. SUBSPACE-CONSTRAINED MEAN-SHIFT TO FIND
PRINCIPAL CURVES

A natural consequence of Theorem 2.1 is that a point is on a critical
curve iff the local gradient is an eigenvector of the local Hessian,
since the gradient has to be orthogonal to the other n − 1 eigen-
vectors. Furthermore, for this point to be in the principal curve,
the corresponding n − 1 eigenvalues must be negative. Under the
assumption of a KDE, a modi�cation of the mean-shift algorithm
by constraining the �xed-point iterations to the directions of local
eigenvectors at the current point in the trajectory leads to an update
that converges to the principal curves and not to the local maxima.
The algorithm could be modi�ed to converge to the d-dimensional
principal manifold P d in a conceptually trivial manner; however,
computational requirements would increase combinatorially with d.
Consider {xi}N

i=1 where xi ∈ <n. The KDE of this data set (using
Gaussian kernels for illustration) is given as

p(x) = (1/N)

NX
i=1

GΣi(x− xi) (1)

where Σi is the kernel covariance for xi; GΣi(y) = CΣie
−yT Σ−1

i y/2.
For simplicity, isotropic �xed bandwidth kernels may also be em-
ployed. The gradient and the Hessian of the KDE are

g(x) = −N−1PN
i=1 ciui

H(x) = N−1PN
i=1 ci(uiuT

i − Σ−1
i )

where ui = Σ−1
i (x− xi) and ci = GΣi(x− xi)

(2)

Let {(λ1(x), q1(x)), . . . , (λn(x), qn(x))} be the eigenvalue-eigenvector
pairs of Σ−1(x) as de�ned in De�nition 2.5 and the mean-shift up-
date emerging from (2) be

x ← m(x) = (
PN

i=1 ciΣ
−1
i )−1PN

i=1 ciΣ
−1
i xi (3)

At x, the subspace mean-shift update is performed in two steps:
x̃k = (qkqT

k m(x)), k = 1, . . . , n and x ← arg max{x̃k} p(x̃k).
Stopping criterion checks for ‖H(x)g(x)−bλ(x)g(x)‖ < threshold,
where bλ(x) = g(x)T H(x)g(x)/g(x)T g(x). The iterations can be

1Proofs will be temporarily available for ICASSP reviewers at
www.csee.ogi.edu/∼ozertemu/icassp2008Proofs.pdf

Table 1. Summary of Subspace Gaussian Mean-Shift to �nd P d

1. Initialize the trajectories to a mesh or data points and t = 0.
2. For every trajectory evaluate m(x(t)) as in (3).
3. Evaluate the gradient, the Hessian, and perform the eigende-

composition of Σ−1(x(t)) = VΓV.
4. Let Vk = [vk1 . . . vkd ] be a particular d-subset of the eigen-

vectors determined by an index vector k that spans all
�

n
d

�
subsets.

5. x̃k = VkVT
k m(x), x̃∗k ← arg max{x̃k} p(x̃k).

6. If ‖g(x) − V∗k V∗T
k g(x)‖ < threshold then stop, else x(t +

1) ← x̃∗k . Here V∗k denotes the combination of eigenvectors
that lead to x̃∗k .

7. Convergence is not achieved. Increment t and go to step 2.

initialized to each data sample as in mean-shift clustering or at an ar-
bitrary location and iterated until convergence to the principal curve.
The generalized version of this algorithm that converges to the d-
dimensional principal set is presented in Table 1. The threshold in
step 6 checks if the gradient is in the span of only d eigenvectors of
the local covariance whose other (n − d) eigenvalues are negative
by construction of the �xed-point ascent.

4. EXPERIMENTAL RESULTS

Loops, Self intersections and Bifurcations: A principal set of in-
trinsic dimension one could contain closed loops, self intersections,
and bifurcations. This example is constructed to illustrate these pos-
sibilities in a synthetic hangman distribution (Figure 2, left). Tradi-
tional principal curve �tting approaches require explicit considera-
tion of the occurrences of such irregularities, since they are speci�-
cally designed to �t smooth curves. On the other hand, recent man-
ifold learning algorithms would possibly obtain similar looking re-
sults, however claiming that their outputs are actually samples of
the principal curve in either traditional least-squares or current local
likelihood subspace maximum perspectives would not be rigorous.

As the de�nition provides two simple local conditions to check
to decide whether a point is in P 1 or not, one could run the algo-
rithm in Table 1 from as many initial points as needed to popu-
late P 1 to a desired density. For the hangman data, a KDE using
isotropic �xed bandwidth Gaussian kernels is used, selecting the
bandwidth by maximizing the leave-one-out cross-validation log-
likelihood measure. The corresponding KDE and the resulting sam-
ples of P 1 upon iterating the subspace mean-shift algorithm in Table
1 from each data point are shown in Figure 2 (right).

Fractal Distributions: An interesting realization is that dis-
tributions with fractal structure are theoretically possible. Conse-
quently, the corresponding critical and principal sets would have
fractal structures. In a �nite sample setting, clearly the small-scale
components of these objects would not be reliably estimated, how-
ever, the proposed de�nition and the algorithm would determine the
underlying fractal principal sets satisfactorily. To illustrate, we have
created a noisy tree data set by perturbing the location of each pixel
in a binary tree image by a Gaussian that has a covariance propor-
tional the local k-nearest neighbor (KNN) covariance. The global
scale of the perturbation is selected by maximizing the leave-one-out
cross-validation measure as before, and the Gaussians used to per-
turb the data are also used to construct a variable bandwidth KDE.
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Fig. 2. The hangman dataset (left); the kernel density estimate of the
dataset and corresponding principal set (right).
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Fig. 3. The tree dataset; along with its principal set

Employing the subspace mean-shift algorithm in Table 1 to trajec-
tories initialized to the noisy tree samples reveals samples from the
principle tree of this data set as seen in Figure 3. Closer inspection
indicates that all samples do not converge to the dominant branches
of the principal tree as one would perceive through visual inspection
and global information about the data distribution. Deterministic an-
nealing of the global scale of the kernel bandwidths (keeping the
local KNN-covariance portions �xed) could lead to samples from
the principal tree in this case, or in general, from the more dominant
(higher probability density) portions of P 1.

5. CONCLUSIONS

The evolution of learning regression models, principal surfaces, non-
linear principal components, most recently manifold learning, and
the numerous applications these solutions play key roles in demon-
strate that identifying principal manifolds is a fundamental problem
of machine learning. The widely acknowledged and exploited de�-
nition of self-consistent principle surfaces based on the least-squares
reconstruction error principle suffer from the use of semi-global ex-
pectations, leading to the requirement of partitioning the data before
averages can be evaluated. For global identi�cation, various piece-
wise local approximations are employed, and various heuristics for
regularization are developed for speci�c applications. More recent
propositions on manifold learning are either motivated by simplic-
ity of convex optimization or the linear updates of various diffusion
processes; in either case, the geometrical relevance of the resulting
manifold to the desired principal manifolds, which are expected to
exhibit certain invariance properties, are not clearly addressed.

In this paper, we proposed a generalization of the two simple
local conditions on the gradient and the Hessian spectrum of a mul-

tidimensional pdf to determine whether a point is a critical/stationary
point and specify whether it is a local maximum, minimum, or sad-
dle. This generalization allows us to characterize the elements of
ridges (principal curves) and valleys (minor curves), as well as higher
dimensional critical (principal and minor) manifolds by simply check-
ing two local conditions, provided that a density model is given. An
interesting consequence of the proposed de�nition is a simple con-
dition to check whether a point is in the one-dimensional critical set
or not is that the gradient at this point must be an invariant vector of
the Hessian (satis�ed for critical points since gradient is zero, eigen-
vector otherwise). Local principality and minority can be assessed
by observing the eigenvalue signs of the orthogonal subspace.

Although the proposition characterizes principal structures us-
ing only local �rst and second order information in a manner con-
sistent with geometrical insights, it also yields challenging compu-
tational problems to be solved in future work: (1) globally principal
smooth curves are a myth, one can only characterize principality on
segments of the principal sets locally and patch selected segments
under a global criterion to determine the global principle sets, which
might have loops, bifurcations, and other irregularities; (2) ideal
nonlinear projection of a data point to a lower dimensional mani-
fold is given by the trajectory of a differential equation that follows
the lines of curvature and fast projection and reconstruction algo-
rithms are necessary for practical use; (3) regularization of the man-
ifolds are implicitly handled by the model selection procedure used
in density estimation, therefore the need for reliable regularization
procedures in high dimensional spaces is evident.
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