
Nonlinear Coordinate Unfolding via Principal Curve 
Projections with Application to Nonlinear BSS 

Deniz Erdogmus1, Umut Ozertem1

 
1 Department of CSEE, Oregon Health and Science University 

Portland, Oregon, USA 
{deniz, ozertemu}@csee.ogi.edu 

Abstract. Nonlinear independent components analysis (NICA) is known to be 
an ill-posed problem when only the independence of the sources are sought. 
Additional constraints on the distribution of the sources or the structure of the 
mixing nonlinearity are imposed to achieve a solution that is unique in a 
suitable sense. In this paper, we present a technique that tackles nonlinear blind 
source separation (NBSS) as a nonlinear invertible coordinate unfolding 
problem utilizing a recently developed definition of maximum-likelihood 
principal curves. The proposition would be applicable most conveniently to 
independent unimodal source distributions with mixtures that have diminishing 
second order derivatives along the source axes. Application to multimodal 
sources would be possible with some modifications that are not discussed in 
this paper. The ill-posed nature of NBSS is also discussed from a differential 
geometric perspective in this context. 

Keywords: Nonlinear independent component analysis, nonlinear blind source 
separation, principal curves and surfaces, manifold unfolding, nonlinear 
coordinate transformation. 

1   Introduction 

Nonlinear blind source separation (NBSS) is an ill-posed problem that requires 
various sources of a priori knowledge regarding the joint source distribution and 
topology of the mixing function. In a landmark paper [1] it has been shown that the 
square nonlinear independent component analysis (NICA) problem is ill-posed – that, 
without additional constraints it does not have a unique solution accepting the usual 
generalized scale and permutation ambiguities of ICA – and various conditions that 
would force the problem to have a unique solution have been proposed. Traditionally 
several methods, primarily based on parametric model fitting – especially neural 
networks of various forms – have been proposed in the literature, while minimizing 
the usual mutual information inspired independence or separation measures [2,3,4]. 
The general form of the NBSS problem is 
  )(sfx =  (1) 
where f: ℜm→ℜn maps the source vector s∈ℜm to the measured mixture vector x∈ℜn. 
In general, f is assumed to be a smooth function and m=n, since even in this case per 



existence theorems, there are infinitely many solutions to this ill-posed inverse 
estimation problem. In practice, unless further physical motivation is provided, there 
is no reason to be concerned about finding those solutions which correspond to 
noninvertible maps f. Therefore, limiting the search to the space of invertible f makes 
both theoretical and practical sense, especially since without additional domain 
information about the mechanisms that generate x, a noninvertible f would cause 
information loss that cannot be recovered. From this perspective, the additional 
uniqueness constraint of bounded source distributions could be viewed as a means of 
limiting the search to invertible f, whose domain becomes the finite support of the 
source density; while the extension of f to the whole real-valued vector space might 
not be invertible, the restriction to the support of p(s), the source distribution could be. 
 An extensively studied invertible nonlinear mapping topology is the so-called 
post-nonlinear mixture model of the form x = g(As), where A introduces an invertible 
(or full column rank if n>m) linear mixture and g is an invertible nonlinear map that 
acts elementwise  (only monotonic scaling, not mixing further) on the mixed 
intermediate vector [4]. This problem is well defined and relatively straightforward 
extensions of traditional linear ICA techniques are able to cope with the specific 
mixture topology. An interesting contribution that focused on the overdetermined 
post-nonlinear mixture problem by exploiting the geodesic distances on nonlinear 
manifolds was made by Lee et al. [5]. Noticing that the monotonic nonlinearity 
simply acts as a local metric distortion independently on each coordinate axis, ideas 
from isometric dimensionality reduction and manifold learning were employed to 
unwrap the nonlinear mixture data manifold into the original source distribution 
space. Harmeling et al also followed a similar manifold unfolding approach using 
kernel techniques [6]. The current paper could be considered as an extension of these 
works focusing on square mixture scenarios where the intrinsic dimensionality of the 
mixture manifold is identical to that of the sources. The method would be 
immediately applicable to overdetermined situations where the data lies on a low 
dimensional manifold embedded in a higher dimensional Euclidean space – the 
principal coordinates proposed in the following would simply reduce to zeros for any 
additional dimensions outside the data manifold automatically. 
 The primary tool that will be exploited in this paper is a recently proposed 
definition of principal curves and surfaces that follow the maximum likelihood 
estimation principle, as opposed to the commonly employed conditional least-squares 
type principal curve/surface/manifold techniques. This new definition provides a 
well-defined principal manifold structure that underlies any multidimensional 
probability density function, leading to gradient ascent, mean-shift, or expectation 
maximization type algorithms for manifold learning. 

2   Subspace Maximum Likelihood Principal Manifolds 

Principal manifolds are underlying geometrical structures of probability distributions 
that manifest canonical solutions for denoising and dimensionality reduction. 
Traditionally, self-consistent principal surfaces defined by Hastie [7] and studied by 
various researchers [8-12] have relied on the conditional expectation and least-squares 



 
 
 
Fig. 1. The 1-dimensional principal manifolds (green) of a 2-dimensional 3-
component Gaussian mixture model are shown. The regular gradient ascent 
trajectories (red) and subspace gradient ascent trajectories (blue) to identify local 
maxima and subspace local maxima starting from three illustrative points in the space 
are also shown to emphasize the difference between converging to the usual local 
maxima and projecting a point to the principal curve. 

reconstruction error minimization approach due to the traditional appeal of second-
order statistical optimality criteria and the uniqueness of the solution under the self-
consistency conditions. This definition creates various practical difficulties for 
algorithmic solutions to identify such manifolds, besides the theoretical shortcoming 
that self-intersecting or nonsmooth manifolds are not  
Table 1. Generalized local first and second order conditions for d-dimensional 
principal manifolds embedded in n-dimensions. 

x is a local max iff x is in d-dim principal manifold iff 
Gradient is zero Gradient ⊥ (n-d) eigenvectors of Hessian 

Hessian eigenvalues < 0 Hessian eigenvalues of ⊥ eigenvectors < 0 
 
 
 
acceptable in this framework. Recently, we have proposed a local subspace maxima 
approach to defining and identifying principal surfaces [13]. This new definition 
generalizes the usual first and second order derivative conditions to identify local 
maxima and provides a geometrically principled definition for identifying ridges of 
high probability density. For a mixture of three Gaussians in two dimensions, the 
principal curves and the subspace-gradient ascent trajectories are illustrated in Figure 
1. We provide a summary comparison of the original local maxima identification 
conditions and the local principal manifold identification conditions in Table 1. These 
are the two local necessary and sufficient conditions for a point to belong to a 
principal manifold of specified dimension. For the following let p(x) be the 
continuous and twice differentiable probability density function of the random vector 
of interest, g(x) its gradient-transpose, and H(x) its Hessian matrix evaluated at a 



 
 
 
Fig. 2. The 1-dimensional principal manifolds of the diffused stickman distribution 
(green in left picture) and that of a diffused tree distribution (red in right picture), both 
identified using subspace mean-shift iterations. 

particular point x. Also let {λi(x),qi(x)}, i=1,…,n  be the eigendecomposition of the 
Hessian (the dependence of these on the evaluation point x will not be explicitly 
denoted in the following if clear from the context). 

Definition 2.1. [13] A point x is an element of the d-dimensional principal set, 
denoted by PP

d iff g(x) is orthogonal (null inner product) to at least (n-d) eigenvectors 
of H(x) and p(x) is a strict local maximum in the subspace spanned by these (n-d) 
eigenvectors (eigenvalues corresponding to these eigenvectors are strictly less than 
zero). 

This definition states explicitly the conditions in Table 1 and lead to interesting 
properties regarding principal manifolds, such as the nonlinear deflation property 
(PP

d⊂Pd+1
P ) and local maxima being appointed as the 0-dimensional principal manifold. 

Consequently, principal curves pass through local maxima, principal 2-dimensional 
surfaces pass through principal curves, etc. Another natural consequence of this 
definition is the simple criterion for checking whether a point is on the principal curve 
or not. Specifically, the principal curves are characterized by points at which the 
gradient becomes an eigenvector of the Hessian (i.e., Hg=λg) and all the other 
eigenvalues of H are negative. For iterative hill-climbing algorithms such as subspace 
gradient ascent or subspace mean-shift, this identity could be utilized to form a 
suitable stopping criterion to detect when the trajectory is in the vicinity of the 
principal curve. 

The definition also highlights the potential complications that one might encounter 
in a general NBSS problem, such as self-intersecting, bifurcating, or looping principal 
curves. These occurrences are illustrated on two datasets in Figure 2, and are 
generally avoided by researchers addressing nonlinear coordinate unfolding problems. 
At this time, the only feasible approach to unify the local coordinate systems formed 
by each segment of a principal curve seems to utilize an atlas structure, stitching 
piecewise coordinate systems at boundaries. Limiting our discussion to simpler 
situations here the principal manifolds also form a global nonlinear coordinate frame 
at least in the domain defined by the bounded support of the source distribution, we 



can employ nonlinear manifold unfolding techniques and utilize geodesic or line-of-
curvature based differential geometric measures of metrics to define an isometric 
nonlinear transformation of the mixture data into an Euclidean coordinate frame, in a 
manner similar to Lee et al [5] and Harmeling et al [6]. 
Specifically focusing on linear mixtures, it is straightforward to verify that the 
principal lines of a prewhitened mixture of independent sources with unimodal zero-
mean densities coincide with the linear ICA solution. To see this one can check that 
after prewhitening only rotation remains, which does not change the geometric 
properties of the joint density of the sources, thus the structural principal lines defined 
via subspace maximum likelihood remains unchanged except for a coordinate 
rotation. For the special case of a jointly Gaussian density, this also means that the 
proposed subspace maximum likelihood nonlinear principal components coincide 
with the usual linear principal components. 

3   Nonlinear Coordinate Unfolding for NBSS 

We demonstrate the proposed nonlinear coordinate unfolding technique that is 
applicable to any distributions, but most conveniently employed for distributions that 
are symmetrically and unimodally distributed around a simple manifold structure that 
unwrap in a single piece to a global Euclidean frame. While the technique applies to 
general twice differentiable densities, we will illustrate a specific implementation for 
a Gaussian mixture model. 

Consider a Gaussian data distribution with mean μ and covariance Σ. The 
logarithm of this density expressed as a quadratic form in δ, perturbation from a point 
x, is obtained easily with some algebraic manipulation as 
  (2) 2/][]2/[),;(log 11111

0 δδΣδΣxΣμxΣxxΣμΣμδx −−−−− −−+−+=+ TTTTG γ
for any perturbation δ from x. Since the PCA projections of a data point from a joint 
Gaussian to a lower dimensional principal (linear) manifold follow trajectories along 
the eigenvectors of Σ-1, we seek to create an analogy with this for projecting points 
drawn from arbitrary distributions to their corresponding nonlinear principal 
manifolds. For an arbitrary pdf p(x), with gradient g and Hessian H at the point of 
interest (along a projection trajectory), we observe from Taylor’s expension up to the 
quadratic term that 
  (3) 2/])/)(/(/[)/(log)(log δggHδδgδx TTT pppppp −++≈+
where p, g, H are all evaluated at x. Equating terms in (2) and (3), we obtain that the 
local mean and the local covariance inverse of p(x) is given by 
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The GMM illustration in Fig. 1 is instructive to understand how one might use the 
principal curves as a means of measuring curvilinear local orthogonal coordinates. 
For simplicity of discussion let’s focus on the 2-dimensional data case here. 
Specifically, at each local maximum, the principal curves form a locally Euclidean 
orthogonal coordinate frame (green). Starting from an arbitrary point x, one can trace 



out subspace gradient ascent trajectories (blue) to project this point to the 
corresponding principal point. The subspace gradient ascent simply follows the 
eigenvector direction at the initial point x to which the projection of the gradient at x 

is maximum. The eigenvector of choice is the eigenvector of Σ-1 based on the 
discussion regarding analogies with Gaussian densities and linear PCA projections. 
The projection trajectory is simply traced out by solving the following differential 
equation 
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Until the condition Hg=λg is satisfied (which is equivalently stated as Σ-1g=γg, since 
g is both an eigenvector of H and ggT). This differential equation solves for the 
trajectory initialized to x and tangent to the eigenvector Σ-1(x) that points towards the 
direction of maximal rate of increase of p(x) among all orthogonal directions given by 
the candidate eigenvectors. The trajectory converges to a point xp on the principal 
curve.1 The length of the curvilinear trajectory from x to xp can be appointed as the 
coordinate of x in the direction orthogonal to the principal curve. Taking an arbitrary 
reference point on the principal curve (which can now be traced by solving a 
differential equation that follows the eigenvector that is parallel to the gradient) as the 
origin (e.g., the local maximum in the middle of the three in Fig. 1), one could also 
measure the distance of xp along the principal curve to this origin, yielding the second 
coordinate of x with respect to the global coordinate frame formed by the nonlinear 
principal curve. Note that these geometrically simple global curvilinear coordinates 
are only possible in a very limited set of scenarios and researchers have typically dealt 
with these simplified cases due to lack of an understanding of how to systematically 
globalize many piecewise local orthogonal curvilinear coordinate frames in 
challenging scenarios such as the stickman or the tree examples in Fig. 2.  
 Shortest Path Along the Principal Curve: For a given finite dataset drawn from 
a known or estimated density p(x), once all data points are projected onto the 
principal curve using (5), the projections form a smooth one-dimensional manifold 
that could be approximated by a sparse connected graph such as a minimum spanning 
tree, k-nearest-neighbor graph, or an ε-ball graph. The geodesic distance between any 
two points on the graph could be determined with a shortest path algorithm, such as 
Dijkstra’s greedy search [14]. A tempting idea is to employ sparse connected graph 
based approximations for approximately finding the projection lengths from x to xp, 
however this idea would not work on a graph formed by the original data points since 
not enough samples might lie sufficiently close to the sought principal curve. A 
possibility could be to iterate a small but sufficiently large number of additional 

                                                           
1 Convergence proof is relatively trivial. The pdf always increases since the derivative always 
points in a direction that has positive inner product with the gradient and when the trajectory 
reaches a point on the principal curve, the gradient becomes the eigenvector of Σ-1(y(t)) itself 
(but the one that is orthogonal to the trajectory), thus the stopping criterion is achieved. 
 



points z using (5) to obtain zp as a roughly uniform sample from the principal curve 
and include these in graph construction (i.e. union of x and zp), such that the distance 
from every data point x to every principal curve sample zp can be approximated with a 
fast shortest path search method and te one that is closest (in a suitable sense) can be 
appointed as its projection. The graph formed only using the set zp could then be 
utilized to find the second coordinate. 
 Gaussian Mixture Models for Nonlinear Coordinate Unfolding: Suppose that a 
set of independent and identically distributed (iid) samples are available: {x1,…,xN}. 
Assume that a Gaussian mixture model (GMM) fit in the form 
  ∑= m mmmGp ),;()( Σμxx α  (6) 
is obtained using established density estimation techniques with proper attention paid 
to model order selection. The gradient and Hessian of this pdf estimate has a 
convenient self-similar form that facilitates algorithm design. Specifically, we have 
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for the local covariance, where )(/),;()( xΣμxxw pG kkkk α= . Clearly, for points 
close to the mean of a particular Gaussian component with respect to the Mahalanobis 
distance involving the corresponding component covariance, the second term on the 
right hand side of (8) becomes negligible with respect to the first term, thus the local 
nonlinear coordinate frame approaches an orthogonal Euclidean frame centered at the 
local maximum, as expected. This observation provides a theoretical motivation for 
local PCA, which will also clearly fail in transient regions between components 
according to this theory. 
 Case Study with Periodic Sources: We demonstrate the nonlinear unfolding 
strategy on a case study that uses a 20-component GMM to approximate the density 
of a mixture that is obtained by spiral-wrapping of two sources with respective 
sinusoid and piecewise linear sources that are periodic with relatively prime 
frequencies (7Hz and 13Hz) respectively (see Fig. 3). Specifically, following example 
5.3 of [6] (because it cannot be reduced to a post- or pre-nonlinear mixture problem) 
we had s1(t)=0.5sin(14πt), s2(t)=arctan(sin(26πt)/cos(26πt))/π and z=6s1+s2+6, 
x1=zcos(3πs1), x2=zsin(3πs1). Time index t is sampled in the interval [-0.5,0.5] at 
1000Hz. The unfolding algorithm described above is employed. The mixture samples 
are projected onto their corresponding coordinate points along the principal curve 
using the differential equation in (5) using the GMM model as the basis for principal 
curve estimation. Once the principal curve projections are obtained, Dijkstra’s 
algorithm is applied to the 1-ball neighborhood graph consisting of Euclidean distance 
between pairs connected according to the graph in order to get the relative coordinates 
along the principal curve. The results of this case study are presented in Fig. 3. Apart 
from some convergence-related noise and the expected nonlinear distortion of the 
source signals that cannot be recovered without source distribution information, the 
proposed technique is reasonably successful in identifying the original source signals. 
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Fig. 3. Summary of coordinate unfolding results for the periodic sources. Rows from 
left to right: (1) Source signals versus time and the source distribution; (2) mixtures 
versus time and mixtures with respect to each other; (3) Unfolded sources versus time 
and the unfolded source distribution; (4) Estimated source 1 versus true source 1 and 
estimated source 2 versus true source 2 (ideally a monotonic curve is desired after 
correcting for permutation). 

However, we note that this case study involves a nice global spiral principal curve 
that enables us to determine a global Euclidean unfolding solution that would be 
impossible otherwise.  

Case Study with Random Sources: We present results with the same nonlinear 
mixture as in the previous case study, but replace the periodic (approximately) 
orthogonal sources with independent random sources that have Uniform (support [-
1,1]) and Gaussian (0 mean, 0.2 standard deviation) distributions. The number of 
samples in this illustration is 1000. The procedure for identifying the unfolded 
coordinates is identical with the previous case study and the results are summarized in 
Fig. 4. 

4   Conclusions 

 Nonlinear blind source separation is a challenging problem that has not yet been 
formulated satisfactorily to yield a unique well-defined solution. The literature on 
nonlinear independent components primarily focuses on the relatively trivial 
extension of linear ICA, referred to as postnonlinear mixture separation. More recent 
attempts to utilize ideas from manifold learning (for instance, isometric 
dimensionality reduction and kernel principal component analysis), have not clearly 
discussed the challenges involved in finding the intricate details of algorithms that 
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Fig. 4. Summary of coordinate unfolding results for the periodic sources. Rows from 
left to right: (1) Source signals versus time and the source distribution; (2) mixtures 
versus time and mixtures with respect to each other; (3) Unfolded sources versus time 
and the unfolded source distribution; (4) Estimated source 1 versus true source 1 and 
estimated source 2 versus true source 2 (ideally a monotonic curve is desired after 
correcting for permutation). 

will work in various scenarios – in fact there are many scenarios where nonlinear 
coordinate unfolding as proposed in such papers will not generalize to outside the 
limited set of geometries they consider. In this paper we aimed to achieve two goals: 
(i) point out some unmentioned caveats in nonlinear blind source separation using 
manifold learning (ii) present the application of a maximum likelihood type principal 
curve identification technique to the problem of coordinate unfolding in a differential 
geometric framework. Results obtained using a nonlinearity mixture used by 
researchers in another paper have shown that the unfolding technique is promising, 
the proposed principal curve coordinate system can recover sources under the 
assumption of unimodal variations around a global (in the support of source densities) 
curvilinear manifold. 
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