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Abstract — From a probabilistic perspective, the 
question of clustering is ‘what is the probability that two 
data samples belong to the same cluster?’ Accepting the 
natural preclustering of samples into corresponding 
modes of the data probability distribution and answering 
the question posed above for these modes can reduce the 
problem complexity. Under the maximum entropy 
principle, a Boltzmann distribution model can be 
employed to evaluate the required mode-connectivity 
probabilities. An algorithm is developed using kernel 
density estimation in this framework. Its performance is 
demonstrated on benchmark datasets. 

I. INTRODUCTION 

CLUSTERING is a fundamental problem in machine 
learning that has a wide range of applications in data 

analysis and mining, as well as compression and noise 
reduction [1,2,3,4]. Literature is rich with many algorithms, 
heuristic and principled; hierarchical clustering and k-means 
are arguably the most popular methods due to their 
simplicity and have found widespread use Nevertheless, the 
former might suffer from high statistical variance if samples 
are slightly perturbed and the latter is motivated by the 
Gaussian assumption of clusters and minimum information 
loss in compression. More recently, affinity-based clustering 
algorithms other than hierarchical clustering have gained 
popularity, exactly due to the possible problem mentioned 
above. For example, the normalized cut algorithm [5] 
measures the similarity between two partitions using a 
normalized average similarity measure much like the 
correlation coefficient. In fact, it has been shown that the 
normalized cut measure and related spectral clustering 
algorithms are attempting to maximize the Cauchy-Schwartz 
(CS) distance (angular separation) between the partitions 
[5]. This distance is essentially a normalized information 
potential measure in the context of nonparametric entropy 
estimation as we will discuss later in the paper. There have 
also been perturbation approaches [6] to counter the problem 
mentioned above. The idea is to create a mask for the 
affinity matrix based on the connectivity probabilities of 
pairs of samples in proximity graphs (such as k-nearest-
neighbor or ε-ball graphs) when the samples are slightly 
perturbed. This perturbation approach can in fact be 
interpreted as convolving the empirical data distribution 
locally with the perturbation distribution. 

 The probabilistic approach to clustering continuous-
valued feature vectors demands that the inference is made in 
accordance with the underlying probability density function 
(pdf) of the data. In practice, the true pdf of the data is rarely 
known, so it must be estimated using a suitable 
approximation technique. In many complex domains 
parametric modeling may not be a feasible option due to 
model complexity selection issues. Nonparametric density 
estimation provides an attractive alternative; especially 
kernel density estimation (KDE) offers an appealing 
connection with the spectral clustering methodology. 
 Mean-shift procedure provides a means for achieving 
density-based cluster inference [7,8,9]; all samples in the 
attraction basin of a mode of the kernel density estimate 
(also KDE) are assigned to one cluster. This method has the 
drawback of potentially resulting in many small clusters 
caused by “statistically insignificant” modes – a situation 
that occurs more severely if the optimal kernel size is 
underestimated. Comaniciu and colleagues [9] proposed a 
heuristic approach to merge modes resulting from the mean-
shift procedure by considering the distance between the 
peaks of the modes. We recently proposed merging nearby 
modes using the CS distance between pairs of modes [10], 
which expectedly results in more robust merging decisions 
taking the amount of spread and overlap of the clusters into 
account. Still, one needs to decide on a specific threshold 
value to draw the line between close and far modes given 
the CS distances. 
 In this paper, inspired by the typical cut algorithm 
[11,12], we develop a Boltzmann distribution prior for the 
mode connectivity probabilities. The Boltzmann distribution 
is the maximum entropy distribution under the constant 
average energy constraint, where energy in this case is 
defined to be the normalized information potential. 

II. DATA MODEL FOR CLUSTERING 
The modes of the probability distribution underlying the 

data provide a natural clustering structure that is in 
accordance with the probabilistic view of data. It is 
important, however, to note that each mode may not be a 
real or statistically significant cluster, especially when the 
distribution is estimated from samples. This is most likely 
the case in practice, since true underlying data distributions 
are generally unknown. Kernel density estimation provides a 
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convenient technique for nonparametrically estimating the 
probability distribution and finding the natural clusters. 

A. Kernel Density Estimation 
Given the sample set {x1,…,xN}, the KDE using the 

kernel function K(ξ) is given by [13,14] 
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where the kernel function is typically a valid pdf itself to 
guarantee the validity of the estimate in (1). We further 
impose the continuity and differentiability conditions on the 
kernel for an iterative gradient-based mode finding 
algorithm to be possible. Typical kernels used are uniform 
and Gaussian distributions. The subscript of the kernel 
function denotes the parameter that controls its size also 
known as the bandwidth). 
 There are mainly two options for kernel size selection: 
fixed and variable. Fixed kernel size, Σi=Σ, has the 
convenience of reduced model complexity, however it is 
also problematic and insufficient when the data exhibits 
distributions with multiple scales. Combination kernels are 
recently proposed as a viable solution for this problem [15]. 
Variable-size kernels are more flexible in their capability to 
model various scales present in the data and certain 
simplifying assumptions could be made. For example, the 
kernel size associated with a specific sample could be 
limited to a scaled version of the k-nearest neighbor (KNN) 
covariance, that is Σi=σ2Ci. Both in the case of fixed and 
constrained variable kernel size cases, the global scale 
parameter σ can be determined to optimize a suitable 
selection criterion. For example, Silverman’s rule [16] could 
be used to select a kernel size that minimizes the squared 
error while maintaining the average curvature of the 
estimated density equal to that of a Gaussian, or the leave-
one-out maximum likelihood approach [17] could be 
employed to find a suitable kernel size. Kernel selection is 
an important consideration for all kernel-based solutions and 
the connection to kernel density estimation provides a 
principle for tackling this question. 

B. Fixed Point Algorithm for Mode Finding 
 The modes of the pdf estimate in (1) can be easily 
obtained by an iterative mode search-algorithm. Due to the 
continuity and differentiability assumptions, the modes 
satisfy . A fixed-point iteration can be easily 
obtained for any suitable kernel. Specifically for Gaussian 
kernels, the following iteration is obtained from (1): 
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It can be shown that this procedure, called mean-shift 
[18,19], can also be viewed as an expectation-maximization 
(EM) procedure to find the translation of p(x) that 
maximizes the likelihood of the initial condition [19]. 

Consequently, this iteration converges linearly to the local 
maximum whose attraction basin contains the initial 
condition. 
 In clustering, we are interested in finding which mode a 
particular sample belongs to. Therefore, the mean shift 
procedure in (2) must be performed initializing it to all 
samples in the data set. Note that, this process will not 
necessarily find all the modes of the pdf, as in high 
dimensional mixture models such as (1), modes can appear 
at locations other than the component centers [19]. 
 Recall that not all the modes of the estimated probability 
distribution are significant clusters; this is especially true if 
the kernel size is selected to be small. Alternatively, there 
might exist modes that are connected to each other with a 
significantly large probability density bridging them. One 
needs a mechanism to determine whether some neighboring 
modes determined using (2) should be merged into a single 
cluster or not. We propose to make this decision in a manner 
similar to the typical cut formalism, using a maximum 
entropy distribution model for the mode-connectivity. Under 
a constant average energy constraint, this results in a 
Boltzmann distribution over which we can evaluate the 
likelihood of two modes being in the same cluster. 

C. Maximum Entropy Principle and the Boltzmann 
Distribution 
In statistical mechanics, the Boltzmann distribution 

emerges as the solution to a constrained maximum entropy 
problem. Accoding to the maximum entropy principle [20], 
the distribution that best models the data should match 
observed properties exactly, while allowing maximum 
uncertainty. 

Fact: Let the energies for all possible states {s1,…,sn} that 
the particle system can take be {E1,…,En}. Then, the 
probability distribution of the states that have maximum 
entropy under the constant average energy constraint is the 
Boltzmann distribution: p(si)=exp(-Ei/T)/ZT. 

Proof: The problem is formally stated as 
EpEppp
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The Lagrangian for this problem is 
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Derivating (4) with respect to pi and equating to zero yields 
ii Ep 101log λλ ++= . The Boltzmann distribution is 

obtained by letting 1/1 λ−=T  and . � )1exp( 0
1 λ+=−

TZ
 In the Boltzmann distribution, T denotes the ambient 
temperature and can be adjusted to yield various 
distributions. Mathematically, changing the temperature 
corresponds to changing the average energy value in the 
constraint, as also expected intuitively. 

D. Normalized Information Potential 
The mean shift procedure described above provides a 

preliminary vector quantization solution for clustering. A 



 
 

 

robust measure of similarity between two modes is given by 
the CS inequality in the pdf space. Using the standard 
integral-based inner product definition, an angular measure 
of distance between two pdfs pi(x) and pj(x) is given by: 
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This measure is referred to as the CS-distance or normalized 
cross-information potential in previous work by Principe 
and colleagues and has been used successfully in blind 
source separation, dimensionality reduction, and clustering 
[22]. 
 Suppose that the samples {  are 

the samples that are associated with mode i, the inner 
product between the pdfs of two modes can be calculated as 
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For fixed-size kernels, the inner product in (6) is identical to 
the popular graph cut measure [21], hence the CS distance in 
(5) becomes equivalent to the normalized cut [5]. 
Normalizing the graph cut is known to lead to more 
balanced clustering solutions by penalizing small clusters 
that are weakly connected to the rest of the data. 
Consequently, the measure in (5) not only considers the 
connection strength but also the cluster volume, as the norm 
is referred to in the spectral clustering literature. In the 
context of information theory, the norms are related to 
Renyi’s quadratic entropy (hence the name normalized cross 
information potential). Specifically, Renyi’s quadratic 
entropy of a cluster is [22]: 
  (7) 22
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Larger values of the measure in (5) occur when two modes 
are strongly connected according to (6) and when both 
modes have large quadratic entropies (that is volume). 

E. Assessing Mode Connectivity with Mean Normalized 
Information Potential 
For the given data set {x1,…,xN}, suppose that the mean 

shift procedure results in M modes represented by their peak 
locations {c1,…,cM}. Let ℘ be the set of all possible m-way 
partitions (allowing empty partitions) of these modes; this 
set contains mM elements denoted by qs, where qs is an M-
vector consisting of qsk that are the labels 1 to m assigned to 
mode ci in partition qs. In this notation, the energy of the 
particular partitioning scheme qs is given by: 
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Under the constant-average energy assumption, the 
maximum entropy probability distribution for all partitions 
in ℘ is given by the Boltzmann distribution: exp(-Es/T)/ZT. 
 The assessment of modes ci and cj being in the same 
cluster is based on the expected value of these modes being 
in the same partition according to the Boltzmann 
distribution: 
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For small number of modes (determined by the dataset and 
the selected kernel size) and small m (selected by the user), 
the expectation in (9) can be calculated analytically. The 
same is not true for the original dataset in general. In the 
typical cut algorithm, the authors employ Swendsen-Wang  
(SW) sampling to generate samples from the target 
Boltzmann distribution in order to obtain a sample-average 
estimate of (9). In the event of a large number of modes, the 
sampling approach could be employed as well. It is 
expected, however, that if the same number of samples are 
generated using the SW technique for the Boltzmann 
distribution defined over all possible partitions of sample 
connectivities and mode connectivities, the latter will yield 
significantly lower statistical variance since the support of 
the latter discrete distribution is much smaller than that of 
the former. 

III. RESULTS 
In this section, we will demonstrate results on benchmark 

datasets (handwritten digits and image segmentation) using 
the proposed method and provide comparisons with the 
typical cut algorithm. 

A. Handwritten Digits Dataset 
 The data can be found in the UCI Data Repository [23]. 
For illustrative purposes here we use only two classes (zeros 
and ones) from this data set. In total we randomly select 640 
samples, equally from each class. Starting from each sample, 
we perform mean shift iterations as in (2) using a variable-
size KDE with Σi=σ2Ci to exploit the locality information of 
the data. The KNN approach (with 10 neighbors) is used for 
kernel size selection and results are presented for various 
values of the global scale parameter. 

Figure 1 shows the sample-affinity and expected mode-
affinity matrices obtained with two values of the global scale 
parameter. The expected mode connectivity matrices are 
also mapped back to the sample indices to demonstrate th 
corresponding expected sample affinities resulting from the 
proposed procedure. 
 Figure 2 shows the variation in the number of clusters 
identified by the expected mode affinity method as the 
temperature is varied. It is desirable that the correct number 
of classes survives for a large interval of temperature values. 
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Figure 1. The sample affinity matrix (left), normalized mode affinity matrix (middle), and normalized mode
affinity mapeed back to the sample pairs (right) are shown for σ = 0.5 (top) and σ = 1 (bottom). 
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Figure 2. Number of clusters versus temperature (T) employing typical cut with global scale factor σ = 0.5, full 
range of T on the left and region of interest (around two clusters) on the right at the top row. The C vs T plots for 
mode-affinity approach σ = 0.5 (corresponds to Fig. 1 top-middle) and σ = 1 (corresponds to Fig. 1 bottom-
middle) are shown at the bottom row. 
 

TABLE 1 CONFUSION MATRICES FOR TWO GLOBAL SCALE VALUES 
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e observe that the sample-based typical cut procedure 
tains the desired two-cluster solution briefly along the 
perature axis, while the expected mode affinity method 

termines that thre are two clusters for a wide range of 

temperature values. The minimum number of clusters is one, 
obtained at the lower extreme of temperature, and the 
maximum number of clusters is the number of particles 
(modes or samples), obtained at the higher extreme of 



 
 

 

  
 (a) (b) 
Figure 3. (a) The original image, (b) Segments obtained by mean shift (different grayscale levels) and the
clustering boundary after merging according to the Boltzmann distribution (bright white curve). 

temperature. Another important observation is that 
regardless of the global scale value assumed for the kernel 
size, the probability of correct classification of samples to 
the true classes remain unaffected. This is shown in the form 
of confusion matrices in Table 1. 

B. Image Segmentation 
 Large number samples lead to affinity matrices whose 
size makes pair-wise affinity based clustering methods for 
image segmentation intractable, therefore typically 
approximate solutions based on the larger eigenvectors of 
the sample similarity matrix are employed [24]. Employing 
typical cut in such situations is next to impossible. Mean-
shift provides a natural vector quantization solution as an 
alternative to pixel-wise computations, where the image is 
first transformed into a feature domain, which is usually 
obtained by using the x-y coordinate values and the 
corresponding intensity values I(x,y) for each channel of the 
image. Mean shift leads to many insignificant clusters that 
correspond to numerous modes in the KDE. The proposed 
method can be employed to merge such small segments. 
This is illustrated on the plane image that can be found in 
the Berkeley Image Segmentation Database [25]. 
Particularly, the image used in the experiments is 96×128 
and results in a 12288×12288 pixel-affinity matrix. The 
original image is shown in Figure 3a and the results of 
mean-shift iterations in Figure 3b, along with the decision 
boundary for the two-cluster mode merging solution using 
the expected mode connectivity values over the Boltzmann 
distribution. 

IV. CONCLUSIONS 
 In this paper, we approach the question of two points 
being in the cluster in a probabilistic perspective using the 
maximum entropy principle. We obtain significant 
computational savings by utilizing the mean-shift procedure 
as a vector quantization step and considering the modes of 
the density as a natural intermediate clustering solution. In 

practice, this also extends the application areas of typical cut 
algorithm into larger datasets. Moreover, the results show 
less dependency on perturbation on the temperature, which 
can be considered as introducing a sense of generalization to 
the data with the vector quantization. Eliminating the 
necessity for sampling for the pdf of possible states or 
reducing the statistical variance resulting from this 
sampling, utilization of the proposed quantized affinity 
matrix leads the statistically important clustering solutions to 
remain unchanged for a wider range of T and helps the 
corresponding clustering solution to be observed much more 
easily. 
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