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Abstract— The ability to assess the neurological state of 
patients with neurodegenerative diseases on a continuous basis 
is an important component of future care for these chronically 
ill patients. In this paper we describe a set of algorithms to 
infer gait velocity and its variability using data from an 
unobtrusive sensor network by incorporating a simple dynamic 
description of a patient’s movements within his or her 
residence. The sensors include a combination of passive motion 
detectors and active radio frequency identification tags. The 
dynamic model is a simple 4 state hidden Markov model. We 
investigated the ability of this model to assess gait velocity and 
its variability using data from a six month pilot study of several 
patients with early stage Parkinson’s disease.  

I. INTRODUCTION 
H
fu

E ability to assess the sensory, motor and cognitive 
nctionality of an individual is an important problem in 

caring for individuals with chronic diseases, as well as for 
the healthy elders. Current methods relying on observations, 
e.g., Unified Parkinson’s Disease Rating Scale (UPRDS), 
Clinical Dementia Rating (CDR) as well as those relying on 
neuropsychological testing are inherently highly variable, 
costly, and to some extent depend on the testers’ capabilities 
and training. As such, they are administered infrequently, 
exhibit relatively low reliability and are generally difficult to 
use to assess the instantaneous state of the patient. 

Yet, in many situations it would be desirable to assess the 
functions related to the neurological state of the patient on a 
continuous basis. For example, in the care of patients with 
Parkinson’s disease (PD), the instantaneous aspects of gait 
velocity may be a useful measure for the determination of 
the administration of drugs, such as Levadopa.  

Our approach to the problem of assessment is based on a 
combination of neural informatics and sensor technology. 
Neural Informatics is a collection of computer based 

methods that address issues at the intersection of neural 
engineering, neuroscience and clinical practice. The 
methods of include modeling clinically relevant aspects of 
neurological states of individuals as well as population 
effects.  In our preliminary study as well as those from other 
laboratories, the variability of the various metrics appears to 
be as important as the average values. For example, 
variability in mobility measures, such as gait velocity or 
stride length, have been shown to correlate  with age, and 
with dementias, such as those associated with Alzheimer’s 
Disease [1]. Motor pattern generating mechanisms and gait 
velocity  appear to be useful predictors of future cognitive 
decline [2, 3]. The goal of our approach is to replace the 
occasional sampling of the cognitive and motor control tests 
with continuous observations in the patients’ natural 
environments. A system that can assess aspects of mobility 
on a continuous basis can, of course, be used to assess the 
variability of these measures. 
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In this paper, we describe an approach to the unobtrusive 
measurement of gait velocity and its variability based on 
continuous monitoring of the PD patients in their homes. In 
particular we extend our prior work [6] by incorporating a 
simple dynamic model of the movements of the individuals 
in their dwellings. 

II. UNOBTRUSIVE MEASUREMENT OF GAIT VELOCITY 
The system for the unobtrusive measurement of gait 
comprises two components that will be described in the 
following two sections: A) a sensor system for sensing and 
collecting the raw data, and B) a set of algorithms that 
estimate the parameters of interests from the raw data.  

A. Sensor System 
One of the most important requirements of the sensor and 

assessment system is its unobtrusive or minimally intrusive 
nature [6] as well as its economical feasibility. In order to 
develop a system that is minimally intrusive, we have been 
investigating approaches that would be affordable by a large 
number of patients and their families. For example, we have 
been investigating systems based on passive infrared sensors  
(PIR) and contact switches that would be deployed in a 
similar manner as are the components used in many security 
systems.  

The general architecture installed in a typical home is 
shown in Fig. 1. When a sensor detects the presence of a 
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moving human body at the normal body temperature and the 
motion signal exceeds a fixed threshold, it fires. There are 
various details that control the firing, such as the refractory 
period of the sensor following a firing, but a discussion of 
these is beyond the scope of this paper. In general, the 
inference of the gait velocity is based on the time that it 
takes to traverse from one part of the patient’s home to 
another – this approach, in conjunction with semi-Markov 
models was described previously in an article by Pavel et al. 
in 2006 [7]. 

 
In some dwellings it is possible to make the 

measurements of speed of walking more directly by taking 
advantage of the layout. In particular, if the residence has a 
hall or a corridor, we would place three modified PIR 
detectors the hall in a row as shown in Fig. 1. The PIR 
motion detectors placed in the “test area”, i.e., the hall, were 
modified to restrict their field of view to 4o. The PIR 
monitoring system is using a simple wireless communication 
network in order to collect the data. The main data relevant 
to monitoring mobility consist of records of PIR motion 
detectors firing events.  

In dwellings with multiple residents, it is necessary to 
identify the particular individual associated with different 
events recorded from the PIR motion detectors. The RFID 
system used in this study was a commercially available 
system from HomeFree, Inc. Each individual residing in the 
same residence wears a small RFID device in the form of a 
watch that emits periodically – every 4 seconds – a signal 
received by three or more base stations.  

B. Inference Algorithms 
The unobtrusive nature of the sensor system is inherently 

plagued with considerable uncertainties arising from the fact 
that the measured phenomenon, e.g. gait velocity is only 
indirectly related to the sensed data. In order to compensate 
for this, we base our inference on a fusion of information 
from a set of passive infrared detectors, contact switches and 
active radio frequency identification (RFID) system.   

As noted above, the incorporation of the RFID system is 
essential for inference in dwellings with multiple residents. 
Such was the case in a recent pilot study of a small number 
of patients with Parkinson’s disease and their spouses that 
served as control subjects. 

The original notion was that the received signal strength 
indicator (RSSI) would provide sufficient information about 
the locations of each individual. In our prior work [6] the 
variability of the RSSI as well as the lack of monotonicity 
with the distance,  was addressed by static modeling of the 
RSSI distribution over the dwelling and then using 
expectation-maximization (EM) algorithm to best estimate 
the individual associated with the motion detector events 
[9,10]. Despite its marginally successful deployment, further 
improvements could be achieved by adding constraints due 
to the sequential dependencies – dynamics – of the moving 
individuals. 

 
Fig. 1. Example of a part of a residence with a 
number of PIR sensors, RFID receiver stations and 
the test area. 

The measurement of speed of walking in the test area is a 
trivial problem whenever an observation consists of the 
three detectors firing in one of two temporal orders 
consistent with a particular direction of the movement. In 
those cases, the time between the first and the third detector 
events is taken as the time to walk the distance between 
detectors. The difficult problem is to infer the identity of the 
walking individual.  

The general approach is to determine the likelihood of 
each individual resident being in the test area – a similar 
approach to [6] – combined with a dynamic model based on 
the assumption that the movements of an individual could be 
described by a simple hidden Markov model (HMM) shown 
in Fig. 2.  
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Fig. 2 Hidden Markov model representing the 
dynamics of the patient in his residence. 

 
In particular, the HMM developed for the inference was 

assumed to consist of 4 unobservable states described by 
locations in relation to the test area, namely: 

1. Left of the test area 
2. Right of test area 
3. At the test area 
4. Other – Elsewhere 

The transition probabilities jkp between each pair of states 

are constrained by the direction of the patient’s movement as 
sensed by the PIR motion detector sequences – left to right 



 
 

 

and vice versa and the general topology of the HMM is 
shown in Fig. 2. The transition probabilities were 
determined using the occupancy of the different parts of the 
dwelling assessed by the cumulative number of motion 
detector events in each part of the house. Table 1 lists an 
example of the transition probabilities used in conjunction 
with the house diagram shown in Fig. 1.  

TABLE 1 
EXAMPLE OF TRANSITION PROBABILITIES 

 Left Test Right Other 
Left 0.20 0.60 0.00 0.20 
Test 0.30 0.20 0.50 0.00 
Right 0.00 0.33 0.33 0.33 
Other 0.25 0.00 0.25 0.50 
 The notation to describe the inference algorithm is similar 

to that used in the article by Hayes et al. [6].  The observable 
outputs, R in each state are vectors of the RSSI values 
recorded by each receiver or base station in the residence.  
The probability density of the observable RSSI are given by 

( )|if R q , where q is the state in the HMM and i is the 
individual. These probability density functions were 
estimated using a Gaussian mixture model (GMM) with 

parameters estimated using the expectation-maximization 
approach from the calibration data gathered during the initial 
installation of the sensor system. The calibration RSSI data 
were obtained by collecting RSSI data from each 
“significant” location in the patient’s dwelling, as identified 
by the patient or the spouse. For the purpose of this study, 
each resident is associated with a particular HMM and these 
individual HMMs are treated as statistically independent.  

III. RESULTS 

 
Fig. 3. Example of results from one house with a Parkinson’s patient (lower graph) and a control subject (upper graph) 
observed over more than 6months period.  The abscissa is the date of each observation and the ordinate is the time it 
takes to walk. The three different sets of data correspond to the 20, 50, and 80 percentiles. The missing data indicate 
that the corresponding individual was not in the residence. The data are computed using 7 day moving window. 

The data collected in the pilot study from 6 houses were 
used to examine the applicability of this approach. In this 
presentation we illustrate the approach on the data from one 
of the houses. The data from the patients’ dwellings were 
processed whereby the events form the motion detectors in 
the test area were used to identify all the instances when the 
three detectors fired in one of the temporal orders 
corresponding to rightward or leftward motion (ignoring 
partial sequences).  For each time t associated with the first 
detector event, the sequence of RSSI samples was used 
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to determine the most likely sequence of states consistent 
with the observed RSSI. The likelihood of any particular 
sequence of states  for the i-th individual 
is given by  
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where qπ is the prior probability of the state q. Using 
Verterbi search, the inference algorithm found, for each 
individual, the most likely sequence of states  given the 
RSSI observations. Since the identity of the walking 
individual is not known with certainty, the overall 
distribution of the observed times to walk is a mixture to the 
distributions associated with each individual, 
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where is the probability that the observation is associated 
with the i-th individual. Conversely, given the probability 
that a particular measurement is associated with the i-th 
individual it is possible to estimate the expected value and 
the variance of the time to walk distribution for that 
individual using the probabilities derived from the HMM. In 
particular, the estimate of the expected value for the time to 
walk for the i-th individual is given by:  
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where wi is a weight determined as follows: wi is zero if 
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for all sequences that contain the state , corresponding 
to the test area.  In other words, the weight is determined by 
the relative likelihood of each individual walking in the test 
area. 

testq

An example of the results from one house occupied by a 
Parkinson’s patient and his spouse is shown in Fig. 3. The 
triangles correspond to the median estimates. The data 
indicate higher variability of the walking times of the 
Parkinson’s patient. We note that the apparent higher 
variability of the control subject in March of 2006 is due to 
very few data points during the time that the patient was 
absent. 

IV. CONCLUSION 
We have developed a technique to reduce the uncertainty 

associated with unobtrusive measurement of mobility with 
multiple individuals in a single dwelling. We have 
demonstrated that a simple 4 state HMM with minimal 
training can incorporate the dynamic aspects of the 
sequential data. Although the application of this approach to 

the data from our pilot study appears to be promising, the 
real evaluation of this approach would require a data set 
with known ground truth. Alternatively, there are additional 
enhancements of this approach that would improve the 
inference; for example, including a coupling between the 
HMMs corresponding to each individual would impose 
additional constraints and probably improve the inference.  
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