
 
 

 

  

Abstract—Feature selection is a critical step for pattern 
recognition and many other applications. Typically, feature 
selection strategies can be categorized into wrapper and filter 
approaches. Filter approach has attracted much attention 
because of its flexibility and computational efficiency.  
Previously, we have developed an ICA-MI framework for 
feature selection, in which the Mutual Information (MI) 
between features and class labels was used as the criterion. 
However, since this method depends on the linearity assumption, 
it is not applicable for an arbitrary distribution. In this paper, 
exploiting the fact that Gaussian Mixture Model (GMM) is 
generally a suitable tool for estimating probability densities, we 
propose GMM-MI method for feature ranking and selection. 
We will discuss the details of GMM-MI algorithm and 
demonstrate the experimental results. We will also compare the 
GMM-MI method with the ICA-MI method in terms of 
performance and computational efficiency. 

I. INTRODUCTION 
EATURE selection and dimensionality reduction is an 
important problem for pattern recognition and many other 

applications. For example, in communication, transmitting 
low dimensional data that contains most of the information is 
more desirable than directly sending the original high 
dimensional counterpart due to bandwidth limitations. In 
pattern recognition context, feature selection and 
dimensionality reduction can address the salient features, and 
eliminate the irrelevant features; hence, increase the 
robustness and improve the generalization performance of the 
classification system. Specifically, in geographical and 
biomedical signal processing, the dimension of feature space 
can be hundreds or thousands, and it is impractical to analyze 
these data directly without a dimensionality reduction that 
improves generalization. 

Dimensionality reduction can be achieved by subspace 
projection or feature selection. In subspace projection, the 
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original features are projected linearly or non-linearly to a 
low dimensional space, which represents major statistics of 
the data. There are many existing subspace projection 
methods, such as PCA, ICA and LDA [1-5]. However, the 
projections that PCA and ICA seek are not necessarily related 
to the classification performance, hence are not necessarily 
useful in pattern recognition. LDA overcomes this 
shortcoming by finding the projections that maximize class 
separability. On the other hand, this method relies on a 
Gaussian distribution assumption; so it is not applicable for 
an arbitrary distribution. Lan et al. developed a subspace 
projection framework, which applies linear ICA 
transformation and mutual information maximization for 
dimensionality reduction in EEG signal classification [6]. 
This method exhibits several advantages, such as it is 
computationally efficient and flexible, and it is also suitable 
for high dimensional data; however, the linearity assumption 
essentially resulting from ICA limits its applications.  

Although subspace projection can effectively remove the 
redundant features, the relationship between the projected 
features and the original features becomes vague. In some 
applications, such as multi-sensor array target detection, and 
EEG signal processing, the system can only transmit and 
process signals from a certain number of sensors in real-time, 
due to the limitation of bandwidth and computation capacity. 
In these particular cases, feature selection is more suitable, 
which selects a subset from the original feature space. It is 
widely accepted that some classification algorithms, such as 
decision tree, multi-layer perceptron neural networks have 
inherent ability to focus on relevant features and ignore 
irrelevant ones [7]. In general, feature selection is achieved 
by a feature ranking procedure. Feature selection methods 
can be divided into wrapper and filter approaches. Wrapper 
approach uses classification accuracy as criterion coupled 
with a specific classifier, which requires re-training the 
classifier for different combinations of feature sets; hence, it 
is slow and inflexible. Filter approach, on the other hand, 
ranks and selects features by optimizing some criteria 
independent of the classifier, and is more flexible and suitable 
for adaptive learning. 

In the filter approach, it is important to optimize a criterion 
that is relevant to Bayes risk, which is typically measured by 
the probability of error. A suitable criterion is the MI between 
the selected features and the class labels, motivated by lower 
and upper bounds in information theory that relate this 
quantity to probability of error [8,9]. As opposed to linear and 
second-order statistics such as correlation and covariance, MI 
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measures non-linear dependencies between a set of random 
variables taking into account higher order statistical 
structures existing in the data. 

Many feature selection methods have been developed in 
the past years [10-12]. Guyon & Elisseeff also reviewed 
several approaches used in machine learning context [13]. In 
our previous work, we have proposed an ICA-MI method for 
feature selection, and applied it on EEG channel selection 
[14]. This method exploits the fact that an invertible linear 
transformation does not change the MI, and assumes that 
linear ICA transformation yields independent features, so that 
the MI between feature vectors and class labels can be 
conveniently estimated by the direct summation of MI 
between each independent projected feature vector and class 
labels. However, since the accuracy of this method highly 
depends on the performance of linear transformation, it is not 
applicable for arbitrary distribution. Actually, if we know the 
distribution of the feature vectors, we can directly estimate 
the MI between feature vectors and class labels by definition. 
There are several density estimation methods, such as 
histogram, GMM, and Kernel density estimation (KDE). 
GMM is widely used because (1) it is a more powerful tool as 
compared to parametric estimators that only can estimate a 
family of density functions; (2) it results in a continuously 
differentiable estimation, which is appropriate for gradient 
based adaptive learning approaches; (3) it is less 
computationally intensive as compared with KDE. This 
motives us to use GMM estimating MI for feature selection.  

In this paper, we propose a GMM-MI method for feature 
ranking and selection. In the next section, we will discuss the 
algorithm in detail. In the experimental result part, we apply 
this method on several datasets of UCI machine learning 
repository, and EEG dataset collected by Honeywell for the 
AugCog project. We also compare this method with the 
previous ICA-MI method in terms of accuracy and speed. 

II. GMM-MI ALGORITHM 
The goal of feature selection is to improve the 

generalization performance of the classification system by 
selecting the informative features, without compromising 
classification accuracy by throwing away components. 
Therefore the feature selection criterion must minimize the 
Bayes risk, which typically is classification error in pattern 
recognition problem. The average probability of error has 
been shown to be related to MI between the feature vectors 
and the class labels. Specifically, Fano’s and Hellman & 
Raviv’s bounds demonstrate that probability of error is 
bounded from below and above by quantities that depend on 
the Shannon MI between these variables [8, 9]. Maximizing 
this MI reduces both bounds, therefore, forces the probability 
of error to decrease. A similar result was also obtained by 
Erdogmus & Principe using Renyi’s MI; a parametric family 
of lower and upper bounds for the probability of error was 
provided [15,16]. Hellman & Raviv [7] showed that the upper 
bound on Bayes error is given by (HS(c)-IS(x,c))/2, where 
HS(c) is the Shannon entropy of the a priori probabilities of 

the classes and IS(x,c) is the Shannon MI between the 
continuous-valued feature vectors and the discrete-valued 
class labels. Consequently, maximizing the MI between the 
selected features and the class labels potentially improves 
classification performance, and has drawn much attention [17, 
18]. 

Shannon MI between feature vectors x and c is defined in 
terms of the entropies of the overall data and individual 
classes as 
 ∑−= c ScSS cxHpxHcxI )|()();(  (1) 

where pc are the prior class probabilities. The entropy is given 
by 
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where p(x|c) are the class conditional distributions and the 
overall data distribution is 
 ∑= c c cxppxp )|()(  (3) 

 Above equations show that the critical step for this feature 
selection method is the entropy estimation. Previously in 
ICA-MI method, we estimate entropy by an indirect method. 
While in GMM-MI method, since one can approximate an 
arbitrary distribution by limited number of Gaussian 
components with sufficient amount of data, one can estimate 
entropy directly by definition (2). The GMM density 
estimation can be written as: 
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where Gm(x) is the distribution of each Gaussian component, 
and α m is the corresponding component prior. So the 
estimation of overall entropy can be written as: 
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where the class conditional entropy is given by: 
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where N is the overall data samples and NC is the data 
samples for class C, xc is the data samples from class C. 
Combining (1), (5) and (6), the MI estimation can be written 
as: 
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 Using the MI estimation given by (5)-(7), the GMM-MI 
feature ranking algorithm can be described as Procedure 1: 

A. Estimate both class densities and overall density for 
each feature vector using GMM separately. 

B. Estimate the MI between each feature vector and 
class labels. Find the feature with maximum MI, and 
mark it as opt-sub1 (optimal subset of 1 feature).  

C. Select one of the remaining feature vectors, combine 
it with opt-sub1 to form sub2 (subset of 2 features). 
Estimate both class density and overall density of 
sub2, and then estimate MI between sub2 and class 



 
 

 

labels. Repeat this process for all remaining features, 
find the features with maximum MI, and mark them 
as opt-sub2. 

D. Repeat Step C by increasing one feature at a time, 
until all features are ranked in the sense of MI 
maximization. 

 This procedure results in an ordering of features such that 
the first d features have maximal MI with class labels. The 
choice of d to be used in the application is dependent on the 
requirement for classification performance and 
computational cost. Using this search strategy, the 
computational complexity is (n+1)n/2 (n is the total number 
of features) instead of the 2n of exhaustive evaluation. 
 In Procedure 1, GMM with certain number of components 
is fitted to the data from using the Expectation-Maximization 
algorithm [19]. This GMM fitting is required for all 
combinations of feature vectors. What’s more, to determine 
the optimal number of components, we apply cross-validation 
and use several restarts to achieve maximum likelihood. 
Therefore, Procedure 1 is time-consuming. We implemented 
Procedure 1 with Matlab 7.0.1 on Dell Precision 370 with 
single P4 2.8G CPU, 1GB memory. The training datasets 
contain 30 dimensional EEG signals, with about 300 samples. 
The whole feature ranking procedure took about 125 hours, 
which makes GMM-MI algorithm almost impracticable in 
real world applications. To overcome this difficulty, we first 
use spherical covariance matrix, and assume that the number 
of optimal components for all features is identical to that for 
different combinations of feature subsets. In this way, one 
only needs to do the cross-validation once for all features at 
the beginning, and pick rows and columns from the mean 
vectors and covariance matrices for the corresponding 
features. Under this assumption, the GMM-MI algorithm is 
revised as procedure 2: 

A. Use cross-validation to determine the optimal 
number of components for each class and overall 
data for all feature vectors. Estimate both class 
densities and overall density for all feature vectors 
using GMM. Get the mean vectors and covariance 
matrices for each component. 

B. Pick the corresponding rows and columns from 
mean vectors and covariance matrices (generated in 
A), and estimate density for each feature vector. 
Estimate the MI between each feature vector and 
class labels. Find the feature with maximum MI, and 
mark it as opt-sub1 (optimal subset of 1 feature).  

C. Pick one in the remaining feature vectors, combine it 
with opt-sub1 to form sub2 (subset of 2 features). 
Find the corresponding rows and columns from 
mean vectors and covariance matrices (generated in 
A), form the new mean vectors and covariance 
matrices, and estimate both class densities and 
overall density of sub2, and then estimate MI 
between sub2 and class labels. Repeat this process 
for all remaining features, find the features with 
maximum MI, and mark it as opt-sub2. 

Repeat Step C by increasing one feature at a time, until all 
features are ranked in the sense of MI maximization. 

We implemented Procedure 2 on the same software and 
hardwire platform. The training datasets are identical to 
above experiment. Resulting in a better computational 
efficiency, the whole feature ranking procedure took about 10 
minutes for this simulation. In the next section, we will show 
the different feature ranking results from both procedures on 
the same training set. 

III. EXPERIMENTS AND RESULTS 
 In this section, we will show experimental results by 
applying the proposed GMM-MI algorithm on Iris data and 
Wisconsin breast cancer data from UCI machine learning 
repository [20]. We also implemented the algorithm on EEG 
data collected by Honeywell in AugCog project. As a 
comparison, we also implemented the previous ICA-MI 
algorithm on the same datasets. 

A. UCI machine learning repository 
 In this experiment, we applied both GMM-MI and ICA-MI 
on Iris and Wisconsin breast cancer datasets. For experiments 
using GMM-MI, the applied procedure that can be described 
as: 

1. Randomly split data into training and testing sets.  
2. Use training data to fit GMM by 5-fold 

cross-validation. Use the trained GMM model, 
together with training data to do feature ranking (If 
not mentioned, procedure 2 is used throughout the 
simulations).  

3. Use the trained GMM model to form a parametric 
Bayes classifier, and use this classifier to do the 
classification on the ranked features. 

4. Repeat 1-3 for 10 Monte Carlo runs, record the 
feature ranking indices for each time, and average 
the classification accuracy over 10 times. 

 For experiments using ICA-MI, the only difference is the 
second step, in which the ICA-MI algorithm was applied to 
rank the features. The feature ranking results for both datasets 
are shown in Table I and II, and the classification accuracies 
in Fig. 1 and 2. As a comparison, we also apply the Bayes 
error based wrapper approach for feature ranking. The results 
are shown in Fig. 1 and 2. 
 Experimental results show that in Iris and Wisconsin breast 
cancer data, GMM-MI exhibits more accuracy than ICA-MI. 
Visualizing each feature in iris data, feature 3 and 4 exhibit 
much higher separability than feature 1 and 2. Table I shows 
that GMM-MI reflects this fact without any problem; while 
ICA-MI yields inaccurate results (rank feature 4 as the least 
important feature). The ranking results of Wisconsin breast 
cancer (Table II) are consistent with the separability of the 
each feature. The classification accuracy curve in Fig. 1 and 2 
also demonstrates that GMM-MI works better than ICA-MI 
for these two datasets. Despite the better performance, 
GMM-MI is very slow compared with ICA-MI (about 100 
times slower according to Table I and II). Fig. 1 and 2 also 
show the feature ranking results using Bayes error as criterion. 
Obviously, the results are better than GMM-MI and ICA-MI 
methods, because this method is optimal to selected GMM 



 
 

 

classifier. However, since it requires combinational learning, 
it is much slower than both GMM-MI and ICA-MI. And the 
classification results obtained by ranked feature have only 
slight difference compared with error based approach.  

B. EEG dataset 
 We also applied the proposed GMM-MI method on EEG 
dataset collected by Honeywell in Augmented Cognition 
(AugCog) project. The aim of AugCog project is to enhance 
the task-related performance of a human user through 
computer mediated assistance based on assessments of 
cognitive state from EEG signals. In this experiment, the 
subject executed the predefined tasks, which correspond to 
the different level of brain activities (high and low). The EEG 
data was pre-processed by removing the muscular artifacts, 
filtering out irrelevant frequency bands. Power Spectrum 
Density features are extracted in 30 dimensions (for more 
information about AugCog project, please refer to [6, 14, 21]). 
The experimental procedure is similar to that for Iris and 
Wisconsin breast cancer datasets, except for two differences: 
1) in AugCog projection, we have two data files, one is used 
as training, the other is used as testing; 2) we did not use 
Monte Carlo procedure. The ranking results and classification 
accuracy are shown in Table III and Fig. 3. As reference, we 
also list the ranking results by GMM-MI Procedure 1 
mentioned in section II. 
1)  The experimental results on EEG dataset also validate 

that ICA-MI is much faster than GMM-MI. From 
performance point of view, both GMM-MI and ICA-MI 

exhibit certain degree of consistency. However, none of 
them is superior to the other: if we only want to select 3-5 
features, ICA-MI yields better performance. If we want 
to select 15-20 features, GMM-MI yields better 
performance. For the ICA-MI algorithm, as we 
mentioned before, linear assumption might degrade the 
accuracy of MI estimation. For GMM-MI algorithm, 
there could be two reasons: 1) by using Procedure 2 to 
replace Procedure 1, we assume that the optimal numbers 
of components are identical for different combination of 
features, this might not hold in some cases; 2) we do not 
have enough data. Consider we are working on 30 
dimensions, but we only use about 300 data samples to fit 
GMM model 

TABLE II 
FEATURE RANKING RESULTS FOR WISCONSIN BREAST CANCER DATA 

 Average CPU time (second) Ranking indices 

GMM-MI 314.99 

2  6  5  4  9  3  7  1  8 
2  6  1  8  4  9  5  7  3 
2  6  1  8  5  9  7  4  3 
3  6  1  8  4  9  5  7  2 
2  6  1  4  5  9  7  3  8 
2  6  1  8  4  5  7  9  3 
2  6  8  5  4  9  1  3  7 
2  6  1  4  5  7  9  8  3 
2  6  1  8  4  9  5  7  3 
2  6  1  4  5  9  7  3  8 

ICA-MI 2.35 

3  6  9  5  8  4  7  2  1 
3  6  9  5  8  4  7  2  1 
3  6  9  5  8  4  1  2  7 
3  6  9  5  8  4  7  2  1 
3  6  9  5  8  4  7  2  1 
3  6  9  5  8  4  7  2  1 
3  6  9  5  8  7  2  4  1 
3  6  9  5  8  4  1  2  7 
3  6  9  5  8  4  7  2  1 
3  6  9  5  8  4  7  2  1 

The second row shows the feature ranking results by GMM-MI method; the 
third row shows feature ranking results by ICA-MI method.  
 The second column shows the run-time for two methods (based on P4 
2.8G CPU). These numbers only give the reader a concept about the 
efficiency of two methods. 
 The third column shows the feature indices for 10 Monte Carlo runs. 
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Fig. 2. Classification accuracy for Wisconsin breast cancer data by 
GMM-MI, ICA-MI and Bayes error based algorithms. The classification 
accuracy is the average over 10 Monte Carlo simulations. 

TABLE I 
FEATURE RANKING RESULTS FOR IRIS DATA 

 Average CPU time (second) Ranking indices 

GMM-MI 50.69 3   4   2   1 (9 times) 
3   4   1   2 (1 time)  

ICA-MI 0.07 3   1   2   4 (10 times) 
 The second row shows the feature ranking results by GMM-MI method; 
the third row shows feature ranking results by ICA-MI method.  
 The second column shows the run-time for two methods (based on P4 
2.8G CPU). These numbers only give the reader a concept about the 
efficiency of two methods. 
 The third column shows the feature indices for 10 Monte Carlo runs. 
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Fig. 1. Classification accuracy for Iris data by GMM-MI, ICA-MI and Bayes 
error based algorithms. The classification accuracy is the average over 10 
Monte Carlo simulations. 



 
 

 

IV. CONCLUSION 
In this paper, we proposed a feature ranking and selection 

method: GMM-MI algorithm. This method exploits the fact 
that GMM is a widely accepted density estimator for an 
arbitrary distribution, and can be used for entropy estimator. 
In section II, this method is described in detail, and an 
approximation is used for reducing the computational 
requirement. Experiments on Iris, Wisconsin breast cancer, 
and EEG data show that GMM-MI can partly overcome the 
non-linear problem that ICA-MI has. However, because it is 
much slower than ICA-MI, and its accuracy will be impaired 
in higher dimension when there is no enough training data, 
this method can be used as a supplement to our existing 
method. We also show the feature ranking results by using 
Bayse error criterion for Iris and Wisconsin breast cancer data, 
experimental results show that this method is optimal to 
selected GMM classifier; however, it is too slow to use in real 
time AugCog application. 

Knowing the shortcomings of both GMM-MI and ICA-MI 
algorithms, the future work will focus on two aspects: 1) 
improving the performance of ICA transformation, in order to 

increase the accuracy of MI estimation; 2) accelerating the 
GMM algorithm to reduce the computational requirement for 
GMM fitting. 

ACKNOWLEDGMENT 
This work was supported by DARPA under contract 

DAAD- 16-03-C-0054 and by NSF under grant 
ECS-0524835. The EEG data was collected at the 
Human-Centered Systems Lab., Honeywell, Minneapolis, 
Minnesota. 

REFERENCES 
[1] E. Oja, Subspace Methods of Pattern Recognition, Wiley, New York, 

1983. 
[2] P.A. Devijver, J. Kittler, Pattern Recognition: A Statistical Approach, 

Prentice Hall, London, 1982. 
[3] K. Fukunaga. Introduction to Statistical Pattern Recognition, 2nd ed., 

Academic Press, New York, 1990. 
[4] R. Everson, S. Roberts. “Independent Component Analysis: A Flexible 

Nonlinearity and Decorrelating Manifold Approach”, Neural 
Computation, vol. 11, no. 8, pp. 1957-1983, 2003. 

[5] A. Hyvärinen, E. Oja, P. Hoyer, J. Hurri, “Image Feature Extraction by 
Sparse coding and Independent Component Analysis”,Proceedings of 
ICPR’98, pp. 1268-1273, 1998. 

[6] T. Lan, D. Erdogmus, A. Adami, M. Pavel, “Feature Selection by 
Independent Component Analysis and Mutual Information 
Maximization in EEG Signal Classification,” Proceedings of IJCNN’05, 
Montreal, Canada, pp. 3011-3016, Aug. 2005. 

[7] W. Duch, T. Wieczorek, J. Biesiada, M. Blachnik, “Comparison of 
feature ranking methods based on information entropy”, Proc. of 
International Joint Conference on Neural Networks (IJCNN), Budapest 
2004, IEEE Press, pp. 1415-1420. 

[8] R. M. Fano, Transmission of Information: A Statistical Theory of 
Communications. Wiley, New York, 1961. 

[9] M.E. Hellman, J. Raviv, “Probability of Error, Equivocation and the 
Chernoff Bound,” IEEE Transactions on Information Theory, vol. 16, 
pp. 368-372, 1970. 

[10] Battiti, R., “Using Mutual Information for Selecting Features in 
Supervised Neural Net Training,” IEEE Trans Neural Networks, vol 5, 
no 4, pp 537-550. July 1994. 

[11] Kira, K. and Rendell,L., “The feature selection problem: Traditional 
methods and a new algorithm,” In Proceedings of the Tenth National 
Conference on Artificial Intelligence (AAAI-92), pages 129–134, 
Menlo Park, CA, USA, 1992. AAAI Press. 

[12] John,G.H., Kohavi,R., & Pfleger,K., “Irrelevant features and the subset 
selection problem”. In Proceedings of the 11th International 
Conference on Machine Learning, pp 121-129, San Mateo, CA, 
Morgan Kaufmann, 1994. 

[13] Guyon,I., and Elisseeff, A., “An Introduction to Variable and Feature 
Selection,” Journal of Machine Learning Research (Special Issue on 
Variable and Feature Selection), 2003. 

[14] T. Lan, D. Erdogmus, A. Adami, M. Pavel, S. Mathan, “Salient EEG 
Channel Selection in Brain Computer Interfaces by Mutual Information 
Maximization,” Proceedings of EMBC’05, Shanghai, China, Sept. 
2005. 

[15] D. Erdogmus, Information Theoretic Learning: Renyi’s Entropy and its 
applications to Adaptive System Training, PhD Dissertation, University 
of Florida, 2002. 

[16] D. Erdogmus, J.C. Principe, “Lower and Upper Bounds for 
Misclassification Probability Based on Renyi’s Information,” Journal 
of VLSI Signal Processing Systems, vol. 37, no. 2/3, pp. 305-317, 2004. 

[17] K. Torkkola, “Feature Extraction by Non-Parametric Mutual 
Information Maximization,” Journal of Machine Learning Research, 
vol. 3, pp. 1415-1438, 2003. 

[18] R. Battiti, “Using Mutual Information for Selecting Features in 
Supervised Neural Networks learning,” IEEE Trans. Neural Networks, 
vol. 5, no. 4, pp. 537-550, 1994. 

TABLE III 
FEATURE RANKING RESULTS FOR AUGCOG EEG DATA 

 Average CPU 
time (second) Ranking indices 

GMM-MI 
(Procedure 2) 558.86 

24 3 23 7 11 8 30 2 4 20 26 9 6 1 29 17 
16 10 5 18 14 12 19 21 28 25 27 15 13 
22 

ICA-MI 2.86 
24 18 3 22 13 23 29 7 16 28 2 5 14 27 25 
6 1 10 11 19 8 20 4 30 9 15 21 17 12 26

GMM-MI 
(Procedure 1) 

About 125 
hours 

24 4 22 18 14 9 8 23 16 29 27 20 3 12 19 
17 26 7 6 2 15 25 5 28 21 30 11 1 10 13

The second row shows the feature ranking results by GMM-MI method; the 
third row shows feature ranking results by ICA-MI method. the fourth row 
also show the feature ranking results by using GMM-MI method procedure 
1.  
 The second column shows the run-time for two methods (based on P4 
2.8G CPU). These numbers only give the reader a concept about the 
efficiency of two methods. 
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