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ABSTRACT 

Principal curves and surfaces play an important role in 
dimensionality reduction applications of machine learning and 
signal processing. Vaguely defined, principal curves are smooth 
curves that pass through the middle of the data distribution. This 
intuitive definition is ill posed and to this day researchers have 
struggled with its practical implications. Two main causes of these 
difficulties are: (i) the desire to build a self-consistent definition 
using global statistics (for instance conditional expectations), and 
(ii) not decoupling the definition of the principal curve from the 
data samples. In this paper, we introduce the concept of principal 
sets, which are the union of all principal surfaces with a particular 
dimensionality. The proposed definition of principal surfaces 
provides rigorous conditions for a point to satisfy that can be 
evaluated using only the gradient and Hessian of the probability 
density at the point of interest. Since the definition is decoupled 
from the data samples, any density estimator could be employed to 
obtain a probability distribution expression and identify the 
principal surfaces of the data under this particular model. 

Index Terms— principal curves and surfaces, dimensionality 
reduction, unsupervised learning, optical character recognition 

1. INTRODUCTION 

Intuitively, principal curves are smooth curves that pass 
through the middle of the data. This definition has been formulated 
mathematically by Hastie and Stuetzle in which self-consistent 
principal curves are defined to coincide with the local conditional 
expectation of the data/distribution at every orthogonal hyperplane 
to the curve itself [1]. It is probably safe to say that this definition 
has so far drowe the development of almost all principal curve 
identification algorithms. A natural consequence of the definition 
above is that the principal curve becomes a stationary point of the 
variational optimization problem that minimizes the projection 
means squared error when high dimensional data is approximated 
by their projections on the principal curve [1]. 

The literature is relatively rich with various propositions of 
algorithms for determining principal curves based on definitions 
that are variants of the Hastie-Stuetzle definition. Tibshirani 
provides a definition based on mixture models and estimation is 
carried out using expectation-maximization [2]. Kegl and 
colleagues define a regularized version of Hastie’s definition by 
constraining the total length of the parametric curve to be fit to the 
data [3]. Sandilya and Kulkarni similarly regularize the principal 

curve by imposing bounds on the turns of the curve [4]. 
The principal surface concept is closely related to nonlinear 

principal component analysis (in the context of neural networks) 
and manifold learning (in the context of machine learning). There 
exist various approaches and algorithms for determining 
parametric or nonparametric solutions to these two problems 
ranging from autoassociative neural network models to spectral 
manifold unfolding techniques, which we will not review here for 
brevity. 

In summary, Hastie’s definition is quite elegant and forms a 
strong basis for many, possibly all, of the approaches one can find 
in the literature. This definition and the resulting variants attempt 
to define principal curves and surfaces using data statistics that are 
conditioned locally to the hyperplane orthogonal to the curve 
(conditional expectation or squared projection error). This 
definition that utilizes global statistics (through hyperplanes that 
extend to infinity) create the difficulty that when nonlinear 
principal curves make turns such that the orthogonal hyperplanes 
of two different points on the curve intersect, it becomes 
ambiguous to which point on the curve the intersection would be 
projected to. The source of the difficulty can actually be traced 
back to the definition of Hastie, which was most likely inspired by 
the desire to utilize a definition of principal curves that is relevant 
to least squares regression and the minimum squared error 
projection property of linear principal component analysis. 
Furthermore, the ease of estimating conditional expectations over 
hyperplanes using sample averages is attractive for practical 
algorithm design purposes. 

In this paper, we propose an alternative self-consistent 
definition of principal curves and surfaces. The definition utilizes 
the concept of likelihood maximization in its more general sense 
rather than the least squares approach exploited in existing 
approaches, which emerges from the maximization of symmetric 
unimodal distributions (such as Gaussian – many illustrations in 
fact consider synthetic datasets that are radially perturbed by a 
Gaussian distribution from some constructed principal curve). The 
intuition behind this is that the principal curves/surfaces pass 
through high-density regions of the data (in other words, they must 
be some form of local maxima), which might not necessarily be 
the middle literally. Furthermore, in the primary definition of 
principal curves, we do not believe that smoothness considerations 
should be included, because smoothness is an issue that arises due 
to regularization concerns in the presence of only a finite number 
of data samples. In our view, principal curves/surfaces should be 
uniquely defined by the data distribution according to the 
likelihood maximization principle mentioned above and the 
smoothness of the distribution itself would naturally impose any 
necessary smoothness constraints on the corresponding principal 
surfaces. 
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The definition we propose also possesses the following 
desirable properties that are mutually agreed on by various authors 
in the literature: (i) existence of the principal surfaces is 
theoretically guaranteed; (ii) definition provides a unique solution 
for any dimensional principal surface; (iii) one need not study 
global statistics to determine a local portion of the principal 
curve/surface, local density information is sufficient (and of course 
necessary). In this paper, we do not make any attempts to develop 
a computationally efficient exact or approximate algorithm that 
identifies principal curves or surfaces. Based on the definition, 
numerical integration of a partial differential equation emerges as a 
natural (but not necessarily efficient) approach to determine these 
curves and surfaces. Therefore, we demonstrate results utilizing 
such an algorithm. 

The proposed definition when applied to feature (skeleton) 
extraction for optical character recognition (OCR) yields the 
desired skeletons. OCR is a particularly relevant application 
because while the majority of alphanumeric characters contain 
some form of intersection, existing definitions of algorithms for 
principal curves typically fail to handle such situations (save for 
Kegl’s heuristic yet effective approach [3]). 

2. DEFINITION OF PRINCIPAL SURFACES 

 A mathematically rigorous definition of principal surfaces 
must be defined in terms of probability density functions (pdf) and 
not in terms of data points or sample statistics. Consequently, in 
the rest of the paper, we propose our definition and develop 
properties with the understanding that a pdf expression that 
describes the data is available, whether it is known or estimated 
parametrically or nonparametrically from the data. 
 Given a random vector x∈ℜn, let p(x) be its pdf, g(x) be the 
transpose of the local gradient of this pdf, and H(x) be the local 
Hessian of this pdf. To avoid mathematical complications, in the 
current treatment we assume that the data distribution p(x) is at 
least twice differentiable, so that both g(x) and H(x) are 
continuous. The definition we will propose requires differentiating 
strict local maxima where all relevant eigenvalues of the Hessian 
matrix are strictly negative and local maxima where the Hessian is 
allowed to have a mixture of negative and zero eigenvalues. 
 Definition 2.1. A point x is an element of the d-dimensional 
principal set, denoted by ℘d, iff g(x) is orthogonal (null inner 
product) to at least (n-d) eigenvectors of H(x) and p(x) is a strict 
local maximum in the subspace spanned by these (n-d) 
eigenvectors. 
 Lemma 2.1. Strict local maxima of p(x) constitute ℘0. 
Proof. If x* is a strict local maximum of of p(x), then g(x*)=0 and 
all eigenvalues of H(x*) are strictly negative. Let {q1(x*),…,qn(x*)} 
be the orthonormal eigenvectors of H(x*). Clearly gT(x*)qi(x*)=0 
for i=1,…,n; hence g(x*) is orthogonal to all n eigenvectors of 
H(x*). Furthermore, by hypothesis, p(x*) is a local maximum in the 
space spanned by these n eigenvectors, which is ℜn. Consequently 
x*∈℘0. � 
 This lemma states that the modes of a pdf, called principal 
points, form the 0-dimensional principal set. Note that the modes 
of a pdf provide a natural clustering solution for data with a certain 
pdf. In fact, the widely used mean-shift algorithm [5,6] utilizes this 
property of the modes of a kernel density estimate to arrive at a 
clustering solution nonparametrically for a given data set. 

 Lemma 2.2. ℘d⊂℘d+1. 
Proof. Let x*∈℘d. Let {q1(x*),…,qn(x*)} be the orthonormal 
eigenvectors of H(x*). Without loss of generality assume that the 
subspace of interest is defined by eigenvectors indexed from d+1 
to n. Therefore, by definition gT(x*)qi(x*)=0 for i=d+1,…,n and 

p(x*+δ)<p(x*) for all δ such that ∑ += −= n
di idi1

* )(xqδ α , 

where )(0α dnB −∈ ε  for any ε>0. Consequently, gT(x*)qi(x*)=0 
for i=d+2,…,n and p(x*+δ′)<p(x*) for 

∑ += −−=′ n
di idi2

*
1 )(xqδ β , where )(1 0β −−∈ dnBε  for any 

ε>0. Hence x*∈℘d+1; therefore, ℘d⊂℘d+1. � 
 In plain terms, this lemma states that low dimensional 
principal sets are subsets of higher dimensional principal sets. In 
the context of continuous and twice differentiable pdfs this implies 
that principal curves must pass through the local maxima, two-
dimensional principal surfaces must contain principal curves, etc. 
Consequently, a deflation or inflation procedure could be 
employed to discover these surfaces sequentially (as done in some 
PCA algorithms). 
 Lemma 2.3. Let x*∈℘d. Let {q1(x*),…,qn(x*)} be the 
eigenvectors of H(x*). Without loss of generality let 
S//(x*)=span{q1(x*),…,qd(x*)}, S⊥(x*)=ℜn-S//(x*), and assume that 
gT(x*)qi(x*)=0 for i=d+1,…,n.  Then S//(x*) is tangent to ℘d at x*. 
Proof. Consider the following truncated Taylor approximation: 
p(x*+δ)≈p(x*)+gT(x)δ+δTH(x)δ/2+O(||δ||3). Let 
Q(x*)=[q1(x*),…,qn(x*)], where QT(x*)Q(x*)=I. We have 
H(x*)=Q(x*)Λ(x*)QT(x*). For brevity, from now on, we will drop 
the argument (x*) from relevant functions when the point of 
evaluation is clear from the context. Define parallel and 
orthogonal components of the local Hessian as follows: 
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Since by hypothesis gTqi=0 for i=d+1,…,n, we can express the 
local gradient as a linear combination of the remaining 

eigenvectors: ∑ == d
i ii1 qg α . For an arbitrary vector 

∑∑ +==⊥ +=+= n
di ii

d
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Also similarly δTHδ=δ//
TH//δ//+δ⊥TH⊥δ⊥. Substituting these last two 

expressions in the Taylor series approximation: 

 2/)()()( ////////
**

⊥⊥⊥+++≈+ δHδδHδδgxδx TTTpp  (2) 

Consequently, at x*, a perturbation δ//∈S//(x*) yields 
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Thus, gT(x*+δ//)qi(x*)=0 for i=d+1,…,n and x*+δ// is a local 
maximum in S⊥(x*+δ//)≈S⊥(x*) from (2). Hence, x*+δ//∈℘

d; 
therefore, S//(x*) is locally tangent to ℘d at x*. � 
 Note that Lemma 2.3 defines the d-dimensional principal 
subset utilizing only local gradient and Hessian information that 
can be calculated at any point in the vector space from the given 
probability distribution. Lemma 2.2 creates a unifying perspective 
between clustering and manifold learning as dimensionality 
reduction tools that can be utilized for data compression and 
denoising. Finally, note that the definition so far is not concerned 
about dividing a d-dimensional principal set into disjoint surface 



components that are ranked in terms of some data statistics (as 
opposed to the natural ranking of linear principal components by 
the eigenvalues of the data covariance matrix). For instance, we 
have not yet addressed the question of how to define a global first 
principal curve for a given distribution. Locally however, the 
eigenvalues of the Hessian could be utilized to rank the orthogonal 
directions in the tangent space S//(x*) at any point x*. We will 
discuss this briefly later. 
 Principal Curves. Note that according to the definition 
proposed above, ℘1 (union of all principal curves) consists of all 
points x where g(x) is an eigenvector of H(x). This provides some 
guidance towards building algorithms to discover principal curves. 
In this paper, due to lack of space, we will not investigate potential 
algorithm designs. 
 Example. To illustrate the concept, let us consider the trivial 
example of a Gaussian distribution with zero mean and covariance 
Σ. We have the following: 
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Let ∑ =
−− = n

i
T
iii1

11 vvΣ γ . Since the general case of d-

dimensional principal surfaces (hyperplanes) is computationally 
cumbersome, we will not go through this most general case. 
Instead consider the easier principal curves (lines) by letting 

kvx α= . For these points that are aligned with the eigenvectors 
of the covariance matrix, we can calculate that the gradient is 

kkp vxxg 1)()( −−= γα  and the Hessian is 

])[()( 122 −− −= ΣvvxxH T
kkkp γα . Note that any vj is an 

eigenvector of this particular Hessian matrix; specifically we have: 
 jjkjjjk p vxvvH ))(()( 122 −− −= γδγαα  (4) 

From (4) we see that if kj ≠  (any directional orthogonal to the 
local gradient), then the eigenvalue of the Hessian becomes 

negative (specifically, 01 <− −
jγ ). Therefore, kvx α=  is a local 

maximum in the subspace spanned by the eigenvectors orthogonal 
to the gradient, hence x∈℘1. In other words, all points that lie on 
one of the eigenvectors of the data covariance matrix Σ is on some 
principle curve (seen to be a line in this case as we would expect). 
Hence, linear principal components of a Gaussian distributed data 
arise naturally from the proposed definition. 
 Ranking portions of the principal surfaces. In general, it is 
difficult to designate a portion/subset of ℘1 as the first, second, 
third,… principal curve. The reason is that counterintuitive 
scenarios might arise in nonlinear principal surfaces and local 
information might not always indicate global rank. To illustrate 
this fact, we qualitatively study a mixture of two Gaussians shaped 
like T (see Fig. 1). The principal curves of a pdf will form a graph 
where the modes are the nodes. The connecting edges could pass 
through other stationary points of the pdf which are not local 
maxima (for instance saddle points – note that a saddle point with 
one positive and n-1 negative eigenvalues could lie in ℘1 provided 
that the gradient at this point is aligned with the eigenvector of the 
positive eigenvalue. This saddle point would not be in ℘0, 
however. In fact, such saddle points are essential for the graph to 
be connected smoothly by facilitating sharp turns in the principal 
curves. These saddle points also create the problem observed in 
Figure 1, by potentially merging two principal curve segments 
emanating from two modes, but are locally ranked differently. We 
also know that mixtures of Gaussians in high-dimensional spaces 
could have more modes than the number of components [7]. These 
additional modes, not at the center of a component, would also 
behave similarly. Other degenerate cases are possible. Since in 
general ranking components of ℘1 into ordered principal curves is 
not possible, we will not attempt to resolve this problem in this 
short paper and will address the issue in another publication. 
 Tracing ℘1. Using an inflation approach and numerical 
integration, we can determine the one-dimensional principal set. 
Determining the modes of a pdf is easy. In practice, one could start 
from some number of reasonable initial points and use gradient 
ascent or a fixed point algorithm to find the corresponding modes 
(hopefully all modes of the pdf). In Gaussian mixture distributions, 
including kernel density estimates, such an algorithm could start 
from the component means as done in mean shift. Once the modes 
are determined, starting from each mode and shooting a trajectory 
in the direction of each eigenvector at the mode of interest, one can 
start tracing the edges of the principal curve graph. A numerical 
integration algorithm such as Runge-Kutta order 4 (RK4) could be 
utilized to numerically determine the next point on the curve 
starting from the current point and moving in the direction of the 
corresponding local eigenvector of the Hessian. With a small step 
size and patience, we have obtained reasonable approximations to 
the principal curves of various Gaussian mixture densities. 
 Note however, that our goal in this paper is to propose a self-
consistent and mathematically rigorous definition of principal 
curves that utilizes local information. Therefore, an attempt to 
develop an efficient algorithm that identifies the principal curves is 
not made. It should be noted that, in fact an algorithm that 
identifies the curves would be relatively easy to determine when 
compared with the task of determining a reliable and 
computationally feasible method of projecting an arbitrary test 
data point on to the principal curves or surfaces of interest. The 
latter is the relevant challenge since the purpose of determining 

 
Figure 1. An attempt to illustrate the ℘1 of the mixture of two 
Gaussians shown by ellipses arranged as a T. The local first 
principal curve of the horizontal ellipse merges with the local 
second principal curve of the vertical ellipse. The first 1-
dimensional principal component would intuitively include the T-
shaped local first principal curves of the two ellipses. However, 
such a curve would then lose intuitive appeal by self-intersecting 
and not being parameterized by one coordinate. 



these curves is to seek projections for data compression and 
denoising. 

3. EXPERIMENTAL RESULTS 

In this section we present experimental results obtained using 
the proposed principal curve definition. Here, we use the RK4 
numerical integration method; we trace the principal curves by 
starting a trajectory at each of the modes of the pdf and tracing the 
eigenvector of the local Hessian that has the largest eigenvalue. In 
our examples, Gaussian mixture models (GMM) and Gaussian-
kernel density estimation method (for OCR) is employed, therefore 
relevant modes can be identified by mean-shift [5,6]. 

The GMM consists of 10 Gaussian components, and the 
numerical integration algorithm is initialized to the peak of one of 
these Gaussian components. The probability density and the 
corresponding principal curve are depicted in Figure 2.  

Optical character recognition is one of the most promising 
applications of principal curves, and the principal curves literature 
includes many OCR applications that use the principal curve as a 
skeleton-feature extraction step. For this reason, we provide OCR 
skeleton extraction results for our principal curve definition using 
the ICASSP dataset. Note that, this dataset also includes some 
letters that force the principal curve to intersect itself. The kernel 
density estimate and the principal curve are shown in Figure 3. 

4. DISCUSSION 

This paper contributes a self-consistent principal surface 
definition, which is uniquely-defined through local gradient 
Hessian information about the data distribution. The definition 
avoids smoothness concerns by decoupling the principal curve 
definition from algorithmic estimation aspects of the problem. 
Given a probability density function, the proposed principal 
surfaces become local maxima in their orthogonal subspaces, 
therefore the intuition behind principal surfaces is changed from 
passing from the middle of the data to passing from the high-
density ridge of the data. This corresponds to selecting principal 
curves that have a maximum likelihood property rather than a 
least-squares representation error property. Various complications 
arising from the conditional-expectation-based definition of Hastie 
are avoided by this local information oriented definition. 
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Figure 2. The first principal curve of a mixture of 10 Gaussians. 
Note that this is an easy case where the first principal curve 
direction is easily identified by local Hessian eigenvalues. (See in 
color.) 

Figure 3. The first principal set of the ICASSP dataset. Note that 
this data set is a mixture of many characters (some self-
intersecting), therefore the intuitive single smooth curve passing 
through the data cannot be identified, however, the 1-dimensional 
principal set still exists. Only the dominant portions of ℘1 are 
shown by tracing the direction corresponding to the largest local 
Hessian eigenvalue. (See in color.) 


