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Abstract� Active contours are commonly used in many image
segmentation applications. There are different active contour
de�nitions, but all active contour de�nitions in the literature
use parametric forms to determine the shape priors or adjust
the weighting of internal and external forces acting on the
active contour. However, the evaluation or estimation of the
optimal values of these parameters is impossible in a general
sense, and the algorithms are run with different parameters
until a satisfactory result is obtained. To get rid of this
exhaustive parameter search, we approach the same problem in
a nonparametric way to translate the problem of seeking good
values of these unknown parameters into seeking for a good
density estimate. We tested the proposed method and compared
with earlier approaches and obtained better results.

I. INTRODUCTION

Image segmentation is a fundamental problem in image
processing with applications in object recognition, image
and video coding, �ltering of noisy images, to name a
few. The image segmentation problem is to partition the
image into distinct homogenous regions, which is an ill-
posed de�nition that varies for depending on the application.
The homogeneity in the de�nition does not strictly require
homogeneity in the intensity space and can be de�ned
in any feature space. The earliest methods in the image
segmentation literature are based on edge detection[1]. Edge-
based methods are computationally ef�cient and they use
directional derivatives to detect the edges of the image, and
they combine these edges to obtain the object contours. The
most obvious drawback of edge-based approaches is that they
need the intensity values themselves to be a useful feature
for segmentation and results obtained with these methods are
very sensitive to the predetermined parameter values. The
methods that overcome this parameter selection problem are
usually some deviants of clustering algorithms. These are
known as clustering-based segmentation approaches, which
bring the generalization properties of data clustering into the
�eld of image segmentation [2], [3].

A relatively newer approach is active contours, so-called
snakes [4], [5], [6]. Active contours de�ne a way of combin-
ing edges in the image using the prede�ned shape priors. The
total force acting on a active contour is a blend of the internal
and external forces, where internal forces depend on the
shape of the contour itself, and external forces are evaluated
using the edges of the image. There are two main problems
in the active contour literature: narrow initialization range,
and progressing into boundary concavities. The low capture
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range problem is that the initialization of the active contour
has to be in a narrow neighborhood of the object boundary.
In some applications, snakes are initialized to the output
of another segmentation algorithm to solve this problem.
Techniques that increase the capture range includes multires-
olution and distance potentials [8]. The second well-known
problem is that the snakes have dif�culties in progressing into
concavities along the boundary. There are many approaches
to solve this problem, including directional attractions [10],
control points [9], pressure forces [7]. However, the most
satisfactory results are obtained with the gradient vector �ow
(GVF) formulation by Xu and Prince [6], which also solves
the capture range issue very effectively. GVF formulation
provides a wide capture range and an ability to progress
into boundary concavities; however, selection of required
parameters is an unsolved problem. As with most parametric
methods, the usual way of seeking the optimal result is to run
the algorithm several times for a set of different parameter
values until a satisfactory performance is obtained.

In this paper, we de�ne the problem in a nonparametric
way that translates the parameter search problem into a
density estimation problem. Density estimation is a very
well-researched �eld, and the connection that we present
gives way to utilization of many well-known density esti-
mation techniques in the active contour �eld. In this paper,
we mainly focus on kernel density estimation to derive an
algorithm, but this selection can easily be relaxed and other
density estimation methods can also be utilized for the same
purpose.

II. KERNEL DENSITY ESTIMATION

In many applications, determining a suitable parametric
family is a tedious task. Data probability density functions
may take complex forms, which makes the parametric density
estimation methods impractical. Nonparametric density esti-
mation methods offer a number of techniques that overcomes
this issue. For example, estimators based on sample spacing
are not continuously differentiable, and they are not suitable
for gradient based adaptation. However, for a continuously
differentiable kernel function, estimators based on KDE offer
a continuously differentiable density estimate. The most
important issue in KDE is to determine a suitable kernel
function, and there is a wide literature about how to approach
this problem [11], [12]. The method to select the kernel
depends on the application, and the characteristics of the
input data and the feature space. We present our results with
commonly used kernel function selections, since the aim of
this paper is to introduce the concept, not to build a complete
system for a speci�c application. More speci�cally, variable



kernel density estimation �nds natural connections to the
well-known problems in the active contour �eld.

III. THE NONPARAMETRIC SNAKE

In this section, we develop the nonparametric snake. We
start with the selection of the feature space, and the de�nition
of the optimization objective. Then we propose a �xed point
iteration scheme to develop the algorithm.

Consider an image I(x, y). To de�ne the objective crite-
rion we map the image into the feature space s, where every
vector in this space collects the x, and y pixel coordinates in
the image.

s =
[

x
y

]
(1)

Snakes use the edge map of the image, and the edge map
can be de�ned either in a continuous or a binary form. A
binary edge map E(s) is given as

E(sbinary) =
{

E(si) = 1 : si is an edge pixel
E(si) = 0 : otherwise

(2)

whereas popular continuous forms in the literature include

Econt(s) =





(i) : Ebinary(s) ∗G(s)
(ii) : ‖∇xI(s)2‖+ ‖∇yI(s)2‖

(iii) : (ii) ∗G(s)
(3)

where G(s) is a smoothing function, which is usually selected
as a Gaussian [6]. Our aim is to estimate the probability
density of the edge map, which can be achieved by

pedge(s) =
N∑

i=1

wiKΣi(s− si) (4)

where N is the number of points in the image, KΣi(·) is
a Gaussian kernel with covariance Σi, and the weights wi

are given as the edge map value of the corresponding point
divided by the sum of the edge map values over all the data
points.

wi =
E(si)∑N
i=1 E(si)

(5)

Note that the density estimate given here is for general form
of continuous edge map, where in the special case of binary
edge map the weights are binarized. For generality, we leave
the kernel function with the subscript i for variable size KDE.

Given the samples of the snake {ssnake
j }Nsnake

j=1 , and the
density of the edge map pedge(s), the objective is the capture
the structure of the Eedge(s). We formulate this idea as
maximizing the inner product between the probability density
function of the snake psnake(s), and probability density of
the edge map pedge(s).

max
{ssnake}

J({ssnake}) = max
∫

pedge(s) psnake(s) ds (6)

The probability density of the snake can be estimated in a
similar way using KDE as,

psnake(s) =
1

Nsnake

Nsnake∑

j=1

KΛj (s− ssnake
j ) (7)

where Nsnake is the number of points on the snake. To obtain
a sample estimate of the cost function, one can substitute (4),
and (7) into (6), which yields

J(ssnake) =
Nsnake∑

j=1

N∑

i=1

wi

Nsnake
KΣi+Λj

(si − ssnake
j ) (8)

This cost function is solely de�ned as a function of the edge
map of the image, and does not contain any shape informa-
tion. The shape information will be exploited by optimizing
this function in an iterative manner in the neighborhood of
the convergence, which we will introduce after presenting
the optimization scheme.

To �nd the optimizer of (8), we propose a �xed-point
algorithm. Alternatively, gradient ascent based approaches
can also be utilized here, but �xed-point methods have a
relatively fast convergence rate. Convergence of a �xed-point
algorithm can be proven using Hillam's Theorem for any
Lipschitz continuous function as the cost function we have
in our application.

To derive the �xed-point algorithm one should use the fact
that for any �xed-point of the objective function, the gradient
with respect to ssnake should be equal to zero. This yields

∂J(s)
∂ssnake

j

=
PN

i=1
wi(Σi+Λj)−1

Nsnake (ssnake
j −si)KΣi+Λj

(si−ssnake
j ) (9)

Reorganizing the terms and solving for s, one can write the
�xed point update as

ssnake
j =

PN
i=1 si wi(Σi+Λj)−1 KΣi+Λj

(si−ssnake
j )PN

i=1 wi(Σi+Λj)−1 KΣi+Λj
(si−ssnake

j
)

(10)

Although the iterations converge fast, this optimization
scheme has a major shortcoming. Depending on the selection
of the kernel size, the �xed-point optimization has the risk
of being unable to progress into boundary concavities, which
is one of the most important problems in the active contour
literature. Recursive runs of the algorithm with the proper
initializations effectively solve this problem. Before we go
into the details of the implied shape parameters and the
iterated �xed-point algorithm, we will present a simple
example for the density estimate of the edge �eld obtained
using �xed and variable-size kernels. Noise robustness is one
of the most important design issues in the active contour
literature and variable size KDE methods �nd a natural
solution to this problem. Convolving the original edge map
with a smoothing function is the most common technique to
increase noise robustness. In this approach, the robustness to
fake edges increases with amount of introduced smoothness.
However, this smoothing not only eliminates the fake edges,
but also distorts the sought object boundary causing it
to become smoother. In our nonparametric approach, this
problem translates to the selection of kernel size. Widening
the kernel size result in a better noise robustness level, but
the detailed information of the boundary is lost. Utilizing a
variable size KDE solves this problem automatically. In KDE
literature, the aim of assigning variable kernel sizes to each
data point is to increase the outlier robustness. The main idea
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Fig. 1. An example of the edge probability density estimate obtained for �xed, and variable size.(a) The edge �eld of the star-shape image (b) pdf of the
edge �eld using �xed size KDE (c) pdf of the edge �eld using variable size KDE

TABLE I
SUMMARY OF THE ITERATED FIXED-POINT NONPARAMETRIC SNAKE ALGORITHM

• Generate the edge �eld, E(s).
• Select the kernel size and estimate the probability density of the edge �eld pedge(s) using (4).
• Select the initialization of the snake and estimate the probability density of the snake psnake(s) using (7)
• Use the iteration scheme given in (10) to iterate the points on the snake.
• Select a neighborhood threshold thneighbor, which will de�ne the resolution level of the snake - default value should

be unity.
• Select a perturbation step size µ and perturb these points towards M randomly selected directions. Typical values are

µ = thneighbor/5 and M = 5. Optionally, if it's known that the interior or the exterior of the boundary provides a
smoother cost function, this M randomly selected directions could be selected accordingly. This can be implemented
by utilizing the inner product of the selected directions and the vector that connects the particular point to be perturbed
to its location in the previous iteration.

• Iterate these points using (10) to map these perturbed points to their projection on the contour. After convergence, add
these points to the snake and include them in the neighborhood threshold calculation.

• Repeat until the prede�ned neighborhood threshold is satis�ed.

is to select the kernel size for every data point in a way that
it is proportional to the probability of that sample's being an
outlier. This probability can be implemented in many ways.
The most intuitive and simple choice is to multiply each
kernel size with the average distance to K nearest neighbors.
In this way, for the samples that do not have many close
neighbors and are presumably fake edges, wider kernels will
be used. Variable size KDE introduces a data dependent
variable smoothing throughout the image, which helps to
eliminate the outlier edges while keeping the object boundary
almost unchanged. Figure 1a shows the boundary of a star-
shape object for a noisy case, where we have outlier edges.
Figure 1b, and Figure 1c show the probability density of
the edge �eld for �xed and variable size kernel functions,
respectively. For this example the kernel size is selected to
be σ2 = 1 for the �xed size KDE, and σ2

i = dKNN
i for

the variable size KDE. dKNN
i is the average distance to

K nearest data points, and for this particular example we
selected this parameter as K = 5. One can see that the
variable size KDE effectively removes the outliers from the
edge probability density; hence, from the objective criterion
without distorting the edges. In the next section we will

introduce the characteristics of the underlying shape priors
as we present the experimental results for our algorithm.

IV. EXPERIMENTAL RESULTS

In this section we will present results on the 64× 64 star-
shape image, and another more challenging real-data exam-
ple. For both examples, we initialize the active contour to
the boundary of the image, since the proposed nonparametric
snake does not have any capture range problems at all. The
iterations given in (10) converges to a local optimizer of
the cost function in (6). At this point, note that the global
optimization of this cost function would give nothing but the
edge �eld itself, and is meaningless. Our aim is to �nd the
local optimizer of the cost function in the neighborhood of
a given initialization, which is what makes the initialization
meaningful.

As one can see the experimental results, the proposed
iteration scheme may introduce a problem on boundary
concavities. To solve this issue, we perturb the points on
the snake after convergence and use these points as an
initialization until the all points form a connected pattern.
The algorithm treats the missing edges and the concavities
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Fig. 2. The original guitar image (a), the corresponding edge �eld (b), and GVF iterations on the edge map are shown
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Fig. 3. Initialization and the results for the �rst iteration of algorithm for star (a) and guitar (c) images, and the �nal results of the algorithm for star (b)
and guitar images (d) are shown.

in exactly the same way, where the underlying edge density
forces the active contour to progress into the concavity, or to
get connected smoothly. This can be interpreted as de�ning
shape priors in a local fashion. A summary of the algorithm
is presented in Table 1.

In Figure 2, we utilize GVF snake to compare the results
in a challenging example, where we distort the original edge
map to obtain missing edges in a case we have boundary con-
cavities. Since GVF de�nes the shape parameters globally,
the parameters that would make the snake able to progress
into the concavities make the points on the contour very
sensitive to noise in the vicinity of missing edges. One can
see this effect in Figure 2b. The parameters that make the
active contour progresses into the big concavities prevents the
missing edges from getting combined smoothly. Similarly,
another set of parameters may give the active contour the
ability to combine these edges in a smooth manner; however,
this parameter set would presumably stop the progress of the
snake into the concavities. Exploiting the underlying edge
probability density, our nonparametric approach combines
these missing edges smoothly, while having no problem in
progressing into concavities. Figure 3 shows the intermediate
results for the �rst initialization, and the �nal results after the
iterated algorithm for the star-shape and the guitar images.

V. DISCUSSION

There are many different models for active contours in
the literature, and all of these different de�nitions require
properly selected parameters to achieve satisfactory results.
In this paper, we exploit the underlying edge information and
provide a nonparametric alternative. Due to the nature of the
density estimation, the implied shape parameters are de�ned
locally, which gives a more powerful tool as compared to the
parametric approaches, where these parameters are de�ned

globally. While providing this property, the proposed method
also does not introduce any shortcoming on solving known
problems in the active contour �eld. Issues like capture range,
and progressing into boundary concavities are addressed by
the proposed nonparametric approach.
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