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Abstract— Recent work has revealed a close connection
between certain information theoretic divergence measures
and properties of Mercer kernel feature spaces. Specifically,
it has been proposed that an information theoretic measure
may be used as a cost function for clustering in a kernel
space, approximated by the spectral properties of the Laplacian
matrix. In this paper we extend this result to other kernel
matrices. We develop an algorithm for the actual clustering
which is based on comparing angles between data points, and
demonstrate that the proposed method performs equally good
as a state-of-the art spectral clustering method. We point out
some drawbacks of spectral clustering related to outliers, and
suggest measures to be taken.

I. INTRODUCTION

Recently, close connections between information theoretic
learning [1], [2], [3] and Mercer kernel methods [4], [5], [6]
have been revealed [7], [8]. Information theoretic learning
refers in this regard to adaptive systems training using
performance criteria related to Renyi’s measure of entropy
[9], such as for example a divergence measure based on the
Cauchy-Schwarz inequality. These measures are combined
with non-parametric density estimation using Parzen win-
dowing [10]. Mercer kernel methods are based on a non-
linear data mapping to a feature space, where inner-products
can be implicitly computed based on the input data using a
kernel function.

In [8] it was shown that a Cauchy-Schwarz based diver-
gence measure between probability density functions (pdfs)
has a dual expression as a measure of the cosine of the angle
between cluster mean vectors in a Mercer kernel feature
space. It was pointed out that the data mapping to the kernel
space might be approximated by the eigenspectrum, i.e. the
eigenvalues and eigenvectors, of the Laplacian data matrix.
Thus, potentially enabling an angle-based spectral clustering
procedure to be developed, using an information theoretic
cost function. However, no such algorithm was implemented.

Spectral clustering dates back at least to [11], who discov-
ered that a graph can be bi-partitioned by thresholding the
eigenvector corresponding to the second eigenvalue of the
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Laplacian matrix. Recently, a number of related techniques
have been proposed [12], [13], [14], [15], [16], [17]. It is
however not always clear which criterion that is optimized
by spectral clustering in terms of the input data set, although
most of these techniques can be shown to be approximate
solutions to the minimum graph cut problem. In Ng et al.
[18] the eigenvectors of the Laplacian matrix are used to
transform, or map, the input data into a new representation.
Then, the actual clustering in that space is performed using
the C-means technique [19]. Provided the neighborhood
parameter, or kernel size, used to construct the Laplacian
matrix is appropriate, the Ng et al. method has been shown
exhibit excellent performance.

The contribution made in this paper is threefold. First,
we extend and generalize the theoretical results obtained
in [8]. We consider a Cauchy-Schwarz based divergence
measure between pdfs. The building blocks of the divergence
measure are inner-products, which are defined in terms of
a weighting function u(x). We show that the divergence
measure has a dual expression as a measure of the cosine of
the angle between cluster mean vectors in a Mercer kernel
feature space defined by u(x). The data mapping to this
kernel space may be approximated by the eigenspectrum of
a kernel matrix Ku. For a particular u(x), the special case
considered in [8] is obtained. Second, we derive a clustering
algorithm in the u(x)-dependent Mercer kernel feature space.
In terms of the input data set, this algorithm is founded on
the well defined information theoretic optimality criterion.
Since this measure corresponds to an angle measure in the
kernel space, the structure of the algorithm in that space is
very simple, consisting of comparing angles between feature
space data points and feature space mean vectors. We show
that the information theoretic angle-based spectral clustering
algorithm performs equally good as the state-of-the art Ng
et al. spectral clustering method. Third, the introduction of
the weighting function u(x) allows us to identify a situation
where spectral clustering may break down. This situation
may occur when there are outliers in the data set. We indicate
that the weighting function may be actively used to avoid this
problem.

In section II, we outline the theory connecting the infor-
mation theoretic cost function to a Mercer kernel feature
space. The actual clustering algorithm is derived in section
III. Thereafter, we present some clustering experiments in
section IV. In section V, we discuss the problem of outliers
an illustrate with examples. Finally, we conclude the paper
in section VI.



II. AN INFORMATION THEORETIC COST FUNCTION IN A
MERCER KERNEL SPACE

This section provides an extension of the theory presented
in [8]. We show that an information theoretic divergence
measure between pdfs has a dual expression as a divergence
measure between clusters in a Mercer kernel feature space,
whose properties depends on the choice of an inner-product
weighting function.

We consider a Cauchy-Schwarz based divergence measure
between the pdfs p1(x), . . . , pC(x). We define it as

D(p1, . . . , pC) = − log
1

κ

C−1
∑

i=1

∑

j>i

〈pi, pj〉u
√

〈pi, pi〉u 〈pj , pj〉u
,

(1)
where κ =

∑C

c=1 is a normalizing constant. The
weighted inner-products are given by 〈pi, pj〉u ≡
∫

pi(x)pj(x)u(x)dx, i, j = 1, . . . , C, where u(x) is some
non-negative weighting function. If p1(x) = · · · = pC(x),
then D(p1, . . . , pC) = 0.

Note that for C = 2 and u(x) ≡ 1, this divergence
measure reduces to the measure used by Principe [1] for
adaptive systems training, e.g. for independent component
analysis. Note also that the case u(x) = f−1(x), where
f(x) is the overall pdf of the data set, corresponds to the
Laplacian measure analyzed in [8]. In the following, we will
analyze this divergence measure for a general u(x), using
Parzen windowing [10] to estimate probability densities.

Parzen windowing is a well-known kernel-based density
estimation method [20], [10]. Given a set of d-dimensional
iid samples {x1, . . . ,xN} drawn from the true density f(x),
the Parzen window estimator for this distribution is defined
as

f̂(x) =
1

N

N
∑

t=1

Wσ(x,xt). (2)

Here, Wσ is the Parzen window, or kernel, and σ controls
the width of the kernel. The Parzen window must integrate
to one, and is typically chosen to be a pdf itself, such as the
Gaussian kernel. Hence,

Wσ(x,xt) =
1

(2πσ2)
d

2

exp

{

−
||x − xt||

2

2σ2

}

.

It is easily shown that Eq. (2) is an asymptotically unbiased
and consistent estimator provided σ decays to zero at a
certain rate as N tends to infinity [10]. In the finite sample
case, the kernel size has to be chosen in a trade-off between
estimation bias and variance. In order to obtain analytical
results, we will consider Gaussian Parzen windows in the
following. This is however not necessary for the validity of
the results, other window functions may be used.

We will analyze the Cauchy-Schwarz measure for the
case C = 2. The extension to more than two pdfs is
straightforward. Then, we have

D(p1, p2) = − log

∫

h(x)g(x)dx
√

∫

h2(x)dx
∫

g2(x)dx
, (3)

where h(x) = u
1
2 (x)p1(x) and g(x) = u

1
2 (x)p2(x).

Assume that each pdf, or cluster, is represented by a set
of iid data samples, that is, C1 : {xi}, i = 1, . . . , N1, and
C2 : {xj}, j = 1, . . . , N2. Hence, the overall data set is the
union of C1 and C2, that is, C1 ∪C2 = {xt}, t = 1, . . . , N ,
for N = N1 + N2. Note that the index i always points to
cluster C1, while the index j always points to cluster C2.
The following generalized Parzen window-based estimator
for the functions h(x) and g(x) may be used

ĥ(x) =
1

N1

N1
∑

i=1

u
1
2 (xi)Wσ(x,xi), (4)

ĝ(x) =
1

N2

N2
∑

j=1

u
1
2 (xj)Wσ(x,xj), (5)

where we for simplicity have used the same window size σ

in both ĥ(x) and ĝ(x). These estimators are asymptotically
unbiased and consistent under certain conditions. Proofs are
deferred to a more comprehensive version of this paper.

For notational convenience, we denote u
1
2 (xi) = u

1
2

i .
Using these estimators, we then have

∫

ĥ(x)ĝ(x)dx

=

∫

1

N1

N1
∑

i=1

u
1
2

i Wσ(x,xi)
1

N2

N2
∑

j=1

u
1
2

j Wσ(x,xj)dx

=
1

N1N2

N1,N2
∑

i,j=1

u
1
2

i u
1
2

j

∫

Wσ(x,xi)Wσ(x,xj)dx

=
1

N1N2

N1,N2
∑

i,j=1

u
1
2

i u
1
2

j W√
2σ(xi,xj), (6)

where in the last step, the convolution theorem for Gaussians
has been employed. Similarly, we have

∫

ĥ2(x)dx =
1

N2
1

N1,N1
∑

i,i′=1

u
1
2

i u
1
2

i′W
√

2σ(xi,xi′ ), (7)

and, likewise
∫

ĝ2(x)dx =
1

N2
2

N2,N2
∑

j,j′=1

u
1
2

j u
1
2

j′W
√

2σ(xj ,xj′ ). (8)

For further notational convenience, we define
the u(x)-dependent window, or kernel function,
kij

u
= u

1
2

i u
1
2

j W√
2σ(xi,xj). Hence, a Parzen window-

based estimator for the argument of the logarithm in (3) can
be expressed as

S(p1, p2) =

1
N1N2

N1,N2
∑

i,j=1

kij
u

√

1
N2

1

N1,N1
∑

i,i′=1

kii′u

1
N2

2

N2,N2
∑

j,j′=1

kjj′
u

. (9)

This estimator can be related to a Mercer kernel feature
space. The reason for this connection is that W√

2σ(xi,xj)
is a Gaussian Mercer kernel [21], [5], thus computing an
inner-product in some Mercer kernel feature space. It can



be easily shown that u(x) being a non-negative weighting
function implies that kij

u
is also a Mercer kernel. Hence,

this kernel computes an inner-product in a kernel space, that
is kij

u
= 〈Φu(xi),Φu(xj)〉. Here, Φu(xi) corresponds to

the non-linear mapping from the input space to the kernel
space, which depends both on the window function W

and the weighting function u(x). For simplicity, we denote
Φiu

= Φu(xi).
Thus, we may analyze the measure S(p1, p2) in terms of

inner-products in a Mercer kernel feature space as follows.

S(p1, p2) =

1
N1N2

N1,N2
∑

i,j=1

〈Φiu
,Φju

〉

√

1
N2

1

N1,N1
∑

i,i′=1

〈

Φiu
,Φi′

u

〉

1
N2

2

N2,N2
∑

j,j′=1

〈

Φju
,Φj′

u

〉

=

〈

1
N1

N1
∑

i=1

Φiu
, 1

N2

N2
∑

j=1

Φju

〉

√

√

√

√

〈

1
N1

N1
∑

i=1

Φiu
, 1

N1

N1
∑

i′=1

Φi′
u

〉

〈

1
N2

N2
∑

j=1

Φju
, 1

N2

N2
∑

j′=1

Φj′
u

〉

=
〈m1u

,m2u
〉

√

〈m1u
,m1u

〉 〈m2u
,m2u

〉
= cos 6 (m1u

,m2u
), (10)

where m1u
= 1

N1

N1
∑

i=1

Φiu
and m2u

= 1
N2

N2
∑

j=1

Φju
are

Mercer kernel feature space mean vectors associated with the
data points drawn from the pdfs p1(x) and p2(x), respec-
tively. Thus, the information theoretic divergence measure
between pdfs that we started out with turns out to have a
dual expression in a kernel feature space. In that space, the
cost function measures the cosine of the angle between the
cluster mean vectors.

Extended to more than two pdfs, the divergence measure
basically corresponds to a measure of the pairwise sum of
the cosine of the angle between cluster mean vectors in a
kernel induced feature space, as

S(p1, . . . , pC) =
1

κ

C−1
∑

i=1

∑

j>i

cos 6 (miu
,mju

). (11)

A. Approximation by the Spectral Properties of the Kernel
Matrix

We will now consider the special case that u(x) ≡
1. In that case, the estimators (5) and (4) reduce to the
ordinary Parzen window estimators for the densities p1(x)
and p2(x). Moreover, the kernel function becomes kij =
W√

2σ(xi,xj), the usual Gaussian Mercer kernel. Then, the
measure S(p1, p2) can be expressed in terms of the affinity
matrix K. The affinity matrix is defined such that element
(i, j) of K equals kij . It is well known [22], [23], [24]
that the actual mapping Φ(·) to the kernel space can be
approximated by the eigenspectrum of the matrix K. The
eigendecomposition is given by K = EDE

T , where E

is a matrix having the eigenvectors of K as columns, and
D is a diagonal matrix of corresponding eigenvalues. The

mapping is approximated by the C largest eigenvalues and
eigenvectors as

Φ(xi) ≈ [

√

λ̃1e1l, . . . ,

√

λ̃CeCl]
T , (12)

where ejl denotes the lth element of the jth eigenvector
of K and λ̃j is the corresponding eigenvalue, where λ̃1 ≥
· · · ≥ λ̃C). This is the procedure we will follow in order
to generate the data set corresponding to the kernel induced
feature space.

Similarly, for a general weighting function u(x), the data
mapping is approximated by (12) using the eigenspectrum
of the kernel matrix Ku, defined such that element (i, j) of
Ku equals kij

u
.

In [8], we considered the particular weighting function
u(x) = f−1(x), where f(x) is the overall pdf of the input
data set. We showed that when f(x) is estimated by the
Parzen window method, the resulting kernel matrix is in fact
the Laplacian matrix Kf−1 = D

− 1
2 KD

− 1
2 . Hence, in this

special case, the data mapping is approximated using the
eigenspectrum of the Laplacian matrix.

B. Interpretation of the Weighting Function

Based on our starting point, i.e. the divergence measure
between pdfs, we are in a position to provide an analysis
of the effect of the two particular weighting functions,
u(x) = 1 and u(x) = f−1(x). As mentioned, these functions
correspond to a data mapping associated with the affinity
matrix and the Laplacian matrix, respectively.

For u(x) = 1 no region in the input space is
weighted more than other regions, in the computation
of the inner-product integral, that is 〈p1(x), p2(x)〉 =
∫

p1(x)p2(x)u(x)dx =
∫

p1(x)p2(x)dx.
However, for u(x) = f−1(x), the weighting of the inner-

product integral in a particular region is inversely propor-
tional to the probability density function in that region. This
means that a data point associated with a low probability
region are given a high weight. Conversely, a data point
in a region of high probability are given a low weight.
For example, data points on the borderline between clusters
will be given high weights. This is also the case for data
points associated with sparse clusters, i.e. consisting of few
and spread data points. This weighting property therefore
explains some of the difference between clustering based
on the affinity matrix and clustering based on the Laplacian
matrix, in terms of inner-products and weighting functions.
To our knowledge, this viewpoint is new.

Figure 1 aims to illustrate this point. Two one-dimensional
data sets are used to estimate the densities p1(x) and p2(x)
based on the Parzen window method. The curves correspond-
ing to these estimates are shown in the figure. Also, the
overall pdf f(x) has been estimated by the same procedure
(solid curve). The relative weighting on each of the data
samples, given by u(xi) = f−1(xi) are shown as the bars. It
can be seen that the data points situated close to each other
are designated a low weighting, because they correspond to a
high probability region. On the other hand, e.g. the data point
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Fig. 1. Illustration of weighting given by u(x) = f−1(x).

in the middle, corresponding to low probability, is designated
a high weight.

III. A SPECTRAL CLUSTERING ALGORITHM

In [8], we presented some of the theoretical results re-
viewed in the previous section. No actual clustering algo-
rithm was implemented. In this section, we will show that
we are able to derive a spectral clustering algorithm from
our well-defined information theoretic cost function. This
algorithm is general with respect to the kernel matrix, in
the sense that the data mapping can be approximated using
the affinity matrix, the Laplacian matrix, or in theory other
kernel matrices induced by the function u(x).

We wish to cluster the data points, i.e. assign cluster mem-
bership values, such that S(p1, . . . , pC) takes its smallest
value, because this corresponds to a maximum value for the
divergence D(p1, . . . , pC). Hence, we must assign cluster
memberships such that the angle between the kernel feature
space cluster mean vectors are kept as large as possible. This
is a very simple clustering criterion. It can be accomplished
simply by measuring the cosine of the angle between a
feature space data point and all the feature space mean
vectors, for then to assign the data point to the mean vector,
or cluster, which corresponds to the largest value.

Such a clustering procedure requires a method for initial-
izing mean vectors in the kernel feature space. We will come
back to this shortly.

In pseudo-code, the proposed information theoretic angle-
based spectral clustering algorithm consists of the following
steps

1) Select an inner-product weighting function u(x).
2) Select a kernel size σ.
3) Construct Ku.
4) Perform the data mapping using (12) and Ku.
5) Initialize mean vectors in the kernel space.
6) For all xt, t = 1, . . . , N :

xt → ωi : max
i

cos 6 (Φu(xt),miu
).

7) Update mean vectors.
8) Repeat steps 6-8 until convergence.

One may compute the value of the cost function at each
iteration step. If the decrease in the value of the cost function
is very small from one iteration to the next, the algorithm
has converged and may terminate.

A. Initializing Mean Vectors

The kernel feature space mean vectors may be initialized
randomly. However, by performing an “ideal case” analysis
of Ku (clusters are “infinitely” far apart, see e.g. [18]), it
can be shown that the “ideal” mean vectors are proportional
to m1u

= [±1, 0, . . . , 0]T , m2u
= [0,±1, . . . , 0]T , and so

on. Therefore, if the mean value of the first eigenvector
is positive, we initialize m1u

= [1, 0, . . . , 0]T . Otherwise
m1u

= [−1, 0, . . . , 0]T . Likewise, we examine the mean of
the second eigenvector and initialize the corresponding mean
vector based on the sign of that number, and so on.

B. A Comment on Kernel Size Selection

As shown in this paper, the Parzen window and the Mercer
kernel are equivalent. In theory therefore, data-driven rules
for Parzen window size selection known from statistics may
be helpful in determining an appropriate Mercer kernel size.

Unbiased least squares cross-validation [25] produces a
window size σLSCV which minimizes the mean squared
integrated error (MISE) between the Parzen window esti-
mator and the true density. It is often to small, because it
favors unbiasedness, i.e. a small kernel size. By estimating
the standard deviation according to a Gaussian density, an
expression for the asymptotic optimal MISE kernel size
is given by σAMISE = σX

[

4
(2d+1)N

]
1

d+4 , where σ2
X =

d−1
∑

i ΣXii
, and ΣXii

are the diagonal elements of the
sample covariance matrix [26]. For low dimensional and non-
Gaussian data sets, this kernel size is often too large. One
approach may therefore be to use the mean of these values,
σmean. However, the higher the dimensionality of the data
sets, the more difficult it gets to determine an appropriate
kernel size. This is a problem for all kernel-based algorithms.

IV. SOME CLUSTERING EXPERIMENTS

In the following, we perform some clustering experiments
using both the affinity matrix and the Laplacian matrix.
We demonstrate that the information theoretic angle-based
spectral clustering algorithm may perform reasonably well,
meaning that the underlying natural grouping of the data
is unraveled. The number of clusters to be discovered is
user-specified. Note that there is no random component in
this algorithm. This means that the clustering result for a
particular data set is always the same even in repeated trials,
given the same kernel size in every trial. We present the
clustering error-rate as a function of the kernel size, over a
range of kernel sizes. For comparison, we indicate in each
case the kernel sizes determined by data-driven statistical
rules.
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Fig. 2. Crescent-shaped data set, with correct labeling indicated.

We compare with the Ng et al. [18] algorithm. In this
method, the input data is mapped to a feature space deter-
mined by the eigenvectors corresponding to the C largest
eigenvalues of the Laplacian matrix. In that space, the data is
normalized to unit length. Thereafter, the C-means algorithm
[19] is used for the actual clustering. To make the comparison
fair, we initialize mean vectors also for this method using
the strategy outlined in section III-A. We also use the same
kernel size for all methods.

A. Synthetic Data Sets

Figures 2 (a) and (b) show two data sets having a crescent-
shaped structure. The clusters constituting the data set in (a)
are both quite dense. The cluster to the left consists of 209
data points, while the cluster to the right consists of 210 data
points. In (b), the leftmost cluster is also quite dense, and
consists of 209 data points. On the other hand, the rightmost
cluster is much more sparse, consisting of only 21 data
points. The “correct” labeling is indicated. This information
is of course not available to the clustering algorithms.

Figure 3 (a) shows the clustering results for the Fig. 2 (a)

data set. For a kernel size less than 0.38, the clustering result
based on the affinity matrix is not very good. However, for a
kernel size in the range 0.38 ≤ σ ≤ 0.65, the correct result
is obtained. Thereafter, for increasing kernel size, the result
gets worse. The clustering result based on the Laplacian
matrix is better with respect to the range of σ. A perfect
result is obtained also for a very small kernel size. Note that
σmean = 0.5 while σmise = 0.8. Note also that the result
obtained by the Ng et al. method is nearly identical to the
result obtained by the proposed angle-based algorithm when
using the Laplacian matrix.

Figure 3 (b) shows the clustering results for the Fig. 2
(b) data set. In this case, the data mapping provided by the
affinity matrix is not appropriate in order to obtain reasonable
results for any kernel size. It clearly can not handle the
sparse cluster. On the other hand, the clustering based on the
Laplacian matrix is perfect for small kernel sizes. However,
for σ > 0.51 reasonable results are no longer obtained. But
it seems as if the u(x) = f−1(x) weighting has a positive
effect on the clustering results. Again, the Ng et al. method
performs equally good.

Figure 3 (c) illustrates the u(x) = f−1(x) weighting
property for these two data sets, using a fixed kernel size
σ = 0.5. The stapled line corresponds to the weighting
associated with the Fig. 2 (a) data set. The first 209 data
points correspond to the leftmost cluster, while the last 210
data points correspond to the rightmost cluster. All the data
points are in this case weighted fairly equally. This is to
be expected, since all the data points are situated in regions
having more or less the same probability density structure.
The solid line indicates the weighting associated with the
Fig. 2 (b) data set. The data points corresponding to the
dense (leftmost) cluster are weighted equally. However, the
data points associated with the sparse (rightmost) cluster
are designated higher weights. In some cases much higher
weights. These data points will therefore be the most impor-
tant for the clustering performance. Note that for a “large”
kernel size, the pdf estimate will be more smooth than for a
“small” kernel size, basically smoothing out the difference in
the weighting of the data points. This may explain why the
results gets worse for larger kernel sizes also for clustering
based on the Laplacian matrix.

We have also included an experiment using the data set
shown in Fig. 4. There are a total of N = 315 data patterns.
The inner-most circle contains N1 = 63 data points. The
radius is so small that it looks almost like a point-cluster,
hence it is very dense. The middle circle and the outer circle
both contain N2 = N3 = 126 data patterns. Thus, the outer
circle is the most sparse cluster. In this case, clustering based
on the affinity matrix does not provide reasonable results.
Clustering based on the Laplacian matrix (and the Ng et al.
method) provides perfect results for 0.3 ≤ σ ≤ 1.9. Note
that σmean = 1.8.

B. Real Data Sets

The Wisconsin breast-cancer data set (extracted from the
UCI repository [27]) consists of two classes of tumors,
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Fig. 3. Clustering of crescent-shaped data sets (rrror-rate vs. kernel size.)

namely benign and malignant. There are totally 683 data
points, where 444 correspond to the benign class and 239
to the malignant class. It is a nine-dimensional dataset with
features related to clump thickness, uniformity of cell size
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Fig. 4. Clustering of ring-shaped data set. Correct result obtained for a
kernel size in the range 0.3 ≤ σ ≤ 1.9.
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Fig. 5. Clustering of real data sets (error-rate vs. kernel size.). Upper
panel: Wisconsin breast-cancer, Lower panel: Pen-based handwritten digit
recognition.

and shape, etc. The upper panel of Fig. 5 shows the clustering
result as a function of the kernel size. The clustering based
on the affinity matrix does not perform well for relatively
small kernel sizes. For large kernel sizes, the result is quite
good. Based on the Laplacian matrix, the result is good for
a wide range of kernel sizes. Here, σmise = 1.6.

The lower panel of Fig. 5 shows the clustering result of
the pendigits data set (also extracted from UCI). This data
set was created for pen-based handwritten digit recognition.
The data set is 16-dimensional. All attributes are integers in
the range [0, 100]. We use data vectors corresponding to the
digits 0, 1 and 2. These clusters consist of 363, 364 and
364 data patterns, respectively. Perhaps surprisingly, in this
case the clustering based on the affinity matrix provides the
best result for the smaller kernel sizes in the range shown
(σmise = 20). For smaller kernel sizes, the result based on
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(a) True labels, data set with outliers.
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(b) Clustering results (error-rate) as a function of kernel
size.
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(c) Solution where the Laplacian method breaks down.

Fig. 6. Illustrating the problem of high weighting of outliers using the
Laplacian matrix for clustering.

the Laplacian matrix (and the Ng et al. method) is not that
good. For the larger kernel sizes, the result based on the
Laplacian matrix is a little bit better.

We do not at present have a good explanation as to why
these results are observed on the pendigits data set. They
may be related to the outlier-problem we will discuss in
the next section. First, we will comment on why the angle-
based clustering using the Laplacian matrix and the Ng et
al. method performs almost identically good.

C. Comment on a Connection to the Ng et al. Method

In [8], we argued that spectral clustering based on the
Cauchy-Schwarz divergence using the Laplacian matrix, and
clustering using the Ng et al. [18] method, would probably
give quite similar results. Indeed, the experiments conducted
in this paper seem to be confirmatory in that respect. First,
note that we incorporate the eigenvalues in addition to the
eigenvectors in the data mapping, in contrast to the Ng et
al. method which uses only the eigenvectors. However, it
is often the case that the C largest eigenvalues are quite
close in range. Thus, the inclusion of the eigenvalues in
many cases does not have much effect on the mapping.
Second, the normalization of the data followed by C-means
clustering basically corresponds to clustering based on an
angular measure. Hence, it can be seen that the heuristic Ng
et al. algorithm in effect achieves the same goal as the more
theoretically well-defined information theoretic clustering.

V. OUTLIER ROBUSTNESS BY CHOICE OF WEIGHTING
FUNCTION

On the experiments conducted so far, it seems as if the
weighting given by u(x) = f−1(x) for the most part has
a positive effect. However, we have observed that this is
not necessarily always the case. The reason is that outliers
in the data set will also be given high weights using this
weighting. In fact, even if there is only one single outlier in
the data set, this particular data point may be designated the
highest weight of all the data points. Figure 6 (a) shows
the same data set as in Fig. 2 (a), only that now a few
outliers are included. These outliers don’t really belong to
any of the clusters, although in the figure they are marked
with the circle-symbol. Figure 6 (b) shows the clustering
results. For a wide range of kernel sizes, the clustering based
on the Laplacian matrix (also the Ng et al. method) brakes
completely down. A typical result is shown in Figure 6 (c).
The reason is that the outliers become dominant because of
the weighting. In fact, in such a situation, clustering based
on the affinity matrix is more robust in this particular kernel
size range. For very small kernel sizes, the outlier problem is
less, since the affinity between any data point and an outlier
is so small anyway.

As a preliminary experiment, we have tried to actively
use the weighting function u(x) to avoid this problem.
The approach taken is to try to identify possible outliers.
Instead of giving these data points huge weights, we assign
them small weights. An outlier is identified as follows: If
a data point has no neighbors within a 3σ neighborhood,
then it must be very isolated in the input data space, and
hence defined as an outlier. In the preliminary experiment,
u(xi) = f−1(xi) for all data points except the outliers.



For an outlier, we designate a weight which correspond to
0.01 times W√

2σ(0). We call such an u(x) outlier weighted.
In Figure 6 (b) it can be seen that the outlier weighted
clustering performs equally good as the Laplacian-based for
small kernel sizes and large kernel sizes, but it does not
break down in the critical kernel size range. We consider this
preliminary experiment promising. We intend to investigate
more closely alternative weighting schemes in future work.

VI. CONCLUSIONS

In this paper, we have analyzed an information theoretic
cost function, and shown that it has a dual expression as an
angular measure in a Mercer kernel feature space. The effect
of the weighting function has been analyzed for the cases
u(x) = 1 and u(x) = f−1(x). An information theoretic
angle-based spectral clustering algorithm has been derived an
tested on synthetic and real data. It has been shown to be able
to unravel the natural grouping of the data. The differences
between clustering based on the affinity matrix and the
Laplacian matrix has been emphasized. The similarity to the
Ng et al. clustering algorithm has been commented upon.
We have also discussed the problem of outliers, and shown
that such data points may receive such a high weighting
that clustering based on the Laplacian matrix may break
down. In a preliminary experiment, we have indicated that
the weighting function may be actively used in order to limit
this problem.
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